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Abstract

The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con-
vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-
normed spaces to be statistically Cauchy sequence in 2-normed spaces.*
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1. Introduction

In order to extend the notion of convergence of sequen-
ces, statistical convergence was introduced by Fast [2]
and Schoenberg [3] independently. Later on it was fur-
ther investigated by Fridy and Orhan [4]. The idea de-
pends on the notion of density of subset of N.

The concept of 2-normed spaces was initially intro-
duced by G ahler [5-7] in the mid of 1960’s. Since
then, many researchers have studied this concept and ob-
tained various results, see for instance [8].

Let X be a real vector space of dimension d,
where 2<d<o. A 2-norm on X is a function
J.]: X xX =R which satisfies the following four
conditions:

1) |%.%,[=0 if and only if x,x, are linearly de-
pendent;

2) x| =[xz x|

3) |lax. x| = afx. %[, forany aeR:

4 e x| <[l +x' x|

The pair (X,|..||) is then called a 2-normed space
(see [9D).

Example 1.1. A standard example of a 2-normed
space is R? equipped with the following 2-norm

|x, y|:= the area of the triangle having vertices 0,x,y.
Example 1.2. Let Y be a space of all bounded

real-valued functionson R.For f,g in Y, define

| f.g]|=0, iff, g are linearly dependent,
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|f.q]/=sup|f(t)-g(t), iff,gare linearly independent.
teR

Then ||| isa2-normon Y.

We recall some facts connecting with statistical con-
vergence. If K is subset of positive integers N, then
K, denotesthe set {k € K:k <n}. The natural density

| K, |
n

of K is given by §(K)= lim , where |K,| deno-

tes the number of elements in K, provided this limit
exists. Finite subsets have natural density zero and
6(K°) =1-8(K) where K°=N\K, that is the comp-
lement of K. If K, c K, and K, and K, have natu-
ral densities then §(K;)<8(K,). Moreover, if
8(K,)=8(K,)=1, then §(K,NnK,)=1 (see[10]).

A real number sequence x =(X; ) Iis statistically con-
vergent to L provided that for every ¢>0 the set
{neN:x;-L[z¢} has natural density zero. The sequ-

ence x=(x;) is statustically Cauchy sequence if for

each &>0 there is positive integer N =N(¢) such
that 8({neN:[x;—x, (¢)})=0 (see [11]).

If x= (xj is a sequence that satisfies some property
P for all n except a set of natural density zero, then we
say that (xj) satisfies some property P for “almost all n”.

An Orlicz Function is a function M :[0,00) —[0,)
which is continuous, nondecreasing and convex with
M(0)=0, M(x)>0 for x>0 and M(x)—>x, as
X —> 00,

If convexity of M is replaced by M (x+y)<M(x)
+M (y), then it is called a Modulus funtion (see Mad-
dox [12]). An Orlicz function may be bounded or un-
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bounded. For example, M (x)=xP(0< p<1) is un-
bounded and M (x):i is bounded.
x+1

Lindesstrauss and Tzafriri [13] used the idea of Orlicz
sequence space;

Iy = {XEWZiM [M]«n, for some p>0}

k=1 P

which is Banach space with the norm

I, = inf {p>O:ZM (@)31}.
k=1 P

The space Iy, is closely related to the space I,
which is an Orlicz sequence space with M (x) =x" for
1<p<on.

An Orlicz function M satisfies the A, —condition
(M €A, forshort) if there exist constant K >2 and
u, >0 such that

M (2u) < KM (u)

whenever |u|<u,.
Note that an Orlicz function satisfies the inequality

M (Ax)< AM (x) forall Awith0< A <1.

Orlicz function has been studied by V. A. Khan [14-17]
and many others.

Throughout a double sequence x =(x, ) is a double
infinite array of elements x, for k,leN.

Double sequences have been studied by V. A. Khan
[18-20], Moricz and Rhoades [21] and many others.

A double sequence x =(x;, ) called statistically con-
vergentto L if

mur_]jw%(j,k):|xjk —L|Zg, j<mk<n/=0

where the vertical bars indicate the number of elements
in the set. (see [19])

In this case we write st, —limx; =L.

