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Abstract

In this article, we wish to expand on some of the results obtained from the
first article entitled Projection Theory. We have already established that
one-parameter projection operators can be constructed from the unit circle

S'. As discussed in the previous article these operators form a Lie group
known as the Projection Group. In the first section, we will show that the
concepts from my first article are consistent with existing theory [1] [2]. In
the second section, it will be demonstrated that not only such operators are
mutually congruent but also we can define a group action on G, ([0]) by
using the rotation group SO(Z,R) [3] [4]. It will be proved that the group
SO(2,R) acts on elements of G, ([#]) in a non-faithful but eo-transitive
way consistent with both group operations. Finally, in the last section we de-
fine the group operation (p(P[ ar P[g,]) in terms of matrix operations using

the Vec operator and the Hadamard Product; this construction is consis-
tent with the group operation defined in the first article.
Keywords

Projection Theory, Projection Manifolds, Projectors,
Congruent Projection Matrices

1.

Notation System

In this article the notation has been kept the same as in the previous article.

L]

L]

L]

||||F is the Frobenius Norm.

R

I, isthe 2x2 identity matrix.

is some projection operator in G, ([0]) .

Rnk ( P[g]) is the Rank of a projection operator.

o(R

[9}) is the spectrum of a projection operator.
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* Staby,, (P[ g]) is the Stabilizer subgroup for some fixed element of G, ([6]).
* R(a) isanelement of SO(2) forangle o .

* Vec isthe Vectorisation Operator.

©® is the Hadamard Product.

® is the Kronecker Product.

L]

2. Some Important Theorems and Lemmas

From [1] [2] we can get the following results.

Lemma 1. The Frobenius morn ||||F of a projection matrix is its trace. That

[Ral, =Tr(Ra) =1

Proof. 1t is well known that
[ H Z| Py () =Tr(RoyRa)

Given that P[g] is both symmetric and idempotent implies that

Tr(RiyRey )= Tr (R Ry ) = Tr (RS = Tr (Ry)

is

Hence,

[Ral, =77 (")

therefore,

" U:Slncosz . COS[Q]Sin,[H]D =cos’[0]+sin®[0] =1,V[0] e T

in[@]cos[#]  sin®[6]
Theorem 1 The necessary and sufficient condition for P[a] eG, ([49]) is
given by

Roy = Rop V(0] €T

Proof. We know, from the previous article that P[g] is constructed as follows

iro i o\ T cos?[6 cos[8]sin[6
q;(e[ ])::e[ ]®(e[ ]) :Lin[e]c[os][e] s[inl[e][ ]:I =
) cos’[6 cos[0]sin[6] ]
it :_sin[e]c[os][e] s[inl[e][ ]}
_| cos *[6]+cos?[#]sin?[6]  cos® [0]5in[0]+cos[6.']sin3[€]}
| cos® [@]sin[@]+cos[0]sin’[#]  sin®[#]+cos® [0]sin®[6]
:' cos?[0](cos? [6]+sin? [6]) cos[e]sm[e](cosz[9]+sin2[9])]
| cos[0]sin[0 J(cos? [0 ]+sm2[9) sin? [0](sin® [0] + cos? [6])

cos®[6] cos[@]sin[6
= ) 2 P
_sm[e]cos[ sin [0]
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Theorem 2 The orthogonal complement of Ry 1s given by
Pz =12 =Ry

where |, isthe 2x2 identity matrix. This is known as a Vector Rejection.
Proof. We first show that

Roswz =12~ Ry

the RHS of the equation gives us
[1 0 cos’[0]  cos[6]sin[6]
. =P([9])= 0 1}Lin[9]cos[¢9] sin®[0] }
_ | 1-cos?[6] —cos[e]sin[e]}
| —sin[@]cos[0]  1-sin*[0]
_ - sin?[6] —cos[e]sin[e]}
| —sin[#]cos[6] cos®[6]

Now, the LHS of th equation gives us the following result

. z{ cos’ ([0]+/2) COS([H]iTc/Z)Sin([H]in/Z)jl
025721 1 gjn ([0]£m/2)cos([0]£m/2) sin? ([0]£m/2)

[ sin”[0] —cos[e]sin[e]}

—sin[@]cos[6] cos’[6]
cos” ([0]+m/2) = (cos[#]cos(n/2) Fsin[#]sin (7:/2))2 =(¥sin [6])2 =sin*[6]
sin? ([0]+m/2) = (sin [a]cos(rc/z)icos[e]sin(n/z))2 = (J_rcos[e])2 = cos’ [0)]

Secondly, we show the effect these operators have on some vector x e R?.

