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Abstract 
 
When a statistical test of hypothesis for a population mean is performed, we are faced with the possibility of 
committing a Type II error by not rejecting the null hypothesis when in fact the population mean has 
changed. We consider this issue and quantify matters in a manner that differs a bit from what is commonly 
done. In particular, we define the probability distribution function for Type II errors. We then explore some 
interesting properties that we have not seen mentioned elsewhere for this probability distribution function. 
Finally, we discuss several Maple procedures that can be used to perform various calculations using the dis-
tribution. 
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1. Introduction 
 
Both the probability   of committing a Type I error 
and the probability   of committing a Type II error 
must be considered when a statistical test of hypothesis 
of a population mean is performed. There is a vast lite-
rature dealing with the role of each type of error. Both [1] 
and [2] contain useful discussions and references to the 
relevant literature. For a given sample size, it is possible 
to calculate and control   directly; but it is not possi-
ble to calculate   since the new population mean is not 
known. Various techniques have been developed to 
quantify the role of Type II errors. A particularly good 
description of these techniques may be found in [1]. For 
example, operating-characteristic curves are often used 
to estimate sample sizes needed to keep the probability 
of a Type II error below a prescribed level. Similarly, the 
power of a test is used to assess the ability of a test to 
detect changes in the population mean. For a given sam-
ple size, it is customary to postulate a new value (or sev-
eral new values) for the population mean and compute 
  using each such mean. The size of   then gives an 
indication whether the sample size is adequate. 

In this paper we will maintain the spirit of this ap-
proach but we will quantify Type II errors using a dif-
ferent perspective. In Section 2, we will briefly review 
Type II errors. We will use  u  to denote the proba-

bility of a Type II error if the new population mean is 
equal to u . In Section 3, we will go a bit further and 
convert  u  into a probability distribution  u u  
and explore properties of this distribution. In Section 4, 
we will illustrate how the distribution can be used to 
answer interesting questions that are usually addressed 
using operating curves and power curves and how it may 
be used to quantify conventional wisdom regarding Type 
II errors. By converting  u  into a probability distri-
bution, we will find that these questions can be addressed 
in a systematic and convenient manner. 
 
2. Type II Errors 
 
In this section we review Type II errors briefly. A de-
tailed discussion of Type II errors (and hypothesis testing 
in general) can be found in any mathematical statistics 
text, for example, [2]. We assume that the parent popula-
tion of interest is normally distributed with standard 
deviation  . If   is the significance level for a two 
tailed test, the null hypothesis 0u u  will not be re-
jected for a sample of size n  if the sample mean x  is 
such that the standardized statistic 

0x u
z

n


  

falls in the interval 
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0 0,u L u L
n n

     
     

    
 

where L  denotes the inverse standard normal value 

determined by the right tail of size 
2


. 

We will use the complementary error function to 
facilitate our discussion. This function is defined as 

  2

0

2
erfc 1  

x tx e dt


             (1) 

We note the following useful properties of the 
complementary error function. 

 lim erfc 0
x

x


               (2) 

 lim erfc 2
x

x


               (3) 

   
2

erfc erfc
xe

x dx x x




          (4) 

The cumulative distribution function for the standard 
normal distribution can be expressed using the comple- 
mentary error function as 

 2 21 1
erfc 2

22

x te dt x





         (5) 

The probability of a Type II error is equal to 

   
  21

2

21
 

2

M u t

M u
u e dt


             (6) 

where 1M  and 2M  are the u-based standardized va- 
lues defined by  

  0
2,1

u L n u
M u

n




 
           (7) 

so that  

    2

1

( )

( )

1
erfc 2

2

M u

M u
u t            (8) 

The probability of a Type II error approaches a maxi- 
mum limiting value 1   as 0u u . Furthermore, a bit 
of reflection shows that  u  is symmetric about 0u . 
We define a probability distribution for  u  as fol- 
lows. Let 

  2

1

( )

( )

1
erfc 2

2

M u

M u
T t du




        (9) 

The probability distribution is then  

   
u

u
u

T


              (10) 

Of course, in any practical tests of hypothesis, the new 

population mean u is not a random variable. We are 
being cavalier and regarding it as such simply for the 
purposes of analyzing the properties of  u u . Quan- 
tities obtained by integrating  u u  can be interpreted 
simply as the fraction of all possible new population 
means that yield Type II errors of various sizes. 
 
