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Abstract 
 
In the paper, we introduce some concepts and notations of Hall π-subgroup etc, and prove some properties 
about finite p-group, nilpotent group and Sylow p-subgroup. Finally, we have proved two interesting theo-
rems about nilpotent subgroup. 
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In this paper, we introduced some concepts and notations 
such as Hall π-subgroup and so on. Using concepts, 
terms and notations in group theory, we have proved 
some properties about finite group, nilpotent group and 
Sylow p-subgroup, and proved two interesting theorems 
about nilpotent subgroup in these properties. 

Let π be a set of some primes and the supplementary 
set of π in the set of all primes be notated π', When π 
contains only one prime p we notate π and π' as p and p', 
When all prime factor of integer n be in π we called n as 
a π-number, If the order H  of G’s subgroup be a 
π-number we called H as a π-subgroup. 

Definition 1. If H be a π-subgroup of G and :G H  
be a π'- number, we called H as a Hall π-subgroup of G. 

Lemma 1. A nontrivial finite p-group has a nontrivial 
center. 

Proof. Let 1  be the class equation [1] 
of the group; ni divides pm and hence is a power of p. If 
the center were trivial, only ni would equal 1 and 

, which is impossible since .  

m
kp n n  

p1 modmp  1mp  
Definition 2. A group G is called nilpotent [2] if it has 

a central series [2], that is, a normal series 

0 11 nG G G G      

such that iG G  is contained in the center of iG G  for 
all i. The length of a shortest central series of G is the 
nilpotent class of G. 

A nilpotent group of class 0 has order l of course, 
while nilpotent groups of class at most 1 are abelian. 
Whereas nilpotent groups are obviously soluble, an ex-

ample of a non nilpotent soluble group is 3  (its centre 
is trivial). The great source of finite nilpotent groups is 
the class [3] of groups whose orders [4] are prime pow-
ers. 

S

Lemma 2. A finite p-group is nilpotent. 
Proof. Let G be a finite p-group of order > 1. Then 

Lemma 1 shows that 1G  . Hence G G  is nilpo-
tent by induction on G . By forming the preimages of 
the terms of a central series of G G  under the natural 
homomorphism [5] G G G  and adjoining [6] 1, 
we arrive at a central series of G.  

Lemma 3.The class of nilpotent groups is closed un-
der the formation of subgroups, images, and finite direct 
products. 

The proof can be found in Reference [1]. 
Lemma 4. Let P be a Sylow p-subgroup [7] of a finite 

group G. 
i) If  GN P H G  , then  GH N H . 
ii) If , then N G P N  is a Sylow p-subgroup of 

N and PN N  is a Sylow p-subgroup of G N . 
Proof. i) Let  Gx N H . Since  GP H N H  , 

we have xP H . Obviously P and Px are Sylow p-sub-
group of H, so x hP P  for some . Hence h H

 G
1xh N P H   and x H . It follows that 

 GH N H . 
ii) In the first place : :PN PN P N  , which is 

prime to p. Since P N  is a p-subgroup, it must be a 
Sylow p-subgroup of N. For PN N  the argument is 
similar.  

Lemma 5. Let G be a finite group. Then the following 
properties are equivalent: Foundation Item: Project supported by Natural Science Foundation

(13116339) of China; Natural Science Foundation ([2009]2075) of Sci-
ence and Technology Department of Guizhou; Natural Science Founda-
tion ([2011]069) of Education Department of Guizhou; Science Re-
search item(2010028) of Zunyi Normal College. 

i) G is nilpotent; 
ii) every subgroup of G is subnormal [8]; 
iii) G satisfies the normalizer [9] condition; 
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iv) every maximal subgroup [8] of G is normal; 
v) G is the direct product of its Sylow subgroups. 
Proof: i)→ii) Let G be nilpotent with class c. If 

H G , then 1i iH G H G    since 

 1i i iG G G G     . 

Hence 

0 1 cH H G H G H G G      

and H is subnormal in G in c steps. 
ii)→iii) Let H G . Then H is subnormal in G and 

there is a series 0 1 nH H H H G  
i

 . If i is the 
least positive integer such that H H . Then 

1i iH H  H  and  i GH N H . 
iii)→iv) If M is a maximal subgroup of G, then 

 GM N M , so by maximality  GN M G  and 
M G . 

iv)→v) Let P be a Sylow subgroup of G. If P is not 
normal in G, then  is a proper subgroup of G 
and hence is contained in a maximal subgroup of G, say 
M. Then 

 GN P

M G ; however this contradicts Lemma 4. 
Therefore each Sylow subgroup of G is normal and there 
is exactly one Sylow p-subgroup for each prime p since 
all such are conjugate. The product of all the Sylow sub-
groups is clearly direct and it must equal G. 

v)→i) by Lemma 2 and Lemma 3. 
Theorem 1. Assume that every maximal subgroup of 

a finite group G itself is not nilpotent. Then: 
i) G is soluble; 
ii) m nG p q  where p and q are unequal primes; 
iii) there is a unique Sylow p-subgroup P and a Sylow 

q-subgroup Q is cyclic. Hence  and . G QP P G
Proof. i) Let G be a counterexample of least order. If 

N is a proper nontrivial normal subgroup, both N and 
G N are soluble, whence G is soluble. It follow that G is 
a simple group. 

