
Advances in Linear Algebra & Matrix Theory, 2015, 5, 150-155 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/alamt 
http://dx.doi.org/10.4236/alamt.2015.54015   

How to cite this paper: Pahade, J. and Jha, M. (2015) Trace of Positive Integer Power of Real 2 × 2 Matrices. Advances in 
Linear Algebra & Matrix Theory, 5, 150-155. http://dx.doi.org/10.4236/alamt.2015.54015  

 
 

Trace of Positive Integer Power of Real  
2 × 2 Matrices 
Jagdish Pahade1*, Manoj Jha2 
Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, India 

 
 
Received 21 September 2015; accepted 4 December 2015; published 7 December 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The purpose of this paper is to discuss the theorems for the trace of any positive integer power of 
2 × 2 real matrix. We obtain a new formula to compute trace of any positive integer power of 2 × 2 
real matrix A, in the terms of Trace of A (TrA) and Determinant of A (DetA), which are based on 
definition of trace of matrix and multiplication of the matrixn times, where n is positive integer 
and this formula gives some corollary for nATr  when TrA or DetA are zero. 
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1. Introduction 
Traces of powers of matrices arise in several fields of mathematics, more specifically, Network Analysis, Num-
bertheory, Dynamical systems, Matrix theory, and Differential equations [1]. When analyzing a complex net-
work, an important problem is to compute the total number of triangles of a connected simple graph. This num-
ber is equal to Tr(A3)/6, where A is the adjacency matrix of the graph [2]. Traces of powers of integer matrices 
are connected with the Euler congruence [3], an important phenomenon in mathematics, stating that 

( ) ( )( )1
moTr dTr

r rp p rp
−

≡A A , 

for all integer matrices A, all primes p, and all r ∊ Z. The invariants of dynamical systems are described in terms 
of the traces of powers of integer matrices, for example in studying the Lefschetz numbers [3]. There are many 
applications in matrix theory and numerical linear algebra. For example, in order to obtain approximations of the 
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smallest and the largest eigenvalues of a symmetric matrix A, a procedure based on estimates of the trace of An 
and A−n, n ∊ Z, is proposed in [4]. 

Trace of a n n×  matrix ija =  A  is defined to be the sum of the elements on the main diagonal of A, i.e.  

11 22 1Tr n
nn iiia a a a

=
= + + + = ∑A   

The computation of the trace of matrix powers has received much attention. In [5], an algorithm for compu-
ting ( )Tr , Zk k ∈A  is proposed, when A is a lower Hessenberg matrix with a unit codiagonal. In [6], a sym-
bolic calculation of the trace of powers of tridiagonal matrices is presented. Let A be a symmetric positive defi-
nite matrix, and let { }kλ  denote its eigenvalues. For q ∊ R, Aq is also symmetric positive definite, and it holds 
[7]. 

Tr q q
kk λ= ∑A                                    (1.1) 

This formula is restricted to the matrix A. Also we have other formulae [8] to compute the trace of matrix 
power such that  

Tr n n
kk λ= ∑A                                    (1.2) 

But for many cases, this formula is time consuming. For example 

Consider a matrix 
1 1
2 2

− 
=  
 

A  and let we are to find TrA5. Eigenvalues of A are 3 7
2
i± , then by (1.2), 

5 5

5 3 7 3 7Tr
2 2
i i   + −

= +      
   

A . 

Computation of this value is time consuming. Therefore, other formulae to compute trace of matrix power are 
needed. Now we give new theorems and corollaries to compute trace of matrix power. Our estimation for the 
trace of An is based on the multiplication of matrix. 

2. Main Result 
Theorem 1. For even positive integer n and 2 × 2 real matrix A, 

( ) ( ) ( ) [ ] ( ) ( )
0

2
2 1

Tr 1 2 up to terms Det Tr
!

r
r n rn

n

r
n n r n r r

r=

−−
= − + − + ⋅      ∑A A A  

Proof. Consider a matrix 
a b

A
c d
 

=  
 

 where , , ,a b c d  are real. 

Then 

Tr a d= +A                                          (2.1) 

and 

Det ad bc= −A                                        (2.2) 

Now 

( )
( )

2
2

2

a b a b a bc b a d
c d c d c a d bc d

 + +   
=      + + 

=
     

A  

Then  

( ) ( )
( )

2 2

2 2

2

2

2Tr 2

2 2 2

2

Tr 2Det

a bc d
a ad d ad bc

a d ad bc

+ +

= + + − +

= +

=

− −

= −

A

A A

                             (2.3) 
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Now again  

( )
( )

2
3 2

2

a ba bc b a d
c dc a d bc d

 + +  
   + +

=


=
 

A A A  

( ) ( )
( ) ( )

