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Abstract 
The essence of money circulation is that money continues to transfer among economic agents 
eternally. Based on this recognition, this paper shows a money circulation equation that calculates 
the quantities of expenditure, revenue, and the end money from the quantity of the beginning 
money. The beginning money consists of the possession at term beginning, production and being 
transferred from the outside of the relevant society. The end money consists of the possession at 
term end, disappearance and transferring to the outside of the relevant society. This equation has 
a unique solution if and only if each part of the relevant society satisfies the space-time openness 
condition. Moreover, if money is transferred time irreversibly, each part of the relevant society 
satisfies the space-time openness condition. Hence, the solvability of the equation is guaranteed 
by time irreversibility. These solvability conditions are similar to those of the economic input- 
output equation, but the details are different. An equation resembling our money circulation equ-
ation was already shown by Mária Augustinovics, a Hungarian economist. This paper examines the 
commonalities and differences between our equation and hers. This paper provides the basis for 
some intended papers by the author. 
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1. Introduction 
Simon Newcomb, who was an American economist in the nineteenth century, said: 

“A piece of money changes hands without end, since every person who receives it expects, unless in excep-
tional cases, to pay it out again to some one else.”1 

 

 

1Newcomb [1] p. 315. 
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As Newcomb said, money received once cannot be transferred again in principle. As a result, money contin-
ues to transfer among economic agents eternally. This is the essence of money circulation. 

In order to express the quantitative structure of money circulation, the above mentioned Newcomb used the 
equation of exchange, which he called the equation of societary circulation.2 However, the relationship between 
the velocity of money, which is the key concept of this equation, and the situations of each agent is not clear. In 
other words, the velocity of money is an enigma. To formalize a money circulation equation which remedies this 
defect is a purpose of this paper. 

Although describing optimal decision making for an economic agent is a mainstream in contemporary eco-
nomics, this paper does not adopt such a method. This paper describes only a realized situation of money circu-
lation. This paper aims to construct a kinematics of money. 

Then, we will start the description of a monetary economy. 
We decide that a target group for description is called the relevant society. The element of the relevant society 

is called an economic agent.3 There are various kinds of agents, such as an individual, a family, a corporation, 
the government, and so on. However, in this paper, we do not consider the differences in such kinds of agents. 
We treat them merely as agents in the group. We assume that there are n agents in the relevant society, and de-
note the relevant society by { }1,2, ,N n= 

. 
Moreover, we decide that a target term for description is called the relevant term. We assume that the relevant 

term is finite. This assumption is rewritten so that the relevant term always has a beginning and an end. This as-
sumption does not threaten the validity of the description of an economic society because most scientists say 
even the life of the earth is limited. 

The sphere that satisfies both the relevant society and the relevant term is called the relevant space-time. 
There are various kinds of money transfer, including purchase of commodity, payment of wage, finance rela-

tion, donation, and so on. However, in this paper, we do not consider such differences. We treat them as merely 
transfers in the group. 

Moreover, there are various kinds of money such as the dollar, pound, euro, yen, and so on. However, in this 
paper, we assume that money in the relevant space-time is of only one kind.4 

We define expenditure as transferring money to the relevant space-time, and revenue as money being trans-
ferred from the relevant space-time. There is a possibility that a transfer of money occurs between the relevant 
society and the outside of there, but transferring money to the outside is not called expenditure and money being 
transferred from the outside is not called revenue in this paper. 

Let Xi be the expenditure quantity of Agent i, Yj be the revenue quantity of Agent j, and Zij be the separate 
transfer quantity from Agent i to Agent j. By the definition of expenditure and revenue which is mentioned 
above, the following relations are satisfied. 

1 2 fori i in iZ Z Z X i N+ + + = ∀ ∈                             (1) 

1 2 forj j nj jZ Z Z Y j N+ + + = ∀ ∈                             (2) 

The relationships between expenditures, revenues and separate transfers can be summarized as in the follow-
ing table. 
 

 Agent 1 Revenue Agent 2 Revenue … Agent n Revenue Sum 
Agent 1 Expenditure Z11 Z12 … Z1n X1 
Agent 2 Expenditure Z21 Z22 … Z2n X2 

… … … … … … 
Agent n Expenditure Zn1 Zn2 … Znn Xn 

Sum Y1 Y2 … Yn  

 

 