3. Distribution Properties of Type II Errors 
 
In this section we will explore several important and 
interesting properties of the  u u  distribution.  

Property 1. We claim that T , interestingly enough, 
is equal to the length of the 1   confidence interval 
about 0u , that is,  

2T L
n


 

  
 

             (11) 

When the integral in Equation (11) is expanded, there 
results an expression with fifteen terms. (Refer to [3] for 
the actual expression and simplification.) Due to Equa- 
tions (2)-(4), all but two eight terms approach 0 as 

2u   and 1u    since  1M u  and  2M u  
approach   as u   . The remaining two nonzero 
terms are 

0 1 0 1

erfc
2 2 2

L L
u u u u

n n
n

n n

 


 

  
     

    
     

 

and 

0 1 0 1

erfc
2 2 2

L L
u u u u

n n
n

n n

 


 

  
     

     
     

 

The arguments in the erfc  factors approach   as 

1u   ; so each factor approaches 2. Therefore, 

0 1 0 12

2 2 2

2

u L n u u L n u
T

n n n

L
n


 
 



    
   

 
 

  
 

 

as claimed. As a matter of interest, we give also a more 
conventional proof (based on the standard normal rather 
than the complementary error function) of the fact that 

  2u du L
n






 
  

 
 . 

Indeed, 
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 

    
 

  

2

2

2

2

0

2

2

0

2

2

2

2 2

2

1
 

2

1
 

2

1

2

1

2

1
2  

2

1
2 2 2

2

u u
L

xn
u u

L
n

w L x

w L

w L x

w L

x x

x

u du e dxdu

e dxdw
n

e dwdx
n

x L e x L e dx
n

L e dx
n

L L
n n




















 



  

  

  

 

  

 

  



 





 
  

 
 

  
 
 

    
 
 

  
 
   

    
   

  

 

 





 

Property 2. Given values 1u  and 2u , we have 

   
 

 22

1 1
1 2

1
erfc 2

2

M uu

u M u
p u u u t du

T

     

so that 

 
   2

1

1 2

2 11
erfc erfc

2 2 2

u

u

p u u u

M u M u
du

T

 

    
            


 

which in turn is equal to 

2

1

0 01
erfc erfc

2 2 2

u

u

L L
u u u u

n n du
T

n n


 

 

    
       

          
         

  

Breaking this integral into two, using the substitutions  
 
2

iM u
x   , and using Equation (4), we see that 

   
 

 

 
 

 

2 2
2

2 1

1 22

1 1

2

1 2

2

2

2

erfc
2

erfc

M u

x

M u

M u
x

M u

e
p u u u x x

nT

e
x x



















 

      


      
  

 (12) 

Equation (12) allows us to work with the probability 
distribution  u u  using the erfc  function without 
the need to integrate it directly. 

Property 3. If we use Equation (3) and Property 1, 
and we let 1u   , we find that the contribution of the 
two terms  1iM u  is 1. We thus obtain a convenient 
representation for the cumulative distribution function 
for  u u  

 

 

 12

2

2

2

1 erfc( )
2

M u
x

M u

p x u

e
x x

nT









  

           

  (13) 

Property 4. For a given value of p  in  0,1  , 
denote by Lu  and Ru  the values of u  for which 
 u p   with L Ru u . (We refer to these values as 

the left and right inverses of p , respectively.) In this 
case, Equation (13) can be expressed in a simpler form 
that more clearly shows the dependence on p  and L : 

     

    2 2
2 1

1
1 2 2

2 2

1
1 erfc

2 2

1

2
L L

L
L

M u M u

M u p
p u u u M u

L

e e
L

 

 
      

 

 

(14) 

Indeed, using Equation 13 shows that  Lp x u    
is equal to 

 
 

 12

2

2

2

1 erfc
2 2

L

L

M u
x

M u

e
x x

nT









          

   (15) 

Expanding this expression using Property 4 and Equa- 
tion (11) yields 

   

   

    2 2
2 1

2 2

1 1

2 2

1
1 erfc

2 2 2 2

erfc
2 2

1

2 2
L L

L L

L L

M u M u

M u M u

L

M u M u

e e
L

 

  
     

 
   

 

 

We can rewrite the factor containing the two values of 
erfc as 

     

     

2 2 1

1 2 1

erfc erfc
2 2 2

erfc
2 2 2

L L L

L L L

M u M u M u

M u M u M u

     
         

  
   

  

 

Since  Lu p  , the first parenthesized term is 
equal to 2 p . The second parenthesized term is equal to 

2L . Making these substitutions and simplifying esta- 
blishes Equation (14). 