3 2 2
3

2 2 3

a abc bc a d a b b c bd a d
ac a d bc cd bc a d bcd d
 + + + + + +

=  
+ + + + + +  

A                     (2.4) 

Then 

( )
( ) ( ) ( )

( ) ( )( )
( ) ( )( )

3 3 3

3 3

3

3

Tr 3

3 3 3

3

Tr 3 Det Tr

a d bc a d

a d ad a d ad a d bc a d

a d a d ad bc

+ + +

= + + + − + + +

= + − + −

−

=

=

A

A A A

 

( ) ( )( )33Tr Tr 3 Det Tr= −A A A A                           (2.5) 

Now replace A by A2 in (2.3), we have 

( ) ( ) ( )( )

24 2 2

22 2

2Det

  – 2Det 2 Det Det Det Der t

Tr Tr

T

 = − 

 = − =   

A

A A AB A B

A A

A
 

( ) ( ) ( )4 2 24 – 4DetTr Tr Tr 2 Det= +A A AA A                   (2.6) 

Again replace A by A2 in (2.5), we have 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

36 2 2 2

32 2 2

6 2 2 3

2 2 3

Tr Tr 3Det Tr

Tr 2Det 3 Det Tr 2Det

Tr 6 Tr Det Tr 2Det 8 Det

3 Det Tr 6 Det

 = − 

   = − − −   
 = − − − 

− +

A A A A

A A A A A

A A A A A A

A A A

 

( ) ( ) ( ) ( ) ( )6 4 2 2 36Tr Tr 6Det Tr 9 Det Tr 2 Det= − + −A A A A A A A                 (2.7) 

Now again replace A by A2 in (2.6), we have 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4 2 28 2 2 2 2

4 22 2 2 4

8 2 4 2 4 4 2

2 4 2 2 4

Tr Tr 4Det Tr 2 Det

Tr 2Det 4 Det Tr 2Det 2 Det

Tr 8 Det Tr Tr 4 Det 16 Det 24 Tr Det

4 Det Tr 4 Tr Det 4 Det 2 Det

     = − +     

   = − − − +   
 = − + + + 

 − − + + 

A A A A A

A A A A A A

A A A A A A A A

A A A A A A

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )8 6 2 4 3 2 48Tr Tr 8 Det Tr 20 Det Tr 16 Det Tr 2 Det= − + − +A A A A A A A A A       (2.8) 

Now we observe from (2.3), (2.6), (2.7) and (2.8) that 

( ) ( ) ( ) ( ) ( ) ( )
0 1

0 2 2 0 1 2 2 12 1 1
Tr TDet Detr 2 Tr

0! 1!
− × − ×=

− −
+A A AA A  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0 1 2

0 4 2 0 1 4 2 1 2 4 2 24 Det D
1 1 1

Tr Tr 4 Tr 4 4 3 Tr
0! 1! 2

et De
!

t− × − × − ×− − −
+ −= +A A AAA A A  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

0 1 2
0 6 2 0 1 6 2 1 2 6 2 2

3
3 6 2 3

6 1 1 1
Tr Tr 6 Tr 6 6 3 Tr

0! 1! 2!
1

6 6 4 (6 5) Tr

Det Det Det

Det
3!

− × − × − ×

− ×

− − −
+ + −

−

=

+ − −

A A A AA A

A

A

A

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )( ) ( ) ( ) ( )( )( )( ) ( )

0 1 2
0 8 2 0 1 8 2 1 2 8 2 2

3 4
3 8 2 3 3 8 2 4

8 1 1 1
Tr Tr 8 Tr 8 8 3 Tr

0! 1! 2!
1

Det Det Det

De
1

8 8 4 8 5 Tr 8 6 5 8 6t De8 7 Trt
3! 4!

− × − × − ×

− × − ×

− − −
+ + −

− −
+ − − + − − −

=A A A A

AA A

A A A

A
 

Continuing this process up to n terms we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 2
0 2 0 1 2 1 2 2 2

2

2
2 2 2

1 1 1
Tr Tr Tr 3 Tr

0! 1! 2!
1

1 2 up to terms Tr
!

1
2 1 2 2 up to 2 te

Det Det

rms Tr
2

Det

Det

et
!

D

n n n

r
r n r

n
n n n

n n n n

n n r n r r
r

n n n n n n
n

− × − × − ×

− ×

− ×

− − −
= + + −

−
+ + − + − + ⋅      

−
+ + + − + ⋅      

A A A

A

A A A A

A

A A

 
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  (2.9) 

Finally from above, we get 

( ) ( ) ( ) [ ] ( ) ( )
0

2
2 1

Tr 1 2 up to terms Det Tr
!

r
r n rn

n

r
n n r n r r

r=

−−
= − + − + ⋅      ∑A A A         (2.10) 

Hence the proof is completed. 
Theorem 2. For odd positive integer n and 2 × 2 real matrix A, 

( ) ( ) ( ) [ ] ( ) ( )
( )

2
1 2

0

1
Tr 1 2 up to terms Det Tr

!

r
r n rn

n

r
n n r n r r

r

−

=

−−
= − + − + ⋅      ∑A A A  

Proof. Consider a matrix A as in theorem 1, we have from (1.4) and (1.6). 