We easily show this in the following way
(RopX, Rariax) =0
We proceed as follows
(Rop Rowxa) = (R (1= Ry ) = (Rope xR
= (R x=RyX) = (R X) = (Rupx. Rype)

2
Flor

For

Ix|coso -

o

=R Frd R
Lemma 2 The product of the operators R, and R,
call P[Hin/Z] the Orthogonal Complement Operator of P[g] which I shall denote

as F’[g] .

is zero. We shall

PyPn=0v[0]eT
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i

We say that R, L Ry

Proof.
L | cos’[#]  cos[@]sin[6] sin®[6] —cos[8]sin[6]
{olo _Lin[e]cos[ﬁ] sin?[6] :I{—sin[ﬁ]cos[e] cos?[6] }
_ l:cosz[é?]sin2 [6]-cos?[0]sin’[0] —cos®[#]sin[@]+cos®[#]sin[6] :‘
sin’[@]cos[0]-sin®[@]cos[@]  —cos®[@]sin®[0]+sin® [@]cos? [6]

s 3

L
Lemma 3 P[g] + P[e] =1,

Proof
Rop+ Ry
:|: cos®[6] cos[o sin[H]}{ sin®[6] —cos[@]sin[6]
sin[#]cos[6] sin®[6] —sin[@]cos[6] cos®[6]

(1 0 |
o1
Theorem 3 A projection operator of dimension onto V — R* where

dim(V)=r then
Py =TAT™ (1)

Ar = 10 2)
“lo 0

The matrix T is formed by the columns of the basis vectors which span the

where

subspaces Vand Wrespectively.

Proof We know that V,W < R?, furthermore we also know that
dim(V)=dim(W)=1=r=1.

Suppose the vector a=(cosé,sin €)T is a basis for subspaces Vie.
Spn{a} =V then the matrix 7'can be computed in the following way.

Now, taking into account the fact that W =V * implies that b is given by

b =(cos(0+m/2),sin(6+n/2))=(Fsin6,+cos0)

Hence, T iscomputed in the following way

~ {cos[@] Fsin[0]

sin[6] icos[e]} . det(T)=x+cos’[@]+sin’[6] = £1

Hence, T isgiven by

vl Sl o

Hence, P[g] is
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] s O)feont] sl
[zl st sl sl
[t st

TA T {

Il
I+

I+

=R

We can see that T, T e 0(2, ]R) and are orthogonal reflection matrices.

Lemma 4 Let R, be some projection matrix for some [0]eT then we

have

Rk (R, ) =Tr(P,) (3)

Proof. We know that

cos’[0]  cos[O]sin[d] ) -
[g]zLin[e]cos[H] sin? [0] }:Tr(F’[e])=cos [0]+sin®[6] =1

We can now calculate its rank. The column space of Ry 1s given by

5 .
CIn(Pg )=  cos [6] , cos[_@!sm[a]
1)1 sin[#]cos[6] sin?[6]
where CIn(P[G]) is the column space of Ry Rnk(P[g] ) =1 iff
Ja,,a, #0€ R such that

“ Linc[c;s]zc[ogs][ﬁﬂ T {Coss[iils[i;][e]} B {8}
This gives us the following linear system
Linc[ct;s]zc[oi][e] Coss[iil?g][aq [Zﬂ - [8}

Given that det(P[g] ) =0 implies an infinite set of solutions exists.
Writing the homogeneous linear system we find the general set of vector

solutions as follows
a, cos® [0]+a, cos[@]sin[0] =0
a; sin[@]cos[0]+a, sin?[0] =0
therefore
a; sin[@]cos[0]+a, sin?[0] =0
= a, cos[f]+a, sin[0] =0

o =g SINLO] _
Lo =—a, W =—a, tan [6’]

Hence, the solution vector
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U= {az eR|la=q, (—tan[@],l)}
This implies that Rnk ( R ) =Tr ( Ro ) =1.
Theorem 4 Let A=[a,| suchthat V =Spn(A).Then we have

it

Proof. a, = (COS[H],Sin [9])T = A, then we have

- A(ATA)_l AT 4)

A(ATA) AT =A(ala,) A=AA" =aal =a,®a =R,
Lemma 5 The spectrum O'(P[g]) of the R, for some [0]eT is given by
o(Ry){ =02, =1.¥R, <G, (1)}
Proof. We simply perform the following calculation

cos’6—A cos@sind
sin@cos® sin?6-A

= (cos2 6—/1)(sin2 9—/1)—cos2 fsin’ @
=cos® @sin? @ — Acos? @ — Asin® 0+ A° —cos® Osin® 0
=1-2

det(R,,— A1) =

therefore we see that
det(Ry ~Al,)=0= 4’ -2=0= A(2-1)=0=> 2=0v A =1

Hence, O'( P[a] ) = {0,1} as claimed.
We can calculate the associated Eigenspaces. For 1 =0 we get

PyEo = 4B, =0

Hence, it is clear that given some Re its Eigenspace for 1=0 is
Ker([P[e]]), that is, in this case, the Eigenspace is spanned by the following

vectors

cos([¢])

Therefore, we can say that is Im(F’[g]) is VcR? then Spn{EO ([0])} =V*.