2Cf. Newcomb [1] pp. 320-328. Although Irving Fisher regarded Newcomb as a pioneer of an algebraic statement of the equation of ex-
change (Cf. Fisher [2] p. 25), it was known from the olden days. As far as the author knows, the first writer who grasped the concept of the 
velocity of money was William Petty, who was a British economist in the seventeenth century (Cf. Deane [3] p. 67, Roncaglia [4] p. 390). 
Moreover, according to Reghinos Theocharis, the first writer who used an algebraic statement of the equation of exchange was Claus 
Kröncke, who was a German economist in the early nineteenth century. Joseph Lang in Germany and Samuel Turner in Britain also seem to 
have used the equation of exchange before Newcomb (Cf. Theocharis [5] pp. 102-110, pp. 120-121, Humphrey [6] pp. 14-16). 
3It is permitted that one element is either one agent or one group of agents, but we call it merely an agent. 
4We regard measures with the same quantitative units as an equivalent condition for moneys being the same kind. 
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We call this the transfer table. From this table, we obtain 

1 2 1 2n nY Y Y X X X+ + + = + + +                              (3) 

That is, the sum of revenues and the sum of expenditures in the relevant space-time are equal. We call this 
proposition the law of transfer equality. This law reflects the fact that revenue and expenditure are the same ent-
ity from different viewpoints. That is, the revenue of somebody is the expenditure of somebody, and the expend-
iture of somebody is the revenue of somebody. 

Quantitatively, separate transfer is expressed as a positive quantity when it is transferred, and expressed as 
zero when it is not transferred. Negative transfer does not have an economic meaning. Considering this with 
Equations (1) and (2), we see that 

0, 0, 0 for ,i j ijX Y Z i j N≥ ≥ ≥ ∀ ∈                            (4) 

always holds. 
However, we suppose that expenditure in the relevant space-time is positive. The reason for this supposition 

is to avoid complications of the following description. If we take a measurable length as the relevant term, most 
agents must expend a little money. Hence, this is a reasonable supposition in practice. Using symbols, the sup-
position is denoted as 

0 foriX i N> ∀ ∈                                    (5) 

Then, we consider the sources of money possession in the relevant space-time. Revenue is one source, but the 
possession at term beginning, production and being transferred from the outside of the relevant society are other 
sources. We decide that the sources excluding revenue are collectively called the beginning money. 

On the other hand, we consider the results of money possession in the relevant space-time. Expenditure is one 
result, but the possession at term end, disappearance and transferring to the outside of the relevant society are 
other results. We decide that the results excluding expenditure are collectively called the end money. 

Let Ψk be the quantity of the beginning money of Agent k, and Ωk be the quantity of the end money of Agent k. 
Quantitatively, the existence of money is expressed as a positive, and the absence of money expressed as zero. 
Negative existence does not have an economic meaning.5 Thus, 

0, 0 fork k k NΨ ≥ Ω ≥ ∀ ∈                               (6) 

always holds. 
Then, we define the disposal as a process from the source to the result. 
If we trace the source of money expended in the relevant space-time, it is only either received as revenue or 

included in the beginning money. We call this the disposal comprehensibility principle. 
We define a disposal from revenue to expenditure as a circular disposal. We denote the circular disposal 

quantity of Agent k as ρk. Moreover, let αk be the quantity of money disposed from the beginning money to ex-
penditure. Quantitatively, the disposal comprehensibility principle means 

fork k kX k Nρ α≤ + ∀ ∈  

Furthermore, money which is once received as revenue from someone is neither received from anyone else 
nor included in the beginning money. That is, the sources of money possession do not duplicate. We call this the 
disposal exclusivity principle. Quantitatively, the disposal exclusivity principle means 

fork k kX k Nρ α≥ + ∀ ∈  

Considering both the disposal comprehensibility principle and the disposal exclusivity principle, 
fork k kX k Nρ α= + ∀ ∈  

is satisfied. 
If we trace the source of the end money, it is only either received as revenue or included in the beginning 

money. Let βk be the quantity of money disposed from revenue to the end money, and γk be the quantity of 

 

 

5Some economists treat debt as a negative existence of money. However, debt is only a psychological fact which is a promise to pay it back 
in the future. It is not a fact which is based on an objective entity of money. Whether an agent has some debt or not does not directly have an 
effect to the existence of money. Hence, there is not a negative existence of money. Financial relations are treated as a kind of transfer. If a 
loan is executed in the relevant space-time, the expenditure of the creditor and the revenue of the debtor are recorded. If a return is executed 
in the relevant space-time, the expenditure of the debtor and the revenue of the creditor are recorded. 
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money disposed from the beginning money to the end money. As in the case of expenditure, considering both 
the disposal comprehensibility and exclusivity principle, 

fork k k k Nβ γΩ = + ∀ ∈  

is satisfied. 
On the other hand, if we trace the result of the beginning money, it is only either expended or included in the 

end money. αk refers to the quantity of money disposed from the beginning money to expenditure, and γk refers 
to the quantity of money disposed from the beginning money to the end money. Therefore, considering both the 
disposal comprehensibility and exclusivity principle, 

fork k k k Nα γΨ = + ∀ ∈  

is satisfied. 
If we trace the result of money received as revenue in the relevant space-time, it is only either expended or in-

cluded in the end money. ρk refers to the quantity of money disposed from revenue to expenditure, and βk refers 
to the quantity of money disposed from revenue to the end money. Therefore, considering both the disposal 
comprehensibility and exclusivity principle, 

fork k kY k Nρ β= + ∀ ∈  

is satisfied. 
We decide that ρk, αk, βk and γk are collectively called the disposal quantities. Based on their economic mean-

ings, 
0, 0, 0, 0 fork k k k k Nρ α β γ≥ ≥ ≥ ≥ ∀ ∈                       (7) 

is always satisfied. 
The relationships between the disposal quantities and others are summarized in the following table. 