2. Definitions and Preliminaries

Let (x;) be a sequence in 2-normed space (X,|[...|).

The sequence (xj) is said to be statistically convergent
to L, if for every >0, the set

{jeN:”Xj—L,ZHZS}

has natural density zero for each nonzero z in X, in other
words X.R statistically converges to L in 2-normed

) i

space (X,
im i Lo

nN—oo

for each nonzero z in X. It means that for every ze X,
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||xj—L,z||<g a.an.
In this case we write
st— |im||xj -L, z|| =|L.z|.
n—oo
Example 2.1 Let X =R? be equiped with the 2-
norm by the formula
% Y] = [xayz =X X = (%% ),y = (W1, ¥2)-

Define the (xj

) in 2-normed space (X,[...|) by
(Ln) ifn=k’keN,

X = _
! 1,n—1j otherwise.
n

andlet L=(1,1) and z=(z,2,).If z =0 then
K={ieN:|x-Lz|>z}=0

for each z in X,{jeN:n¢kz,k2@} is a finite set,
&

)

{jeN:||Xj—L,Z||Z£}

1
. . £ 2 -
= jeN:J:kZ,kz[ﬂﬂJ w{ finite set}.
Zl
Therefore,

i e - Lz >4

2
“Hien:j=kt k=] £a1| Hotoq)
A n

for each z in X. Hence, 3({jeN:|x,~Lz|>&})=0
forevery ¢>0 and ze X.

V. A. Khan and Sabiha Tabassum [20] defined a
double sequence (x;, ) in 2-normed space (X.,[..]) to
be Cauchy with respect to the 2-norm if

lim ||xjk —qu,z” =0 foreveryze X andk,q e N.
J,p—oo

If every Cauchy sequence in X converges to some
Le X, then X is said to be complete with respect to
the 2-norm. Any complete 2-normed space is said to be
2-Banach space.

Example 2.2 Define the x; in 2-normed space (X, |..)
by
if j=k?,keN,

otherwise.
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andlet L=(0,0) and z=(z,z,).1f =0 then
{ieN:|x -L7|>e} < {1,4,916,, %

We have that 6({j eN'"x. -L, z||>g}):0 for every

>0 and ze X . This implies that st— ||m||x z||

n—w

|L.z|. But the sequence x; is not convergentto L.

A sequence which converges statistically need not be
bounded. This fact can be seen from Example [2.1] and
Example [2.2].

3. Main Results

In this paper we define a double sequence xjk) in
2-normed space (X,|..|) to be statistically Cauchy
with respect to the 2-norm if for every ¢ >0 and every
nonzero ze X there exists a number p=p(¢,z) and
q=q(e,z) such that

mILTw%(Jk)ENXN ||xJk X, z||2g,j$m,ksn‘=0

In this case we write st, — Iim||xjk -, z|| =|L.z|.

Theorem 3.1. Let (xjk) be a double sequence in
2-normed space (X,|..[) and L,L'e X .If
stz—lim||xjk,z||:||L,z|| and st2—Iim||xjk,z||:||L’,z||,
then L=1L"

Proof. Assume L#L',. Then L-L"#0, so there

exists a ze X, such that L—L" and z are linearly in-
dependent. Therefore

JL-L" 2| = 2¢, with & >0.
Now
25=”(L—xjk)+(xjk —L’),z”
< ||xjk - L,z||+||xjk -L, z||

0 {(j,k):”xjk—L’,z||<g}g{(j,k):||xjk—
But 6({(j,k):||xjk—L’,z||<g})=0. Contradicting the

fact that x; — L'(stat).

Theorem 3.2. Let the double sequence X, ) and
(v4) in 2-normed space (X, . [|). If (y;) is a con-
vergent sequence such that x, =y, almost all n, then
(xjk) is statistically convergent.

Proof. Suppose 6({(j,k) eNxN:x, # yjk}) =0
and fim ||yjk,z||:||L,z||.Then forevery £>0 and
j ko

zeX.
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L', z" < s}.