For A=1 we get the following Eigenvectors

P[a]E1 =AE, =E,

E, ([0]) = (cos([0]+m/2),sin([6]+ n/z))T _ {_Si“ ([9])]

P

B —E, =(F>[(,]—|2)El =0

In matrix form, this gives us
cos’0—-1 cos@sind || E | [0
sindcosd sin6-1 || E, 0
—sin?@  cos@sind || E | [0
sindcosd —cos’é || E, 0
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This gives us the following system
—sin’® OE, +cosdsin OE, =0
sin @ cos OE, —cos” OE, =0
therefore, from (24) we get
sin@cosdE, = cos’ @ = E, tanOE, = E,

Therefore,

E

Ezztanej El(ﬁ):EZCOtH
1

Therefore, the Eigenvector is given

coté
1

Ele{

Lemma 6 The Eigenvectors E, and E, are linearly independent. Moreover,
Spn{E,.E, } = R?.
Proof For y,,7, € R wehave
7oEo +1E; =0
Clearly, E,,E, arelinearly independentiff y, =y, =0
—7,Sin@+y,cotd=0
Y5080+, =0

This can be written matrix form in the following way
—sin@ cotd |y, | |0
cosd 1 |lyn] |0

-sin@ cot@
cosé@ 1

Now,

=-sin@-cotfdcosd =0,vVO

We can clearly see that, the determinant is non-zero hence, E, and E, are
linearly independent.

We can now talk about the Diagonalizability of Projection Matrices Rap-
Given that R, has distinct eigenvalues implies that it is diagonalizable Ze.

P[e] =PDP™ where D isa diagonal matrix

Lemma 7
po—pl Olpn
1 "o 1
where
-singd cot@ 1 —cotd
P:[Eo«El]: P =—— - ;
cosé 1 sin@+cot@dcos@| —cosd -—sind
Proof
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b 1 [—sing cot@]|[0 O] 1  —cotd
1" sing+cot@cos@| cos®# 1 ||[0 1] -cosd -—sind

1 [—sing coto][ 0O 0
:_sin9+cotacose_cose 1 H—cos@ —sine}
1 [—cot@cos® —cotdsing
" sin@+cotdcosd| —cosd -siné }

-P

B [ cos?d  cos@sin 0}
- (€]

sin@cosd sin20

Theorem 5 The projection matrix R with spectrum o ={4,4,} is

diagonalizable, hence there exists matrices {G,;,G,} such that
Ro = AG: + 4G, (5)

where G,,G, are projection matrices onto N (P[g] -4 Iz) along
R ( P[a] -4l ) . Furthermore,

1) G;,G; =0 whenever i=j.

mk

2) TG =1,.

Proof. We know that the Eigenvalues are 4 =0A A, =1 this obviously
implies that

P[s]:j'szsz
I 0 T
-port a5 ]
ALY,
= AllelT +/12X2Y2T = /lzszzT = XzYzT
cotd
SN S— [-cos® —sind]
sin@+cot@dcosd| 1
_ 1 —cotdcosd —cotdsind
~ sin@+cot@cos@| —cosd —sin®

=Ry

This implies that G, = X,Y, .
Lemma 8 Let G, and G, be the spectral projectors for the eigenvalues 4,
and A, respectively. Then we show that

1)
G,G, =0
2)
G,+G, =1,
Proof
G,G, = X,Y]
[—sin@ cot@ .
=| coso }[1 —cote]{ 1 }[—cos& —sind]

_[-sing cot@sind |[—cotfcos® -—sindcotd
| cos§ —cos@cotd —cosd -sing

oo
“lo o
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As claimed.