 
 Result 

Expenditure End Money Sum 
Source  

Beginning Money αk γk Ψk 

Revenue ρk βk Yk 

Sum Xk Ωk  

 
We call this the disposal table of Agent k. Based on this table, it is obvious that 

fork k k kX Y k N+Ω = Ψ + ∀ ∈                              (8) 

is satisfied. That is, the gross quantity of sources of Agent k and the gross quantity of results of Agent k are 
equal. We call this proposition the law of gross disposal of Agent k. 

If we sum Equation (8) for the whole society, 

k k k kk N k N k N k NY X
∈ ∈ ∈ ∈
Ψ + = + Ω∑ ∑ ∑ ∑  

is derived. Since k kk N k NY X
∈ ∈

=∑ ∑  holds due to the law of transfer equality (Equation (3)), 

1 2 1 2n nΨ +Ψ + +Ψ = Ω +Ω + +Ω                          (9) 

is derived. That is, the sum of the beginning money and that of the end money are equal. We call this proposi-
tion the law of money conservation. The sum of the beginning money and that of the end money both seem to 
denote the abundance of money in the relevant space-time. Accordingly, the law of money conservation reflects 
the fact that transfer does not change the abundance of money in the whole society. 

Moreover, let F be a subset of N excluding the empty set, and G be the complement of F if F is a proper sub-
set. Adding up the law of gross disposal of all agents who belong to F and considering Equations (1) and (2), 

, , , ,k ik ik kj kj kk F i G k F i F k F k F j F k F j G k FZ Z Z Z
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
Ψ + + = + + Ω∑ ∑ ∑ ∑ ∑ ∑  

is derived. Since , iki F k F Z
∈ ∈∑  and , kjk F j F Z

∈ ∈∑  have the same contents, they are naturally equal. If we sub- 
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tract , ,ik kji F k F k F j FZ Z
∈ ∈ ∈ ∈

=∑ ∑  from both sides of the preceding equation, 

, , fork ik kj kk F i G k F k F j G k FZ Z F N
∈ ∈ ∈ ∈ ∈ ∈
Ψ + = + Ω ∀ ⊆∑ ∑ ∑ ∑                   (10) 

is derived. This proposition means that the sum of money which enters from the outside of F is equal to that of 
money which exits to the outside of F. We call this the law of openness equality of Set F. 

The law of money conservation (Equation (9)) is nothing but the law of openness equality of Set N. 

2. Formalization of the Money Circulation Equation 
Thinking normally, any money expended, received as revenue and included in the end money seems to come 
from the beginning money, which consists of the possession at term beginning, production and transferred from 
the outside. If we convert this qualitative recognition into a quantitative one, we should be able to calculate the 
quantity of expenditure, revenue and the end money from the quantity of the beginning money. We will look for 
such a method. 

First, we confirm that the gross quantity of results of Agent k satisfies 

0 fork kX k N+Ω > ∀ ∈                                    (11) 

by Equations (5) and (6). Based on this, the expenditure rate of Agent k is defined as 

( ) fork k k kX X k Nθ = +Ω ∀ ∈                               (12) 

In short, the expenditure rate refers to the percentage of expenditure in the gross quantity of results. 
By Equations (5), (6) and (11), the expenditure rate is limited to 

0 1 fork k Nθ< ≤ ∀ ∈                                     (13) 

Considering Equations (2), (8) and (12), we can derive 

( )1 2 fork k k k k nkX Z Z Z k Nθ= Ψ + + + + ∀ ∈                      (14) 

Next, based on Xi > 0 (Equation (5)), the expenditure distribution rate from Agent i to Agent j is defined as 

for ,ik ik iZ X i k Nµ = ∀ ∈                                (15) 

In short, the expenditure distribution rate refers to a percentage of the separate transfer in expenditure. 
By Equations (1), (4) and (5), the range of the expenditure distribution rate is limited to 

0 1 for ,ik i k Nµ≤ ≤ ∀ ∈                                  (16) 

Moreover, considering Equations (1) and (15), we can see that 

1 2 1 fori i in i Nµ µ µ+ + + = ∀ ∈                           (17) 