Suppose that every pair of distinct maximal subgroups 
of G intersects in 1. Let M be any maximal subgroup: 
then certainly  GM N M  If G n  and M m , 
then M has n m  conjugates [10] every pair of which 
intersect trivially. Hence the conjugates of M account for 
exactly 

 1m n n
n

m m


   

nontrivial elements. Since m ≥ 2, we have 

1

2 2

n n n
n

m


    

in addition it is clear that 

2 1.  
n

n n n
m

    

Since each nonidentity element of G belongs to ex-

actly one maximal subgroup, n – 1 is the sum of integers  

lying strictly between 
1

2

n 
 and n – 1. This is plainly  

impossible. 
It follows that there exist distinct maximal subgroups 

M1 and M2 whose intersection I is nontrivial. Let M1 and 
M2 be chosen so that I has maximum order [8]. Write 

 GN N I . Since M is nilpotent,  
1MI N I  by 

Lemma 5, so that 1I N M  . Now I cannot be normal 
in G; thus N is proper and is contained in a maximal 
subgroup M. Then 1 1I N M M M    , which con-
tradicts the maximality of I . 

ii) Let 1
1

kep eeG p k , where  and the i  
are distinct primes. Assume that . If M is a maxi-
mal normal subgroup, its index is prime since G is solu-
ble; let us say 

0i

3
p

k

1:G M p . Let i  be a Sylow 
pi-subgroup of G. If , then i  and, since M is 
nilpotent, it follows that i ; also the since . 
Hence P1Pi is nilpotent and thus 

P
M1i  P

G


P  3k
1, iP P 1 (by Lemma 

5). It follows that  1N P G  and 1 . This 
means that all Sylow subgroup of G are normal, so G is 
nilpotent. By this contradiction k = 2 and 

G P G

1 2
2
ep1

eG p . 
We shall write 2p p  and q . 1

iii) Let there be a maximal normal subgroup M with 
index [6] q. Then the Sylow p-subgroup P of M is nor-
mal in G and is evidently also a Sylow p-subgroup of G. 
Let Q be a Sylow q-subgroup of G. Then G = QP. Sup-
pose that Q is not cyclic. If 

p

g Q , then ,g P G  
since otherwise Q G P , which is cyclic [6]. Hence 

,g P  is nilpotent and , 1g P . But this means that 
 ,P Q 1  and G P Q  , a nilpotent group. Hence Q 
is cyclic.  

In an insoluble group [3] Hall π-subgroups, even if 
they exist, may not be conjugate: for example, the simple 
group PSL (2, 11) of order 660 has subgroups isomor-
phic with D12 and A4: these are nonisomorphic [10] Hall 
 2,3 -subgroups and they are certainly not conjugate. 
However the situation is quite different when a nilpotent 
Hall π-subgroup is present. 

Theorem 2. Let the finite group G possess a nilpotent 
Hall π-subgroup H. Then every π-subgroup of G is con-
tained in a conjugate of H. In particular all Hall 
π-subgroups of G are conjugate. 

Proof. Let K be a π-subgroup of G. We shall argue by 
induction on K , which can be assumed greater than l. 
By the induction hypothesis a maximal subgroup of K is 
contained in a conjugate of H and is therefore nilpotent. 
If K itself is not nilpotent, Theorem 1 may be applied to 
produce a prime q in π dividing K  and a Sylow 
q-subgroup Q which has a normal complement L in K. 
Of course, if K is nilpotent, this is still true by Lemma 5. 

Now write 1 2H H H   where H1 is the unique Sy-
low q-subgroup of H. Since , the induction hy-L K
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[4] C. W. Curtis and I. Reiner, “Methods of Representation 
Theory,” Wiley, New York, 1981, pp. 177-184. 

pothesis shows that 

1 2
g g gL H H H    [5] J. E. Roseblade, “A Note on Subnormal Coalition Cla- 

sses,” Mathematische Zeitschrift, Vol. 90, No. 5, 1965, pp. 
373-375. doi:10.1007/BF01112356 

for some g G . Thus 2
gL H  because L is a q'-group. 

Consequently  GN N L  contains 1 ,gH K . Ob-
serve [6] C. F. Miller III, “On Group Theoretic Decision Problems 

and Their Classification,” Annals of Mathematics Studies, 
No. 68, Princeton University Press, Princeton, 1971, pp. 
112-134. 

 that 1: H  is not divisible by q; hence 1G gH  is a 
Sylow q-subgroup of N and by Sylow’s Theorem 

 1 
xgQ H  for some x N . But xL L  and, using 

2
gL H , we obtain [7] M. F. Newman, “The Soluble Length of Soluble Linear 

Groups,” Mathematische Zeitschrift, Vol. 126, No.1, 1972, 
pp. 59-70. doi:10.1007/BF01580356 1 2

x gx gx gxK QL QL H H H     

as required.   [8] B. Li and A. Skiba, “New Characterizations of Finite 
Supersoluble Groups,” Science in China Series A: Mathe- 
matics, Vol. 51, No. 5, 2008, pp. 827- 841. 
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