For the second part of the proof, we simply add the matrices

G,+G,

_ 1 {[—sin& cot@sind }r[—cotacose —sin@cote}}
sin@+cot@dcosd || cosd —cosHcotd —cosd —-siné

B 1 [—(sin 6 +cotdsin o) 0 }

~ sin@+cotdcosd 0 —(cos@cotd+sinb)

I2
3. Lie Group Action of SO(2,R) on G, [6]

From [3] [4] we have
Definition 1 Two squares matrices A and B are said to be Congruent if

there exists an invertible matrix R such that
B=RTAR (6)

The form of the equation would tend to suggest that R" ReSO (2, R) such
that R'TR=RR" =1,.

Let a=60'-6 be the rotation by some angle @ such that ae[0,n).
a >0 implies the rotation is counter-clockwise, & <0 implies the rotation is
clockwise.

Theorem 6 The action of SO(2) on G, ([9]) defines a congruence between
two elements B, and R, in G, ([6]) ie

£:50(2)xG, ([6)) 6, ([0)
such that

£(R(@).Ry)=RT(2)R,R(a)=Ry, ?)
Proof A pointon S' can be represented as €' =(cosé,sin6)’ .
Hence, we can choose two points on S', el?l = (cos[@],sin[@])T and
el?l = (cos[6'],sin [9'])T )

£(R(a).Ry ) =R (@)RR(a)

®((ei[9] )T Rj
[i0] ®(e[ie'] )T ~P,,

It should be clear this action corresponds to the projector in the direction of
[0]+(x,(x<|7t| which, as described in the first article, consistent with the
topological structure. This is a clockwise transformation of the projection
operator.

This, of course, implies that all projection operator are congruent matrices
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since it is always possible to find some R(a)e SO(2). Moreover, we know that
Iis the identity of SO(2) hence we get the following result

]
E(1.Ry) =1Ry1 = IRy =Ryl =R,

Finally, given some P[g] eG, ([9]) the mapping ¢& is bijective on
[6’]+a<|n| which implies that the mapping & is invertible and can be
defined as

& (R(@).Ry)=¢(R(-a).Ry) ®
We can see that this is equal to
&*(R(-a).Ry)=R" (-a)R,R(-a)=R(a)R,R" (a)
such that
£to8 =R(@)(R"(@)RoR (@))R" = 1Ryl =Ry

Note that & is an counter-clockwise transformation of the projection
operator.
Lemma 9 Let R(a),R(a’)eSO(2) and let Ra eG, ([9]),then

§(R(a’),§(R(a),Pg]))=RT(a+a’)F’[g]R(a+a’)=g‘(R(a)R(a’),P[g])@)
Proof.

)= (R@) R (@PRR(@)

() (R R(@))R(«)
(e RT( )[9] (a)R(a’)
T(a+a)RR(a+a)

R

£(R(a)R(a).Py)

Lemma 10 Let R(a) and B, be elements of SO(2) and G, ([6])
respectively. Then we have

£(R(0).Ry))=&(R(kn), Ry ) =Ry vk e Z (10)
Proof. Beginning with the case where ¢ =0 we get the following result

£(R(0).Ry)=R" (0)R,R(0)
_ {1 0}{ cos?[6] cos[H]sin[H]Zl{l 0}
0 1]|sin[@]cos[0] sin®[6] 0 1

=Ry

Now choosing @ =kn for some k eZ leadsto
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£(R(kn), R, )= R" (k)RR (k)
z_cos(kn) sin(kn)}{ cos’ 6] cos[&]sin[e]}{cos(kn) —sin(kn)}
| —sin(kn) cos(kn) || sin[¢]cos[6] sin”[6] sin(kn)  cos(km)
__(—1)k 0 H cos®[6] cos[¢9]sin[6’]}{(—l)k 0 ]

0 (_1)k sin[@]cos[d]  sin?[6] 0 (_1)k

(-1) cos’[0]  (-1) cos[ﬁ]sin[@]}[(—l)k o]

_(—1)k sin[@]cos[0] (—1)k sin®[6] 0 (—1)k

(—1)2k cos’ [9] (_1)2k cos[@]sin [9]] e
(-1)*sin[#]cos[0]  (-1)"sin?[6] (0]

This shows us that projection matrices have a period of .

We can now calculate the Stabilizer of G, ([6]) as follows.