( ) ( )
( ) ( )

( )
( )

3 2 2 2
5 3 2

2 2 3 2

a abc bc a d a b b c bd a d a bc b a d
ac a d bc cd bc a d bcd d c a d bc d
   + + + + + + + +
   

+ + + + + + + +     
= =


A A A  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

5 2 3 2 2

2 2 2 3

35 5 3 3 2 2 2 2

35 5 2 2

35 5 2 2

Tr

2 5 2

5 10 5

5 5 5 ( )

a bc a abc bc a d c a d a b b c bd a d

b a d ac a d bc cd bc d bc a d bcd d

a d bc a d b c a d bc a d a d bc a d

a d bc a d abcd a d b c a d

a d ad a d a d a d ad a d

   + + + + + + + + +   
 + + + + + + + + + + 

= + + + + + + + + + +

+ + + − + +

=

 

+

= + + + − + −

=

+



A

( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )

3 2 2

3 2 2

5 3 2

5

5 10 5

5 5

a d a d

bc a d abcd a d b c a d

a d ad bc a d ad ad bc a d

+ +

+ + − + + +

= + − − + + − +

 ( ) ( ) ( ) ( )5 3 25 Tr 5Det TrTr 5 Det Tr= − +A A A AA A                     (2.11) 

Now we observe from (2.5) and (2.11) that 

( ) ( ) ( ) ( ) ( ) ( )
0 1

0 3 2 0 1 3 2 13 1 1
Tr Det Tr 3 Det Tr

0! 1!
− × − ×− −

= +A A A A A  



J. Pahade, M. Jha 
 

 
154 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0 1 2

0 5 2 0 1 5 2 1 2 5 2 25 1 1 1
Tr Det Tr 5 Det Tr 5 5 3 Det Tr

0! 1! 2!
− × − × − ×− − −

= + + −A A A A A A A  

Now we continuing this as in Theorem 1, we get TrAn same as Theorem 1. But here r varies up to ( )1 2n − . 
Hence the theorem follows. 

Corollary 1: For any positive integer n and 2 × 2 real singular matrix A, ( )Tr Tr  nn =A A . 
Proof: For singular matrix A, DetA = 0. Hence proof follows from Theorem 1 and Theorem 2. 
Corollary 2: For 2 × 2 real matrix A with TrA = 0. 
1) ( ) 2Dr   2 etT nn = − AA  when n is even and;  

2) Tr   0n =A  when n is odd. 
Proof. Proof follows from theorem 1 and theorem 2. 
Corollary 3: For 2 × 2 real matrix A with TrA = 0 and DetA = 0. 
Tr   0n =A  where n is any positive integer. 
Proof. Proof follows from Corollary 2. 

Example 1. Consider a matrix 
1 1
2 2

− 
 


=


A  and let we are to find TrA5.  

Here 2D t 2 4e = + =A  and Tr 1 2 3= + =A . then by Theorem 2, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )5 3 2 5 3 25Tr Tr 5Det Tr 5 Det Tr 3 5 4 3 5 4 3 57= − + = − + = −A A A A A A  

Example 2. Consider a matrix 
3 5
1 2

− 
 −

=


A  and let we are to find TrA10. 

Here 6D t 5 1e − += = −A  and Tr 3 2 1= − =A . then by Theorem 1, we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

10 8 2 6 3 410

4 2 5

Tr Tr 10Det Tr 35 Det Tr 50 Det Tr

25 Det Tr 2 Det
1 10 35 50 25 2 123.

= − + −

+ −

= + + + + + =

A A A A A A A A

A A A  

Example 3. Consider a matrix 
20 199

2 20
 

=  − − 
A  and let we are to find TrA2015. 

Here TrA = 0, DetA = −2 and n = 2015, which is odd, hence by corollary 2, we get TrA2015 = 0. 

Example 4. Consider a matrix 
15 21
10 14

 
=  − − 

A  and let we are to find TrA100. 

Here A is a singular matrix with Trace 1, and then by Corollary 1, we have 

( ) ( )100 100100Tr T 1 1.r= = =A A  

Conclusion and Future Work 
After to discuss Theorems 1 and 2, Corollaries 1, 2 and 3, we are able to find trace of any integer power of a 2 
× 2 real matrix. In future, we can be developed similar results for 3 × 3 real matrices. 
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