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Abstract 
In this paper, it is proved that every nonlinear Jordan triple derivation on triangular algebra is an 
additive derivation. 
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1. Introduction 
Let   be a commutative ring with identity and   be an  -algebra. A linear map :δ →   is called a 
derivation if ( ) ( ) ( )AB A B A Bδ δ δ= +  for all , .A B∈  Additive (linear) derivations are very important 
maps both in theory and applications, and were studied intensively. More generally, we say that δ  is a Jordan  

triple derivation if ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2 2

ABC CBA A BC A B C AB C C BA C B A CB Aδ δ δ δ δ δ δ + = + + + + +     
  

for all , ,A B C∈ . If the linearity in the definition is not required, the corresponding map is said to be a 
nonlinear Jordan triple derivation. It should be remarked that there are several definitions of linear Jordan 
derivations and all of them are equivalent as long as the algebra   is 2-torsion free. We refer the reader to [1] 
for more details and related topics. But one can ask whether the equivalence is also true on the condition of 
nonlinear, and we are still unable to answer this question. 

The structures of derivations, Jordan derivations and Jordan triple derivations were systematically studied. 
Herstein [2] proved that any Jordan derivation from a 2-torsion free prime ring into itself is a derivation, and the 
famous result of Brešar ([1], Theorem 4.3) states that every Jordan triple derivation from a 2-torsion free semi- 
prime ring into itself is a derivation. For other results, see [3]-[9] and the references therein. 

Let   and   be two unital algebras over a commutative ring  , and let   be a unital ( ),  -bi- 
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module, which is faithful as a left  -bimodule, that is, for , 0 0A A A∈ = ⇒ =   and a right  -bimodule,  

that is, for , 0 0B B B∈ = ⇒ =  . Recall the algebra ( ), , : , ,
0
a m

Tri a b m
b

   = = ∈ ∈ ∈  
   

         

under the usual matrix addition and formal matrix multiplication is called a triangular algebra [10]. Recently, 
Zhang [11] characterized that any Jordan derivation on a triangular algebra is a derivation. In this paper we 
present result corresponding to [11] (Theorem 2.1) for non-linear Jordan triple derivations (there is no linear or 
additive assumption) on an important algebra: triangular algebra. 

As a notational convenience, we will adopt the traditional representations. Let us write 
0

0 0
I

P  
=  
 
 , 

0 0
0

Q
I

 
=  
 

 and 
0

0
I

I
I

 
=  
 




 for the identity matrix of the triangular algebra  . 

2. The Main Results 
In this note, our main result is the following theorem. 

Theorem 2.1. Let   and   be unital algebras over a 2-torsion free commutative ring  , and   be a 
unital ( ),  -bimodule, which is faithful as a left  -bimodule and a right  -bimodule. Let  

( ), ,Tri=     be the triangular algebra; if δ  is a nonlinear Jordan triple derivation on  , δ  is an 
additive derivation. 

Lemma 2.1. If δ  is a nonlinear Jordan triple derivation on an upper triangular algebra   generated by 
2 ,P P= ∈  ( )P PT TPδ = −  with ( )T Pδ= ∈ . 

Proof. It follows from the fact 2P P=  that ( ) ( ) ( ) ( )P P P P P P P Pδ δ δ δ= + + , which implies that 
( ) ( ) 0.P P P Q P Qδ δ= =  Thus we have from the fact that ( ) 0Q P Pδ =  that ( ) ( ) ,P P P Q PT TPδ δ= = −  

where ( ) .T Pδ= ∈  
Now define ( ) ( ) ( )d A A AT TAδ= − −  for each .A∈  Clearly, d  is also a nonlinear Jordan triple deri- 

vation from   into itself. It follows from Lemma 2.1 that ( ) ( ) 0.d P d Q= =  
Lemma 2.2. ( )0 0.d =  
Proof. Clearly, ( ) ( ) ( ) ( )0 0 00 0 0 0 00 0 0.d d d d= + + =  
Lemma 2.3. ( ) ,1 2.ij ijd i j⊆ ≤ ≤ ≤   
Proof. Firstly, we prove that ( ) 112 .d P ∈  It is clear that  