Definition 2 The rotation group SO(2) acts on G, ([#]) then the
Stabilizer of some element P[e] eG; ([9]) denoted Stabso(z) is defined as

Staboy (R ) = {R (@)50(2):£(R(2),Ry )= p[g]}
From the above definition it is clear that
Staboyy) (R ) = {Ryeey - =k k € 2
Lemma 11
Staby,) (Ryy) <SO(2)

Proof. Choosing k=0 implies R(0)=1,=R(0)R, =1,R,; =R, . We
know that for every R(kn) 3R;'(km)=R"(kr) s.t.
R(kn)RT (k)= R(kn)T R(kn)=1,.

hence, for some k,k’eZ we have

R(kn)(RT (k) R, R (k) JR™ (kx) = R (kr)( R, )R (kx) = R,

] ]

This implies that
R (k) (RT (k)R (k) )R (k) = R (k) I,RT (k) = 1, € Stabyy (R

Theorem 7. Let R, R,  €G; ([9]) Let 8'=a+a’ then

Py.sy =R (a+a)R,R(a+a’)
Proof.
R'(a+a) Ry R (a+a')=R"(a)R"(a) R, R (a')R(a)
=R (a)Ry.1R(a) = Rovaay) = Foso)

Hence, we can conclude that

DOI: 10.4236/alamt.2019.91001 11 Advances in Linear Algebra & Matrix Theory
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RT (a+a’) P[H]R(a+a’) =

P[9+H’]

Lemma 12 The group of action of SO(2,R) on G, ([9]) not faithful but it
is co-transitive.

Proof. for a group action to be faithful implies that for every pair of distinct
elements of SO(Z,R) there is some P[g] such that
R(a)R,R"(¢)#R(a')R,R"(a), VR, €Gy([0]).

Consider the set SO(Z R)XSO(Z,R) and let us choose some arbitrary
projector in - Gy, ([6]) . Specifically, let us consider the pair
(R(a), R (a’)) €SO(2,R)xSO(2,R) such that a'=a+n . Then we
demonstrate that it is impossible to find an element of G, ([9]) such that the

above definition is satisfied.
R (a)R,R(a')=R" (atm)R,R(axn)

(6]
=—RT(a)P[g]—R(a) (11)

T
=R"(a)RyR(a)
Since a'#a and P[H] is arbitrary, we conclude that this action is not
faithful.

However, we are going to demonstrate that it is n-transitive. To show this we

can consider two pairwise distinct projector sequences of form

(G R r—

each sequence is pairwise distinct, that is, F’[g] #* F’[ o] Vi, j=1--,n and
P[ 6% P[H],Vr s=1---,n . Suppose that each sequence is chosen so that
¢( [9]) ¢(P )e T and form two arithmetic sequences such that the quotient
metric  satisfies  dy ([6,].[6,])=inf,,{|6, -6, + 2kn|} = B <m,Vi,r=1,--,n .

Then we can have the following result

RT(ﬂ)F’WR(ﬂ) Ry Vir=1n

we can define a refinement of the sequence in the following way
O-(ﬂ) =B B <p= 0({P[9I]}i—1) N {P[H']}i:l’n <n

As /3—)0:>n—>oo we have

'TE!({ [e]}n U [m} =7, =G ([0]) € 7, o) -

where, it was shown that To oy 1 the topology Gy [#]. Hence, this group
action is co-transitive.

Lemma 13 The Kernel of ¢ is given by

Ker¢ = {R(a) € SO(2,R): R" (@) R,R () = Ry
={R(a)€SO(2,R): =0}

for some P, €Gp ([6])-
Proof. Let R, be some element of G, ([6]) and choose a=-0 the we

have

DOI: 10.4236/alamt.2019.91001
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(R( 0) [a]) R™(-0)R,R(-0)=R(0)R,R"(9)
£ (R( '[o) For = e, 10)

Lemma 14 The Lie Group G, ([6]) has exactly one orbit.

Proof. We know that the action is transitive since for all pairs on
G ([0])x Gy ([0]) of the form (P[g,], P[g]) there exists R(a+kn),k eZ such
that R, = RT (o +kn) P[G]R(a+k7t),Vk eZ.

We just need to show that for some fixed P[g] eG, ([9]) we get

RT (a)P,R(a)=G;, ([9]) . It is clear that choosing —g <a Sg we get

lo]
T T T _pl
R ( jp[e]R( j Pwrp[e]

2

RT(_gjﬁalR(_gj:P{e-ﬂ :R( ijRTGJ R

Due to the fact that projector repeat every m we get see that

T
R™(ar) Ry R (@) =Go ([¢])-
Definition 3 The Vec operator is a linear transformation which converts a

matrix into a column vector. That is
Vec:R™™ — R™
defined as

VeC(A):[ai,l"'"am,li""a'l,z""'am,zl " mn] AeR™

Theorem 8 The group SO(2,R) defines a homeomorphism group on
Ge ([6]) - That is

S0(2,):G, ([6]) > G ([¢])

For some P[]EG ([9]) and for some translation angle ae[O,n) this
mapping can be defined as follows

Vee (R, (a) ©R, () Vee(R, |
Proof.