Considering Equations (14) and (15), we can derive 

( )1 fork kk k k hk h k kh kX X k Nθ µ θ µ θ
≠

− − = Ψ ∀ ∈∑  

We collect this formula from k = 1 to n and regard them as a system of simultaneous equations in 
1 2, , , nX X X . It is the money circulation equation. 
Let E be a unit matrix, and x be a column vector with the ith element equal to Xi, and ψ be a column vector 

with the hth element equal to Ψh, and Θ be a diagonal square matrix with the hth diagonal element equal to θh, 
and μ be a square matrix with the (i, j)th element equal to μji. Then, the money circulation equation can be de-
noted as 

( )E xµ ψ−Θ = Θ  

Moreover, let pih be the (i, h)th element of the inverse of E − Θμ. The unique solution of the money circula-
tion equation can be expressed as 

i ih h hh NX p for i Nθ
∈

= Ψ ∀ ∈∑                            (18) 
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pih can be calculated from the expenditure rate and the distribution rate of all agents. Therefore, if the money 
circulation equation has a unique solution, each expenditure quantity can be calculated from the expenditure rate, 
the distribution rate and the beginning money. 

Note that, Θμ is a non-negative matrix because θiμji ≥ 0 from Equations (13) and (16). Hence, E µ−Θ  is a 
Z-matrix, which is defined as a square matrix in which the non-diagonal elements are all non-positive. Moreover, 
we can obtain 0ψΘ ≥  from Equations (6) and (13). Considering this with Equation (5), we find that 
( )E xµ−Θ  ≥ 0 where 0x∃ >  is satisfied. If this type of matrix is non-singular, pih, which is an element of the 
inverse of E − Θμ, has the following peculiarities.6 

pih is non-negative generally. Considering this with Equation (13), an increase of the beginning money does 
not decrease expenditure unless it causes the variation of the expenditure rate or the distribution rate. 

In particular, pii is 1 or more. Considering this with Equation (13), if one unit of the beginning money of a 
certain agent increases, their own expenditure increases equal to the expenditure rate or more unless it causes a 
variation of the expenditure rate or the distribution rate. 

Now, using Equations (15) and (18), 

( ) for ,ij ij ih h hh NZ p i j Nµ θ
∈

= Ψ ∀ ∈∑                         (19) 

is derived. Each separate transfer quantity can be also calculated from the expenditure rate, the distribution rate 
and the beginning money. 

Moreover, due to Equations (2) and (19), 

( ) forj ij ih h hi N h NY p j Nµ θ
∈ ∈

= Ψ ∀ ∈∑ ∑                       (20) 

is derived. Each revenue quantity can also be calculated from the expenditure rate, the distribution rate and the 
beginning money. 

Furthermore, because of Equations (8), (18) and (20), 

( ) fork k ik ih h h kh h hi N h N h Np p k Nµ θ θ
∈ ∈ ∈

Ω = Ψ + Ψ − Ψ ∀ ∈∑ ∑ ∑  

is derived. Each end money quantity can also be calculated from the expenditure rate, the distribution rate and 
the beginning money. 

Thus, if the money circulation equation has a unique solution, we can calculate all of the quantities of expend-
iture, separate transfer, revenue and the end money from the quantity of the beginning money with the help of 
the expenditure rate and the expenditure distribution rate. 

3. Solvability Condition of the Money Circulation Equation 
If the money circulation equation has a unique solution, the amount of money which is expended, received as 
revenue, and included in the end money can be calculated. However, if it does not have a unique solution, we 
cannot execute such calculations naturally. The effectiveness of the money circulation equation depends on the 
solvability of the equation. Hence, we will look for a solvability condition for it. 

As we confirmed in the preceding section, the money circulation equation is denoted as ( )E xµ ψ−Θ = Θ . 
This set of simultaneous equations has a unique solution if and only if E − Θμ is non-singular. 

We also confirmed in the preceding section that E − Θμ is a Z-matrix which satisfies ( ) 0E xµ−Θ ≥  where 
0x∃ > . There exists the following necessary and sufficient condition for non-singularity of E − Θμ. 

Let F be a subset of the relevant society N which is not empty and G be the complement of F if F is a proper 
subset. The condition is k F∃ ∈  such that θkΨk > 0 or i G∃ ∈ , k F∃ ∈  such that −θkμik < 0 for F N∀ ⊆ .7 
Considering Equations (5), (13) and (15), a solvability condition can be rewritten as follows. 

Theorem 3.1. Let F be a subset of the relevant society N which is not empty and G be the complement of F if 
F is a proper subset of N. The money circulation equation has a unique solution if and only if ∃k ∈ F such that 
Ψk > 0 or i G∃ ∈ , k F∃ ∈  such that Zik > 0 for F N∀ ⊆ .8 

Moreover, there exists another solvability condition. In order to show it, we prove the following theorem. 