( ) ( ) ( )12 2 2 2 ,
2

d P d P P P P P P Pd P P = ⋅ ⋅ + ⋅ ⋅ = 
 

 which implies that ( ) 112 .d P ∈  

Let 12 12 ,A ∈  ( ) ( ) ( ) ( )12 12 12 12 12
1 12 2 2 2 .
2 2

d A d P A Q Q A P d P A Pd A Q = ⋅ ⋅ + ⋅ ⋅ = +     
 Since  

( ) 12 122 ,d P A ∈  we get ( )12 12 .d A ∈  

Let 11 11,A ∈  ( ) ( ) ( )11 11 11 11
1 ,
2

d A d P A P P A P Pd A P = ⋅ ⋅ + ⋅ ⋅ = 
 

 and thus ( )11 11.d A ∈  

Similarly, one can check that ( )22 22 .d ⊆   
Lemma 2.4. ( ) ( )2 2 0.d P d Q= =  
Proof. For any 12 12 ,A ∈  it follows from Lemma 2.3 that 

( ) ( ) ( ) ( )12 12 12 12 12
1 12 2 2 2 .
2 2

d A d P P A A P P d P A Pd A = ⋅ ⋅ + ⋅ ⋅ = +     
 This implies that ( ) 122 0.Pd P A =  Since  

P Q  is a faithful left P P -module, we have that 

( )2 0.Pd P P =  

It follows from ( ) 112d P ∈ , we have ( )2 0.d P =  Similarly, we can get that ( )2 0.d Q =  
Lemma 2.5. For any 11 11 11 12 12 12 22 22 22, , , , ,A B A B A B∈ ∈ ∈   , we have 
(1) ( ) ( ) ( )11 12 11 12 11 12d A B d A B A d B= + , (2) ( ) ( ) ( )12 22 12 22 12 22d A B d A B A d B= + , 

(3) ( ) ( ) ( )11 11 11 11 11 11d A B d A B A d B= + , (4) ( ) ( ) ( )22 22 22 22 22 22d A B d A B A d B= + . 
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Proof. (1) For any 11 11 12 12, ,A B∈ ∈   it follows from Lemma 2.3 and 2.4; we have  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

11 12 11 12 12 11

11 12 11 12 11 12

12 11 12 11 12 11

11 12 11 12

1 2 2
2

1 2 2 2
2

2 2 2

.

d A B d P A B B A P

d P A B Pd A B A d B

d B A B d A P B A d P

d A B A d B

 = ⋅ ⋅ + ⋅ ⋅ 
 

= + +

+ + + 
= +

 

(2) is proved similarly. 
(3) For any 11 11 11 12 12, , ,A B M∈ ∈   by Lemma 2.5 (1), we get that  

( ) ( ) ( )11 11 12 11 11 12 11 11 12 .d A B M d A B M A B d M= +                             (1) 

On the other hand,  

( ) ( )( ) ( ) ( )
( ) ( ) ( )

11 11 12 11 11 12 11 11 12 11 11 12

11 11 12 11 11 12 11 11 12 .

d A B M d A B M d A B M A d B M

d A B M A d B M A B d M

= = +

= + +
 

This and Equation (1) imply that 

( ) ( ) ( )( )11 11 11 11 11 11 12 0.d A B d A B A d B M− − =  

Since P Q  is a faithful left P P -module and ( ) ( ) ( )11 11 11 11 11 11 11d A B d A B A d B− − ∈ , we get  
( ) ( ) ( )11 11 11 11 11 11 0,d A B d A B A d B− − =  that is 

( ) ( ) ( )11 11 11 11 11 11 .d A B d A B A d B= +  

Similarly, (4) is true for all 22 22 22,A B ∈ . 
Lemma 2.6. ( ) ( ) ( )11 12 11 12d A A d A d A+ = +  and ( ) ( ) ( )12 22 12 22d A A d A d A+ = + . 
Proof. Let 11 11 12 12,A A∈ ∈  , it follows from Lemma 2.2 and 2.4, we have that 