(R(a)®R(a))Vec(R, |

cos’a  —cosasinag -sinacosa  —sin’«a cos’[6]
_|cosasina cos’a -sina  —sinacosa || cos[@]sin[0]
“|sinacosa  —sin’a cos? o —cosasina || sin[@]cos[0]

sin’ « sin@cosa  cosasina cos’ & sin®[6]

cos® cos’ [@] - 2cosasin a cos[H]sin[ 0] +sin® esin® [6)]
cosasin a cos® [8]+cos® a cos[@]sin[#] —sin® asin[]cos[#]—sin a cosasin® [ 6]
cosasin a cos® [8]+cos® a cos[@]sin[#]—sin® asin[@]cos[#]—sin a cosasin® [6]
sin? &z cos® [@]+ 2sin o cos a cos sin[#] + cos? asin? [ 6]
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(cosa cos[#] -sinasin [6’])2
(cos[@]sina)(cos[@]cosa —sinasin[6])+cosasin 6 (cosa cos[] -sinasin[6])
cosasin e(cow cos[@]-sinasin [9])

| (sino:cos[e]+0050:sin[9])2

cos® (a +[0])

_ sin(a +[0])cos(a +[6])
cos(a +[0])sin(a +[6])

sin? (a+[0])
Let 0’:a+[¢9] then we have
cos*[0']
)= sin[#']cos[6']
cos[6']sin[¢']
sin?[0']

(R(a)@R(a))Vec(P[g]

Knowing the size of the original matrix ie. a 2x2 matrix and using the

properties of the Vec Operator Ze. the isomorphism R*? =R* we find that

Vec ! (R(a) ®R () Vec(R, |

cos’[¢']
et sin[6']cos[6'] _ cos’[¢'] cos[6']sin[6'] _
cos[6']sin[0'] sin[#']cos[¢'] sin®[¢'] 1
sin®[¢']

4. The Group Operation of G, [6] as Matrix Products
We have already seen that the group operation on G ([6’]) is a follows
0(Ro)-Pon) = Roeoy YRy Ry G5 ([0)) (12)
P gl ®(ei[6] )T P _glol ®(ei[e'1 )T
(o] — G

, . A\T
Hence, P[gﬂq,] = el?+?] ®(e'[6+g]) .

Definition 4 © isthe Hadamard Product defined as follows.
Let A and B be two matrices the Hadamard product is

(A©B), =(A),,(B),,

Theorem 9
oo =0(Rop Ry ) = (13)

where
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¢’11(P[]'P[9]) 1 Vec( [0 © [e’])
(D(F)[o]’ P[o']) =90 (P[O], P[g'] ) = (P21(P[0]’ P[o’]) = 11 VeC(P[H] QQP[”]Q*)
(022( GE [9]) L Vec( [9]®P[9])

where 1I:[1,—1,—1,1]T and 1I=[1,1,1,1]T. The matrices Q and Q" are

defined as
01 . |1 0
Q = , Q =
10 0 -1

Proof.
1! Vec( Ry © P[g,])

=[1,—1,—1,1]vecu _ cos? [6] COS[_H]Si“[‘g]]
sin[@]cos[0]  sin*[0]

cos’[0]  cos[¢']sin[6']
QLin[a’]cos[e’] sin®[¢'] D
:[1,—1,—1,1]vch cos® [@]cos? [6'] cos[@]sin[&]cos[@']sin[9’]”
sin[@]cos[#]sin[¢"]cos[ '] sin® []sin?[6']
cos® [@]cos? [6']
sin[@]cos[#]sin[6']cos[6']
cos[@]sin[#]cos[6']sin[¢']
sin?[@]sin®[6']

=[1,-1,-1,1

= cos’ [#]cos? [0'] - 2sin[@]cos[@]sin[6']cos[0'] +sin? [F]sin? [¢']
s?([0+0'])

For the anti-diagonal elements, it is clear that they are equal due to

symmetry.
cos’[0]  cos[@]sin [0]]
sin[#]cos[6)] sin®[6]