 

 

6Cf. Theorems 1.4 and 3.6 in Miura [7]. E − Θμ is an NPZ-matrix called in Miura [7]. 
7Cf. Theorem 3.12 in Miura [7]. The prototype of this condition was first shown in Beauwens [8] and Neumann [9]. 
8In the case F = N, this condition is merely ∃k∈F such that Ψk > 0. 
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Theorem 3.2. k F∃ ∈  such that Ψk > 0 or i G∃ ∈ , k F∃ ∈  such that Zik > 0 for F N∀ ⊆  is equivalent 
to k F∃ ∈  such that Ωk > 0 or k F∃ ∈ , j G∃ ∈  such that Zkj > 0 for F N∀ ⊆ . 

Proof. Considering Ψk ≥ 0 (Equation (6)) and Zik ≥ 0 (Equation (4)), k F∃ ∈  such that Ψk > 0 or i G∃ ∈ ,  
k F∃ ∈  such that Zik > 0 if and only if , 0k ikk F i G k F Z

∈ ∈ ∈
Ψ + >∑ ∑ . By the law of openness equality of Set F 

(Equation (10)), this is equivalent to , 0kj kk F j G k FZ
∈ ∈ ∈

+ Ω >∑ ∑ . Considering Ωk ≥ 0 (Equation (6)) and Zkj ≥ 0  

(Equation (4)), this is equivalent to k F∃ ∈  such that Ωk > 0 or k F∃ ∈ , j G∃ ∈  such that Zkj > 0. [Q. E. D.] 
From Theorems 3.1 and 3.2, the following solvability condition of the money circulation equation is derived. 
Theorem 3.3. Let F be a subset of the relevant society N which is not empty and G be the complement of F if 

F is a proper subset of N. The money circulation equation has a unique solution if and only if k F∃ ∈  such that 
Ωk > 0 or k F∃ ∈ , j G∃ ∈  such that Zkj > 0 for F N∀ ⊆ .9 

We will interpret two solvability conditions shown in Theorems 3.1 and 3.3. 
“ k F∃ ∈  such that Ψk > 0” expresses the fact that money enters a part of the relevant society from the outside 

of the relevant space-time. Moreover, “ i G∃ ∈ , k F∃ ∈  such that Zik > 0” expresses the fact that money enters 
there from the space-time which is the outside of the part but the inside of the relevant space-time. Thus, the 
solvability condition in Theorem 3.1 refers to the fact that money in each part of the relevant society enters from 
its spatio-temporal outside. 

On the other hand, “ k F∃ ∈  such that Ωk > 0” expresses the fact that money exits a part of the relevant so-
ciety to the outside of the relevant space-time. Moreover, “ k F∃ ∈ , j G∃ ∈  such that Zkj > 0” expresses the 
fact that money exits there to the space-time which is the outside of the part but the inside of the relevant 
space-time. Thus, a solvability condition in Theorem 3.3 refers to the fact that money in each part of the relevant 
society exits to its spatio-temporal outside. 

Both conditions express the fact that each part of the relevant society is open to its outside. The former ex-
presses the openness for the source direction and the latter for the result direction. Accordingly, Theorems 3.1 
and 3.3 insist that the money circulation equation has a unique solution if and only if each part of the relevant 
society is open to its outside. We call these conditions the space-time openness conditions of the money circula-
tion structure. These conditions seem to be relevant to the bounded confidence condition in the literature of so-
cial opinion evolution.10 

Then, is the openness condition always true? Directly, it is not self-evident. However, the space-time open-
ness is always true under an ordinary premise about time. In order to clarify this, we will examine the temporal 
structure of a monetary economy. 

We divide the relevant term into several subterms. Dividing it into t subterms, we denote the relevant term by 
{ }1,2, ,T t= 

. However, we set the index of subterms such that a smaller index corresponds to an earlier sub-
term and a larger index corresponds to a later subterm. 

Let Xi(u) be the expenditure quantity of Agent i in Subterm u, and Yj(u) be the revenue quantity of Agent j in 
Subterm u, and Zij(u) be the separate transfer quantity from Agent i to Agent j in Subterm u. 

The next relations exist between the whole quantities in the relevant term and separate quantities in each sub-
term. 

( ) ( ) ( )1 2 fori i i i tX X X X i N= + + + ∀ ∈  

( ) ( ) ( )1 2 forj j j j tY Y Y Y j N= + + + ∀ ∈  

( ) ( ) ( )1 2 for ,ij ij ij ij tZ Z Z Z i j N= + + + ∀ ∈  

Expenditure in Subterm u is defined as transferring money within Subterm u. Moreover, revenue in Subterm u 
is defined as money being transferred into Subterm u. Therefore, the next relations are satisfied in Subterm u. 