Property 5. The mean of this distribution is equal to 

0u  due to symmetry. The standard distribution is equal 
to 

21 3L
n


               (16) 
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For values of   in the range 0.01 to 0.10, 21 3L  
ranges from approximately 1.5 to 2. The size of this 
factor accounts in part for the rounded shape of  u u . 
To establish this property, we start with the integral 

   0 2

0

2 u

uu u u du
T




  

We obtain a complicated antiderivative with twenty-six 
terms. (Refer to [3] for the actual expression and simpli- 
fication.) However, grouping terms and using Equations 
(2) and (3) show that all but two of the terms approach 0 
as 1u   . The two grouped terms that do not 
approach 0 as 1u    are  

1

3 1 0 1 01
lim erfc erfc

2 2 2u

u u Ls u u Ls
Ls

Ls s s

        
    

    
 

and  

1

3 3 1 0 1 01
lim erfc erfc

6 2 2u

u u Ls u u Ls
L s

Ls s s

        
    

     

In both grouped terms 
 

1 0
1erfc 0as

2

u u Ls
u

s

   
   

 
 

and  

1 0
1erfc 2as

2

u u Ls
u

s

  
   

 
 

Making these substitutions and simplifying leads to  

     0 2 2 2
0

2
1 3

u

uu u u du s L
T




        (17) 

as claimed.  
Property 6. Working with the second derivative of 
 u u  shows that the inflection points of  u u  occur 

when  

0 *2

s
u u t

L
    
 

 

where *t  is the unique positive solution of 
2 22 2 0.t tte t L L e      

(Refer to [3] for details.) We note that *t  is in the 
interval  2 22 ,3L L  for  ln 5 3L  . 

Property 7. Given an interval  1 2,u u  that we sus- 
pect contains the new population mean, the average pro- 
bability of a Type II error for this interval is equal to 

   1 2
2 1

T
p u u u

u u
  


 

Customarily,  u  is calculated for a particular va- 
lue of the population mean or for a few particular values. 

This simple property provides an interval-oriented version 
of  u . By dropping the factor of T , we can obtain 
similar average values for  u u .  

Property 8. Given a probability level p , the probabi- 
lity that  u  does not exceed p  is equal to  

    
* 2  Lu p

up p u du


             (18) 

where  Lu p  is the left inverse of   Lp u p . To 

see this, first note that we can calculate  *p p  using 
Property 4. Suppose *p  is constructed using two sets of 
population parameters 0 0,u  , and 0n , and 1 1,u  , and 

1n . The definition of  1 LM u  and  2 LM u  and the  

fact that    0 10 1L Lu u p    leads to 

0 10 1

0 1

10

L Lu u u u

nn

 
 

  

Solving for 
1Lu  in terms of 

0Lu  and substituting the 
results into Property 4 for the second set of parameters 
shows that the corresponding terms in Property 4 are 
equal for the two sets of parameters so that  *,0p p   

 *,1p p . *p  is thus a function of p  and   (via L ). 

*p  quantifies intrinsically the well-known difficulty of 
obtaining Type II errors within prescribed levels due to 
the roundedness of  u . 

Property 9. A slight extension of Property 8 is 
possible. Given two probability levels 1p  and 2p  with 

1 2p p , the probability that  u  will be between 
these values is equal to 

     1
,2 ,1 ,2 ,12 beta_cdf beta_cdfL L L L

p
u u u u

T

 
   

  
(19) 

where ,1Lu  and ,2Lu  are the left inverses of 1p  and 

2p , respectively. 
 