01 cos’[¢'] cos[#']sin[#']|[1 O
Q[l O:ILin[H’]cos[e’] sin®[¢'] }{O —1D
_[1.1,1,1]ves cos’[6]  cos[@]sin[6]
o sin[#]cos[6] sin?[6]

sin[@']cos[¢']  sin®[¢'] 10
®[ cos’[¢'] cos[H’]sin[e’]][O —1D

Advances in Linear Algebra & Matrix Theory
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~ cos?[0] cos[]sin[6]
_[1'1'1'1]\/80[Lin[e]cos[e] sin’[0] }
sin[0']cos[¢'] —sin®[¢'] D
Q{ cos?[0']  —cos[0]sin[0]
_ . cos’[]sin[#']cos[@'] —cos[H]sin[#]sin’ [9’]D
[p1L1v [Lin[@]cos[&]cos2 [0'] —sin’[6]cos[¢']sin[6]
cos® [@]sin[#']cos[¢']
sin[@]cos[@]cos? [6']
—cos[@]sin[#]sin?[0']
—sin?[@]cos[#']sin[¢']
=cos?[#]sin[@"]cos[¢']+sin[#]cos[F]cos® [¢']
—cos[#]sin[#]sin? [¢']—sin® [#]cos[¢']sin[¢']
=cos([6+6])sin([6+6'])

=[1,1,1,1]

for the element p,, we get the following result

cos’[6]  cos[A]sin[o ]}

:
1*VEC(P[9]®P[9]) [ 11]Vec( sin[@]cos[0]  sin*[6

sin[0'] —cos[6']sin 6’]
G{—cos[& Isin[¢’ cos’ D
11 Ve cos’ [@]sin’[¢'] —005[9 sin[@]cos[¢"]sin[']
=[L-1-L1v [{_sin[a]cos[a]cos[g]Sln[H] 2[9]‘:05[ | D

cos®[@]sin?[6']
—sin[#]cos[#]cos[#']sin[6']
—cos[@]sin[@]cos[#']sin[6']

sin?[@]cos?[0']
=cos’[@]sin? [8']+ 2sin[#]cos[@]cos[#']sin[6'] +sin?[6]cos® [¢']

=sin*([0+6'])

Now choosing 6’ =0 implies that we have ¢7(P[€], Ao ) =Py = Ry)» that is

=[1,-1,-1,1]

we have

ofpyr )| ) ealfa )
(6]’ o) _(Dzl(P[e]P[]) (P[H]P[])

| 1fVec( @P[O]) 1TVec(P[9]®QP Q*)

I cos’[0]  cos[B]sin[6]
_sin[@]cos[e] sin”[0]

_ﬂVm(MQQ%]) 1" Vec(R, @ Ry))
]
2

=Ry
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To be thorough let us choose 8'=-6, we should expect to calculate
¢( P[g] ! P[—H]) = P[H]Jr[_g] = P[O] , that is

_¢11 (P[a] ' I:’[—9] ) P ( P[g] ’ P[“9] )

PP )=
#lfo ) _‘/’21(P[e1'P[—e1) 02 (RopPa)

~ cos’ (6-6) cos(6—6)sin(60-0)
- :sin(9—6)005(6—6’) sin(0-6) }
= ' 0:| = F)[o] =R,

0 0

Last but least we will check that operation is associative that we want to make

sure that

?(Rey 0 (R Rin)) = 2[Ry Pon) P
Proof. Clearly the operation is associative if all component functions are also

associative. Hence we shave to show that
Pu ( Rop P (P[e] P )) =P (5011 ( R Fop )' Ao )

(011(P[9"]'(P11 (P[.g]’ P[a']))
=P ( Reop Ro-0 ) =17 Vec( R © P[9+9'])
cos? 9" cos’ (0+6')
cos@"sin 6" cos(6+6')sin(6+6")
sin@"cos@"sin (6 +6')cos(0+6")
sin® @”sin’ (0 +6")
=cos’ §"cos’ (0 +6')—2cos6"sin 6" cos (6 +60')sin (6 +0")

+sin® @"sin’ (0+6")

=[1,-1,-1,1]

=(cos@"cos(0+0")—sind"sin (6 + 6?’))2
= (cos(6"+6' +6))" =cos? (6" +6'+06)

It is known that the Hadamard Product is known to be associative we can

conclude that
21 (Roy 011 (R Fin)) = 941 (R R
=17Veo(Ry © Ry
=1 Vec( Py © ( Ry @Ry ))
=11Vee((Ryy @Ry )0 Ry
=010 (R R ). R
Next, we deal with the anti-diagonal elements. We need to show that

Pro (P[e"] 012 (Rop- Ry )) = (% (Roy+ Ry ) Ry )
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022 (R 022 (Ruy Ry )| = 11 Vee( R, © QR Q)

_q Vecﬂ cos’@”  cosd"sin H”}

sin@" cosO” sin? "
sin(6+6")cos(6+0") —sin®(0+0")
cos’(0+6') —cos(0+6')sin(0+0)