( ) ( ) ( ) ( )1 2 for ,i u i u in u i uZ Z Z X i N u T+ + + = ∀ ∈ ∀ ∈  

( ) ( ) ( ) ( )1 2 for ,j u j u nj u j uZ Z Z Y j N u T+ + + = ∀ ∈ ∀ ∈  

The transfer table in Subterm u is as follows. 

 

 

9In the case F = N, this condition is merely ∃k∈F such that Ωk > 0. 
10The recent works of this topic are Varshney [10], Shang [11], Shang [12]. 
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 Agent 1 Revenue Agent 2 Revenue … Agent n Revenue Sum 

Agent 1 Expenditure Z11(u) Z12(u) … Z1n(u) X1(u) 

Agent 2 Expenditure Z21(u) Z22(u) … Z2n(u) X2(u) 

… … … … … … 

Agent n Expenditure Zn1(u) Zn2(u) … Znn(u) Xn(u) 

Sum Y1(u) Y2(u) … Yn(u)  

 
From this transfer table, we obtain 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 foru u n u u u n uY Y Y X X X u T+ + + = + + + ∀ ∈               (21) 

That is, the sum of revenues and the sum of expenditures in each subterm are equal. Although we have al-
ready obtained the law of transfer equality in the relevant term (Equation (3)), the same law is also satisfied in 
each subterm. 

Further, as per Equation (4), each expenditure, revenue and separate transfer in each subterm is non-negative 
by their economic meaning. 

( ) ( ) ( )0, 0, 0 for , ,i u j u ij uX Y Z i j N u T≥ ≥ ≥ ∀ ∈ ∀ ∈                      (22) 

Then, let ρk(pq) be the circular disposal quantity which Agent k disposed from revenue in Subterm p to expend-
iture in Subterm q. Let αk(q) be the disposal quantity which Agent k disposed from the beginning money to ex-
penditure in Subterm q. Let βk(p) be the quantity which Agent k disposed from revenue in Subterm p to the end 
money. 

As per Equation (7), they are all non-negative. 

( ) ( ) ( )0, 0, 0 for , ,k pq k q k p k N p q Tρ α β≥ ≥ ≥ ∀ ∈ ∀ ∈                     (23) 

The disposal table of Agent k considering term division is as follows. 
 

 Result Subterm 1 
Expenditure 

Subterm 2 
Expenditure … Subterm t 

Expenditure End Money Sum 
Source  

Beginning Money αk(1) αk(2) … αk(t) γk Ψk 

Subterm 1 Revenue ρk(11) ρk(12) … ρk(1t) βk(1) Yk(1) 

Subterm 2 Revenue ρk(21) ρk(22) … ρk(2t) βk(2) Yk(2) 

… … … … … … … 

Subterm t Revenue ρk(t1) ρk(t2) … ρk(tt) βk(t) Yk(t) 

Sum Xk(1) Xk(2) … Xk(t) Ωk  

 
Note that, based on our common sense about time, beings in the future cannot travel into the past. Moreover, 

it is usually thought that the same being cannot exist in different places at exactly the same time. Considering 
these, beings can move only from the past to the future. 

If we apply a similar principle to money transfer, money cannot be disposed from a future revenue to a past 
expenditure. Moreover, money received at a certain time cannot be expended at exactly the same time. In other 
words, money can be disposed from revenue of the past to expenditure of the future. We call this the disposal 
irreversibility principle. 

We now think about the relationship between the disposal irreversibility principle and circular disposal quan-
tities. Based on the disposal irreversibility principle, circular quantities from the future to the past are naturally 
zeroes. Then, we think about the sign of simultaneous circular quantities. Based on Equation (23), it is always 
non-negative. However, we cannot judge whether it is positive or zero generally. For example, if subterms are 
divided monthly, revenue in a certain month may be or may not be expended in the same month. If they are di-
vided weekly or daily, a similar situation occurs. 

However, the revenue time and the expenditure time of one disposal are not exactly the same time by the dis-
posal irreversibility principle. Hence, we can divide the relevant term between both times. Then, they belong to 
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different subterms. If the number of disposals in the relevant space-time is finite m,11 each revenue time and ex-
penditure time of all disposals belong to different subterms by at most a finite m times division. If we define a 
subterm whose simultaneous circular quantities are zeroes for any agent as a basic-term, this fact means that the 
relevant term can always be divided into finite basic-terms. 