( ) ( )( ) ( )11 12 11 12 11 12
10 2 2 ,
2

d Q A A Q Q A A Q Qd A A Q = ⋅ + ⋅ + ⋅ + ⋅ = + 
 

 that is, ( )11 12 11 12 .d A A+ ∈ +   

For any 12 12 ,X ∈  it follows from Lemma 2.5 (1), we have  
( ) ( ) ( )11 12 11 12 11 12 .d A X d A X A d X= +                            (2) 

On the other hand, 

( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
( ) ( )

11 12 11 12 12 12 11 12

11 12 12 11 12 12 11 12 12

12 11 12 12 11 12 12 11 12

11 12 12 11 12

1 2 2
2

1 2 2 2
2

2 2 2

.

d A X d P A A X X A A P

d P A A X Pd A A X A A d X

d X A A P X d A A P X A A d P

d A A X A d X

 = ⋅ + ⋅ + ⋅ + ⋅ 
 

= + + + + +

+ + + + + + 
= + +

 

This and Equation (2) imply that ( ) ( )11 12 11 12 0.d A A d A X+ − =    Since P Q  is a faithful left P P -mo-  
dule; hence 

( ) ( )11 12 11 0.P d A A d A P+ − =    

Similarly, let 12 12A ∈ , for any 22 22 ,X ∈  then 

( ) ( ) ( )12 22 12 22 12 22 .d A X d A X A d X= +  

On the other hand, 

( ) ( ) ( )( )

( ) ( )

12 22 11 12 22 22 11 12

11 12 22 12 22

1 2 2
2

.

d A X d P A A X X A A P

d A A X A d X

 = ⋅ + ⋅ + ⋅ + ⋅ 
 

= + +
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Therefore, we get ( ) ( )11 12 12 22 0,d A A d A X+ − =    that is  

( ) ( ) ( ) ( )11 12 12 11 12 12 0.P d A A d A Q Q d A A d A Q+ − + + − =        So 

( ) ( ) ( ) ( )11 12 12 11 12 120 and 0.P d A A d A Q Q d A A d A Q+ − = + − =        Therefor combining Lemma 2.3, we have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

11 12 11 12 11 12 11 12

11 12 11 12 11 12 11 12 0.

d A A d A d A P d A A d A d A P

P d A A d A d A Q Q d A A d A d A Q

+ − − = + − −  
+ + − − + + − − =      

 that is, 

( ) ( ) ( )11 12 11 12d A A d A d A+ = + . 
Similarly, (2) is true for all 12 12 22 22andA A∈ ∈  . 
Lemma 2.7. ( ) ( ) ( ) ( )11 12 22 11 12 22 .d A A A d A d A d A+ + = + +  
Proof. For any 11 11 12 12 22 22, ,A A A∈ ∈ ∈   , 

( ) ( ) ( )( ) ( )11 11 12 22 11 12 22 11 12 22
1 .
2

d A d P A A A P P A A A P Pd A A A P = + + + + + = + + 
 

  

( ) ( ) ( )( ) ( )12 11 12 22 11 12 22 11 12 22
1 2 2 .
2

d A d P A A A Q Q A A A P Pd A A A Q = + + + + + = + + 
 

  

( ) ( ) ( )( ) ( )22 11 12 22 11 12 22 11 12 22
1 .
2

d A d Q A A A Q Q A A A Q Qd A A A Q = + + + + + = + + 
 

 

Thus, 

( ) ( ) ( )
( )

( ) ( ) ( )

11 12 22 11 12 22 11 12 22

11 12 22

11 12 22

)

.

d A A A Pd A A A P Pd A A A Q

Qd A A A Q

d A d A d A

+ + = + + + + +

+ + +

= + +

 