4. Using   u  and  u u  
 
The Maple Computer Algebra System [4] can be used to 
illustrate various calculations required to address ques- 
tions of interest. Relevant calculations are implemented 
in a Maple worksheet [3] and several auxiliary work- 
sheets that are available from the author’s web site. In 
the procedures discussed here, beta_erfc is the function 
defined by Equation 8 and beta_cdf is the cumulative 
probability distribution function defined by Equation (13). 
fsolve is the Maple nonlinear equation solver. It should 
be noted that the actual procedures in [3] are a bit more 
complicated due to the need for error checking and the 
need to deal with numerical difficulties caused by the 
effects of floating point calculations; but we won’t fuss 
about the details here. Interested readers may wish to 
consider implementing similar procedures using their fa- 
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vorite statistical computing package. 
The uses of  u  are well known [2]. For example, 

given a particular value 1u  for the new population mean 
we can calculate the probability  1u  of a Type II 
error using Equation (8) or we can perform the calcula- 
tion as usual using Equation (6). Furthermore, given an in- 
terval  1 2,u u  that we suspect contains the new popula- 
tion mean, we can calculate the average probability of a 
Type II error for this interval using Property 7. 

Power curves and operating-characteristic curves [1] 
are often used to help determine appropriate sample sizes 
to obtain Type II error probabilities of different sizes. 
Such a curve is the graph of 1   obtained using various 
sample sizes. Rather than generate a set of one-dimen- 
sional operating-characteristic curves in the usual fashion 
we can consider  u  as a function of u  and n  and 
plot the surface  1 ,u n  or the surface the  ,u n  
as in the following abbreviated code segment. 

beta_PADN := x -> 0.5*erfc(-x/sqrt2); 
beta_PUNN := (u,n) -> 

beta_PADN((u0-u)/(sigma/sqrt(n))+L) - 
beta_PADN((u0-u)/(sigma/sqrt(n))-L); 

plot3d(1-beta_PUNN(u,n),u=U1..U2,n=4..50,axe
s=boxed, 
grid=[51,51]); 

The surface can be rendered in various ways. Figure 1 
depicts a power surface for a typical set of population 
parameters. By working with the surface contours and 
cross sectional slices, we can obtain the information usu- 
ally obtained by using one-dimensional power curves. In 
particular, we can study the question of determining the 
sample sizes required to yield Type II errors of various 
sizes. To see how we might proceed, consider the follow- 
ing example. Suppose the population parameters are 0u   
74 and 30  . Further suppose we wish to use a signi- 
ficance level 0.01  . We would like to determine the 
minimum sample size that yields a Type II error equal to 
0.2 when the new population mean is equal to 85. While 
it is simple enough to solve the nonlinear equation 
 min, 0.02u n  , we can use the power surface to esti- 

mate minn  as accurately as desired. Figure 2 shows the 
portion of the surface for which  , 0.2u n  . If we 
follow the surface around the bottom for 85u   until 
reaching the contour curve for 85,u  we see that a sam- 
ple size between 85 and 90 will suffice. Solving the cor- 
responding nonlinear equation shows that min 87.n   For 
this example, min 87n  agrees with the usual two-tailed 
estimate [2] and this approach is applicable to other types 
of tests in which a simple estimate is not readily avai- 
lable. The usefulness of this approach is enhanced due to 
the fact the  u surface can be generated quickly with- 
out the need to perform tedious and time consuming in- 
tegrations. Also, once the surface has been generated, it 

 

Figure 1. The power surface  1 , u n . 

 

 

Figure 2. Top portion of the surface  , u n . 

 
can viewed and manipulated in any manner that is de- 
sired. 

Similarly, by considering  u  as a function of u  
and  , we can plot the power surface  1 ,u   as 
in the following abbreviated code segment. 
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beta_PADA := x -> 0.5*erfc(-x/sqrt2); 
beta_PUNA := (u,alpha) -> 

beta_PADA((u0-u)/(sigma/sqrt(n))+L(alpha)) - 
beta_PADA((u0-u)/(sigma/sqrt(n))-L(alpha)); 
plot3d(1-beta_PUNA(u,alpha),u=U1..U2,alpha=
0.001..0.10, 
axes=boxed,grid=[51,51]); 

Figure 3 depicts the surface obtained for a typical set 
of population parameters. As with Figure 1 we can use 
the surface contours and cross sectional slices to consider 
the effect of using different significance levels. 