These conclusions are summarized as follows. 
Theorem 3.4. Under the premise of the disposal irreversibility principle, ρk(pq) = 0 holds for k N∀ ∈ , 
p q∀ > . Furthermore, the relevant term can always be divided into a finite number of basic-terms where a ba-

sic-term refers to a Subterm u such that ρk(uu) = 0 for k N∀ ∈ . 
Based on Theorem 3.4, we can prove that the space-time openness condition is guaranteed by the disposal ir-

reversibility principle. 
Theorem 3.5. Under the premise of the disposal irreversibility principle, k F∃ ∈  such that Ψk > 0 or 

i G∃ ∈ , k F∃ ∈  such that Zik > 0 for F N∀ ⊆ . 
Proof. It is enough to prove k F∃ ∈  such that Ψk > 0 if Zij = 0 for i G∀ ∈ , j F∀ ∈ . Based on Theorem 3.4, 

we divide the relevant term into finite basic-terms. Due to Equation (5), all agents expend in some basic-terms. 
Let Agent k F∈  be the agent who expends first in F. Let Subterm u be a basic-term when Agent k expends 
first.12 

First, we will prove the case u is not the first or the last basic-term. 
Let Subterm− be the set of basic-terms which are before Subterm u, and Subterm+ be the set of basic-terms 

which are after Subterm u. In this case, the disposal table of Agent k is as follows. 
 

 Result Subterm− 
Expenditure 

Subterm u 
Expenditure 

Subterm+ 
Expenditure 

End 
Money Sum 

Source  

Beginning Money αk(−) αk(u) αk(+) γk Ψk 

Subterm− Revenue ρk(−−) ρk(−u) ρk(−+) βk(−) Yk(−) 

Subterm u Revenue ρk(u−) ρk(uu) ρk(u+) βk(u) Yk(u) 

Subterm+ Revenue ρk(+−) ρk(+u) ρk(++) βk(+) Yk(+) 

Sum Xk(−) Xk(u) Xk(+) Ωk  

 
By Theorem 3.4, ρk(u−) = 0, ρk(+−) = 0 and ρk(+u) = 0 are satisfied. Moreover, ρk(uu) = 0 is also satisfied because 

Subterm u is a basic-term, and Xk(u) > 0 because u is defined as the first basic-term whose expenditure of k is 
positive. We put these facts in the disposal table. 
 

 Result Subterm− 
Expenditure 

Subterm u 
Expenditure 

Subterm+ 
Expenditure 

End 
Money Sum 

Source  

Beginning Money αk(−) αk(u) αk(+) γk Ψk 

Subterm− Revenue ρk(−−) ρk(−u) ρk(−+) βk(−) Yk(−) 

Subterm u Revenue 0 0 ρk(u+) βk(u) Yk(u) 

Subterm+ Revenue 0 0 ρk(++) βk(+) Yk(+) 

Sum Xk(−) + Xk(+) Ωk  

 
Next, we will prove Yk(−) = 0 by dividing it into two cases. 
1) The case F = N. 
Subterm u is the first basic-term whose expenditure in F = N is positive and Subterm− is before u. Thus,  

∀Xi(−) = 0. Hence, ( ) 0jj N Y −∈
=∑  from the law of transfer equality (Equation (21)). Considering Equation (22),  

∀Yj(−) = 0 is derived. Therefore, Yk(−) = 0. 
2) The case F N . 
We write the transfer table of Subterm− divided into F and G. 

 

 

11Since the finiteness of the relevant term is assumed, the number of disposals which can be justified empirically is only a finite number. 
12As the relevant term can be divided into finite basic-terms, the existence of the first basic-term is always guaranteed. 



S. Miura 
 

 
196 

 Set F Revenue Set G Revenue Sum 

Set F Expenditure ( ), iji F j F
Z −∈ ∈∑  ( ), iji F j G

Z −∈ ∈∑  
( )ii F

X −∈∑  

Set G Expenditure ( ), iji G j F
Z −∈ ∈∑  ( ), iji G j G

Z −∈ ∈∑  
( )ii G

X −∈∑  

Sum ( )jj F
Y −∈∑  ( )jj G

Y −∈∑   

 
Subterm u is the first basic-term whose expenditure in F is positive and Subterm− is before u. Hence,  

( ) 0ii F X −∈
=∑ . Moreover, ( ), 0iji G j F Z −∈ ∈

=∑  from the premise Zij = 0 for i G∀ ∈ , j F∀ ∈ . We put these facts  

in the preceding transfer table. 
 

 Set F Revenue Set G Revenue Sum 

Set F Expenditure ( ), iji F j F
Z −∈ ∈∑  ( ), iji F j G

Z −∈ ∈∑  0 

Set G Expenditure 0 ( ), iji G j G
Z −∈ ∈∑  

( )ii G
X −∈∑  

Sum ( )jj F
Y −∈∑  ( )jj G

Y −∈∑   

 
Here, we focus on the row of Set F. Since all separate transfers are non-negative (Equation (22)), the elements 

of this row are all zeroes. We put these facts in the preceding transfer table. 
 

 Set F Revenue Set G Revenue Sum 

Set F Expenditure 0 0 0 

Set G Expenditure 0 ( ), iji G j G
Z −∈ ∈∑  

( )ii G
X −∈∑  

Sum ( )jj F
Y −∈∑  ( )jj G

Y −∈∑   

 
Next, we focus on the column of Set F. We can see that ( ) 0jj FY −∈

=∑ . As k belongs to F, Yk(−) = 0 is derived. 