Lemma 2.8. For any 12 12 12, ,A B ∈  we have ( ) ( ) ( )12 12 12 12 .d A B d A d B+ = +  
Proof. For any 12 12 12, ,A B ∈  from Lemma 2.3 and 2.6, we have  

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
( )( ) ( ) ( )
( ) ( ) ( ) ( )

12 12 12 12 12 12

12 12 12 12

12 12 12 12

12 12 12 12

1 2 2
2

.

d A B d P P A Q B Q B P A P

Pd P A Q B P P A d Q B

d Q B P A P Q B d P A P

Pd A Q Pd B d A d B

 + = ⋅ + ⋅ + + + ⋅ + ⋅ 
 

= + + + + +

+ + + + + +

= + = +

 

Lemma 2.9. d  is additive on 11  and 22  respectively. 
Proof. For any 11 11 11, ,A B ∈  by Lemma 2.5 (1), we have 

( )( ) ( ) ( ) ( )11 11 12 11 11 12 11 11 12 .d A B B d A B B A B d B+ = + + +                    (3) 

on the other hand, from Lemma 2.5 (1) and 2.8, we get that 

( )( ) ( ) ( ) ( ) ( ) ( )11 11 12 11 12 11 12 11 12 11 12 11 12 11 12 .d A B B d A B B B d A B A d B d B B B d B+ = + = + + +  

This and Equation (3) imply that 

( ) ( ) ( )( )11 11 11 11 12 0.d A B d A d B B+ − − =  

Since P Q  is a faithful left P P -module and ( ) ( ) ( )11 11 11 11 11d A B d A d B+ − − ∈ , we have that  
( ) ( ) ( )11 11 11 11 0,d A B d A d B+ − − =  that is  

( ) ( ) ( )11 11 11 11 .d A B d A d B+ = +  

Similarly, we can also get the additivity of d  on 22.  
Lemma 2.10. d  is additivity. 
Proof. For any , ,A B∈  write 11 12 22 11 12 22, ,A A A A B B B B= + + = + +  where , ,1 2.ij ij ijA B i j∈ ≤ ≤ ≤  

Then Lemma 2.7-2.9 are all used in seeing the equation  
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( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

11 12 22 11 12 22

11 11 12 12 22 22

11 11 12 12 22 22

11 12 22 11 12 22

.

d A B d A A A B B B

d A B d A B d A B

d A d B d A d B d A d B

d A A A d B B B

d A d B

+ = + + + + +

= + + + + +

= + + + + +

= + + + + +

= +

 

Lemma 2.11. ( ) ( ) ( )d AB d A B Ad B= +  for all ,A B∈ . 
Proof. For any , ,A B∈  let 11 12 22 11 12 22, ,A A A A B B B B= + + = + +  where , ,1 2.ij ij ijA B i j∈ ≤ ≤ ≤  Now 

we have that by Lemma 2.5 (1)-(4), Lemma 2.7 and 2.8 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 11 11 12 12 22 22 22

11 11 11 12 12 22 22 22

11 11 11 11 11 12 11 12

12 22 12 22 22 22 22 22 .

d AB d A B A B A B A B

d A B d A B d A B d A B

d A B A d B d A B A d B

d A B A d B d A B A d B

= + + +

= + + +

= + + +

+ + + +

 

On the other hand, it follows from Lemma 2.3, 2.7; we get that  

( ) ( )
( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 22 11 12 22 11 12 22 11 12 22

11 11 11 11 11 12 11 12

12 22 12 22 22 22 22 22 .

d A B Ad B

d A A A B B B A A A d B B B

d A B A d B d A B A d B

d A B A d B d A B A d B

+

= + + + + + + + + +

= + + +

+ + + +

 

It is clear that ( ) ( ) ( )d AB d A B Ad B= +  for all , .A B∈  
Proof of Theorem 2.1. From the above lemmas, we have proved that d  is an additive derivation on  . 

Since ( ) ( ) ( )d A A AT TAδ= − −  for each A∈ , by a simple calculation, we see that δ  is also an additive 
derivation. The proof is completed. 
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