For the same reason that inverse normal calculations 
are needed when working with a normal distribution, we 
need to be able to invert  u u  to find the value of pu  
for which  pp x u p  . The following procedure can 
be used to perform this task. It uses fsolve to find u  
given that  beta_cdfp u . 

beta_cdf_inv := proc(p) 
  # Calculate the inverse of beta_cdf. 
  local eqn, u, up: 
  global beta_cdf, U1, U2, u0: 
  u := 'u': up := 'up': 
  if (p = 0.5) then 
     u := u0: 
     return(u); 
fi: 
  if (p < 0.5) then 
     eqn := beta_cdf(up) = p: 
     fsolve(eqn, {up}, U1..u0): 
     assign(%): 
  else 
     eqn := beta_cdf(up) = p: 
     fsolve(eqn, {up}, u0..U2): 
     assign(%): 
  fi: 
  u := up: 
  return(u): 
end proc: 
Given a particular probability p , we can perform an 

inverse calculation to find the values 0Lu u  and 

0Ru u  for which    L Ru u p    in much the 
same way as in the above inversion of  u u . Ru  can 
be calculated as in the following procedure. 

arcpR := proc(p) 
local eqn, ustar, u: 
global beta_erfc, U2, u0: 
ustar := 'ustar': u := 'u': 
eqn := beta_erfc(ustar) = p: 
fsolve(eqn, {ustar}, u0..U2): 
assign(%): 
u := ustar: 
return(u): 

end proc: 

 

Figure 3. The power surface  1 , u n . 

 
A similar procedure arcpL can be used to calculate Lu . 

Of course, only one of the procedures is actually needed 
due to symmetry. Lu and Ru satisfy 02 .R Lu u u  Note 
that 0 0L Ru u u u    is precisely the amount by which 
the population mean u  must change in one direction or 
the other in order that the probability of a Type II error 
does not exceed p . 

Once the values  Lu p  and  Ru p  are available, 
we know that  u  will not exceed p  if Lu u  or 

Ru u . Suppose we wish to calculate the probability 
 *p p  this will happen. Property 8 allows us to do so. 

As examples, suppose 0.2p  . Then 0.01   yields 

* 0.04p   while 0.05   yields * 0.06p   and    
0.10 yields * 0.09p  . In the latter case, we then can say 
there is a 9% chance of committing a Type II error that 
does not exceed 20%, that is to say, 9% of all possible 
values for the new population mean yield a Type II error 
not exceeding 20%. 

Although *p  is smaller than   for most cases of 
interest its size is easily explained by the rounded shape 
of  u u . If p  is small enough that Lu  and Ru  dif- 
fer significantly from 0u , the area of the region under 

 u u  between Lu  and Ru  can be nearly one. Since 
this area is *1 p , *p  tends then to be near zero. Inter- 
preted in another way, the tails whose combined size is 

*p  can be quite small for a rounded distribution such as 
 u u . *p  serves as a measure of and a reminder that 

keeping the probability of a Type II error below a pre- 
scribed level can be quite a challenge. 
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Figure 4. The curves  *p p  for  = 0.01, 0.10, 0.25, 0.5. 

 

 

Figure 5. The surface  * ,p p . 

 
The following procedure calculates  *p p . Figure 4 

depicts graphs of the functions  *p p  (the blue curves) 
vs p  (the brown curve) for selected significance levels 

0.01,0.10,0.25, and 0.50  . The horizontal extent of 
each blue curve is the interval  0,1  ; the vertical 
extent is the interval  0,1 . Figure 5 depicts a more de- 
tailed surface plot of  * ,p p  . 

betastar := proc(p) 

# Calculate pstar, the probability that the 
# probability of a Type II error will not 
# exceed p. 
local eqn, ustar, u, uL, pstar: 
global beta_cdf, beta_erfc, U1, u0, CL: 
ustar := 'ustar': u := 'u': pstar := 'pstar': 
uL := 'uL': 
eqn := beta_erfc(ustar) = p: 
fsolve(eqn, {ustar}, U1..u0): 
assign(%): 
uL := ustar: 
pstar := 2*beta_cdf(uL): 
return(pstar): 

end proc:  
An interval oriented variant of  *p p  can provide 

additional information. Given two probability levels 1p  
and 2p  with 1 20 1p p     , suppose we wish find 
the probability that the size of a Type II error will be 
between these values. In this case, Property 9 allows us 
to calculate this probability. A procedure for performing 
the necessary calculations can be found in [3]. 
 
5. Summary 
 
This paper investigated the probability distribution for 
Type II errors. Several interesting properties of the distri- 
bution were obtained. These properties can be used to 
obtain the same information as that obtained using other 
commonly used methods. In addition, the properties allow 
us to quantify several thorny issues in precise ways. The 
manner in which this can be done was discussed and il- 
lustrated using selected Maple procedures for working 
with the distribution. 
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