_1"Vec cos?@"sin(0+6')cos(6+0')  —cos@"sind"sin*(6+0")
o sin@" cos 0" cos? (6+6') —sin? " cos(6+6')sin(6+0")
cos” 9"sin(6+6")cos(6+0")

sin@” cos 6" cos’ (6 +6)

—cosd"sinO"sin’ (0 +6')
—sin 9" cos(0+6')sin(6+6")
=c0s’ 0"sin (0 +6')cos(6+0")+sin 6" cos " cos’ (0 +6')

—cos@"sin@"sin’ (6+6')—sin* 6" cos(0+6')sin (0 + ')

=[1,1,1,]]

We now use the following the following results(without proof)

3
cos[Zj =¢0s8'cos@"cos " —cosd'sin@"sin " —cos " sin @'sin 8"
i=1

—c0s8"sin@’'sin 8"
3
sin (Zj =sin@'cosB"cosO" +sin@"cos O’ cosB” +sin 8" cos " cos §’
—sin@'sin@"sin 8"
with some algebra, we can show that
3 - 3 *
cos(stm (Zj =17 Vec(P[g] ©QR,.»Q )
i=1 i=1

multiplication being commutative implies associativity for the anti-diagonal
elements.

Finally, for element ¢,, we have to show that
7 (R0 (R o)) = 02 2 (R )R

02211022 (R Ror))
= Px (P[e"]' Ro-0) ) =17 Vec(P[a"] © P[;Jre’])

cos? 0"sin? (0 +6")
—c0s8"sin@"cos(0+6")sin(0+0")
—sin@"cos@"cos(6+6")sin(0+0")

sin’ 0" cos® (0+6")
=cos’ §"sin? (0 +6')+2c0s@"sin 9" cos (O +6')sin (0 + ')

+sin” 0" cos? (6+6")

=[1,-1,-1,1]
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= (cos 0"sin(0+0')+sin 0" cos (0 + 6"))2
=(sin(6"+6'+0))" =sin’ (6" +6'+0)
=Vee(Ry. R

=y ((/’zz (R Fioy)- P )

We can see, from the previous section, that
T
R; (a+a)B,R, (a+a’)

o ( P[s]’ FT:g’]) Pn ( P[g] ' P[a'] )

P ( P[a]v P[e'] ) P2 (P[B]’ P[“"])

it is also worthwhile noting since the Hadamard Product is commutative

=Rosy = (R Py ) =

confirms that (p(P[g],P[@,]) is a commutative group operation which implies
that the centre of G, ([6]) is itself.

5. In Conclusion

We have shown that the Lie Group SO(Z,R) acts on the on the manifold
Gy ([0]) to generate new elements in G, ([¢]) where many interesting
properties of this group action have been demonstrated. The group operation
(p(P[é,], P[e']) in terms of matrix operations requires the use of the vectorisation
operator and the Hadamard Product because it is not a traditional vector sum
when the angles are added together. Adding the vectors in a traditional way
would require the tensor product of the sum and a normalisation constant. I
believe that projection matrices have more interesting structures that can be
further studied. I hope that this article will raise some interest in what, I think,

does deserve more investigation.

Acknowledgements

I wish to personally thank the Editor(s) and Mrs Eunice Du for all her help. I

also wish to extend my gratitude to the referee for their comments.

Conflicts of Interest
The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Tapp, K. Matrix Groups for Undergraduates. ISBN 0-8218-3750-0.
http://www.ams.org/publications/authors/books/postpub/stml-29

[2] Yanai, H., Takeuchi, K. and Takane, Y. Projection Matrices, Generalized Inverse
Matrices, and Singular Value Decomposition. ISBN 1441998861, Springer.

[3] Rudolph, G. and Schmidt, M. (2103) Differential Geometry and Mathematical
Physics: Part I Manifold, Lie Groups and Hamiltonian Systems. ISBN 978-94-007-
5344-0, Springer, Berlin.

[4] Levine, M. GL,(R) as a Lie Group. University of Chicago.
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Levine.pdf

DOI: 10.4236/alamt.2019.91001

19 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2019.91001
http://www.ams.org/publications/authors/books/postpub/stml-29
http://www.math.uchicago.edu/%7Emay/VIGRE/VIGRE2009/REUPapers/Levine.pdf

	A Follow-Up on Projection Theory: Theorems and Group Action
	Abstract
	Keywords
	1. Notation System
	2. Some Important Theorems and Lemmas
	3. Lie Group Action of  on 
	4. The Group Operation of  as Matrix Products
	5. In Conclusion
	Acknowledgements
	Conflicts of Interest
	References