ET AL.

{j JeNxN: ||xk—L z||>g}

g{]k )eNxN: xjkiyjk}

Therefore
6({(j,k)eNxN:||xjk—L,z||2g})

SS({(j,k)eNxN:"yjk—L,Z”Zg}) (3.1)
+8({(j,k)e NxN:x, # yjk}).
Since !irg||yjk,z||=|||_,z|| forevery ze X, the set
{(j,k) c N%x Ny -Lz|> g} contains finite number

of integers. Hence, 6({(j,k) eNxN :||yjk -L, z|| > g})
=0. Using inequality [3.1], we get

3({(1k)eNxN:[x, -Lz[>&})=0
forevery ¢>0 and ze X. Consequently,
st, —Iim||xjk -, z|| =|L.z|.

Theorem 3.3. Let the double sequence (x ) and
(V) in2-normed space (X,[..[) and L,L'e X and
aeR.

If stz—lim"xjk,z":”L,z"
and stz—Iim||yjk,z||:||L’,z||,
for every nonzero z e X , then

1) st,— Iim||xjk + Yo z|| =|L+L",z|, for each nonzero
ze X and

2) st, - I|m||alxJk z" |[aL., z|, for each nonzero z e X .

Proof 1) Assume that st, I|m||xJk z|| IL.z|, and

st, I|m||yjk,z||—||L’,z||,for every nonzero z e X . Then
8(K,)=0 and §(

K, = K, (&)= {(j,k)e NxN :||xjk—L,z||z§}

K,)=0 where

K, =K, (& ):{(j k)e NxN:|y, -L'z|> }
forevery ¢>0 and ze X . Let
K=K(g):={(j,k)eNxN:||xjk+yjk—(L+L’),z||25}.

To prove that §(K)=0, it is sufficient to prove that
K c K, UK,. Suppose j,,k, € K. Then

{

Xioky + Vigky ~(L+L), z“ > g} (3.2)
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Suppose to the contrary that j,,k, ¢ K, UK,. Then
Jo. ko 2 K, and ok, ¢ K, . If j,,k, ¢ K, and
Jo.- Ky 2 K, then

—L,z”<§.

ioko

&
iy =L <5 and |
oko 2

Then, we get
”onko + ¥ —(L+L), z”
SHngko -L, z“+“y,—ok0 -L, zH< g+% -

which contradicts [3.2]. Hence j,,k, € K, UK,, that is,
KcK,uK,.
2) Let st —I|m||xjk,z|| |L.z|,acR and a#0 .

Then
H(JK)ENXN L] r}]o

Then we have

{(j,k)e N x N :||axjk —aL,z"zg}

:{(j,k)e N x N :|a|||xjk —L,Z"Ze}

{(] k)e NxN: ||xJk Lz||_|a|}

Hence, the right handside of above equality equals 0.
Hence, st, —Iim||axjk : z|| =|aL,z|, for every nonzero
zZe

From Theorem 1 of Fridy [11] we have

Theorem 3.4. Let (xjk) be statistically Cauchy se-
quence in a finite dimensional 2-normed space (X,|...|).

Then there exists a convergent double sequence (yjk)
in (X,]..]) suchthat x, =y, foralmostalln.
Proof. See proof of Theorem 2.9 [9].
Theorem 35. Let (x;,) be a double sequence in 2-

normed space (X.|..||) The double sequence (x;)

statistically convergent if and only if (x;) is a statisti-
cally Cauchy sequence.

Proof. Assume that st, — I|m||xjk,z|| =|L,z| for every
nonzero ze X and & >0.

Then, forevery ze X,

||xjk -L, z|| <§ almost all n,
andif p=p(ez) and q=q(ez) ischosen so that
||xpq -L, z|| < f, then, we have
L e S LRt
<E+E almost all n.

= ¢ almostalln.

Copyright © 2011 SciRes.

Hence, (x i ) is statistically Cauchy sequence.
Conversely, assume that x;, is a statistically Cauchy

sequence. By Theorem 3.4, we have st, —Iim||xjk,z|| =
|L.z| foreach zeX.
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