Now, we have confirmed that Yk(−) = 0 is satisfied generally. We add this fact to the preceding disposal table 
of k to obtain the following. 
 

 Result Subterm− 
Expenditure 

Subterm u 
Expenditure 

Subterm+ 
Expenditure 

End 
Money Sum 

Source  

Beginning Money αk(−) αk(u) αk(+) γk Ψk 

Subterm− Revenue ρk(−−) ρk(−u) ρk(−+) βk(−) 0 

Subterm u Revenue 0 0 ρk(u+) βk(u) Yk(u) 

Subterm+ Revenue 0 0 ρk(++) βk(+) Yk(+) 

Sum Xk(−) + Xk(+) Ωk  

 
Now, we focus on the row of Subterm−. Since all disposal quantities are non-negative by Equation (23), all 

elements of this row are zeroes. We add these facts to the preceding disposal table and obtain the following. 
 

 Result Subterm− 
Expenditure 

Subterm u 
Expenditure 

Subterm+ 
Expenditure 

End 
Money Sum 

Source  

Beginning Money αk(−) αk(u) αk(+) γk Ψk 

Subterm− Revenue 0 0 0 0 0 

Subterm u Revenue 0 0 ρk(u+) βk(u) Yk(u) 

Subterm+ Revenue 0 0 ρk(++) βk(+) Yk(+) 

Sum Xk(−) + Xk(+) Ωk  
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Next, we focus on the column of Subterm u. We can see that αk(u) > 0. We add this fact to the preceding dis-
posal table and obtain the following. 
 

 Result Subterm− 
Expenditure 

Subterm u 
Expenditure 

Subterm+ 
Expenditure 

End 
Money Sum 

Source  

Beginning Money αk(−) + αk(+) γk Ψk 

Subterm− Revenue 0 0 0 0 0 

Subterm u Revenue 0 0 ρk(u+) βk(u) Yk(u) 

Subterm+ Revenue 0 0 ρk(++) βk(+) Yk(+) 

Sum Xk(−) + Xk(+) Ωk  

 
Then, we focus on the row of the beginning money. As all disposal quantities are non-negative, we obtain Ψk > 0. 

The proof in the case u is not the first or the last basic-term is complete. 
In the case u is the first basic-term; you should assume the row and column of Subterm– do not exist. In the 

case u is the last basic-term; you should assume the row and column of Subterm+ do not exist. Then, imitating 
the previous proof, you can easily prove Ψk > 0. [Q. E. D.] 

From Theorems 3.1 and 3.5, we obtain the following theorem about the solvability of the money circulation 
equation. 

Theorem 3.6. Under the premise of the disposal irreversibility principle, the money circulation equation has a 
unique solution. 

If you compare this paper with Miura [13], you will notice that the proof for the solvability of the money cir-
culation equation is similar to that of the economic input-output equation. However, the details are different. 

First, each equation is formalized as the positions of the sources and the results are opposite. Thus, both 
proofs that the disposal irreversibility principle causes the space-time openness are also opposite each other. 

Second, each economic structure which is the background of each equation has a different peculiarity about 
the relationship between separate quantities and the gross quantity. We can add up only regarding the result in 
the input-output structure, but we can add up regarding both the source and the result in the money circulation 
structure. Therefore, by the disposal irreversibility principle, the former structure is open only to the result, 
whereas the latter structure is open to both the source and the result. 

However, both equations surely have same peculiarities that a time irreversible disposal guarantees their sol-
vability. Both solvability conditions teach us the importance of considering time irreversibility when we think 
about economic circulations. 

4. Comparison with Augustinovics’ Money Circulation Equation 
In fact, the equation which resembles the money circulation equation in this paper was already shown by Mária 
Augustinovics, who is a Hungarian economist. Her work may be affected by the economic input-output theory 
invented by Wassily Leontief.13 

When she disclosed this equation, Hungary was still under a planned economy, and the central bank of Hun-
gary had a monopolistic control of credit and money circulation. Under such a situation, while working at Hun-
garian Planning Office, she showed her money circulation equation in order to support an economic planning.14 

This paper will introduce it. However, we use different expressions from her in part. 
We decide that the relevant society consists of n civilian agents who possess money. We denote the relevant 

society by { }1,2, ,N n=  . The receipt of each agent consists of real receipts from civilian agents and credits 
from the central bank. 

Let bx be the gross receipt of Agent x, and qyx be the separate transfer through civilian trading from Agent y to 
Agent x, and hx be the credit of Agent x supplied from the bank. The following relation is satisfied between them. 

1 2 forx x x nx xb q q q h x N= + + + + ∀ ∈                              (24) 

 

 

13In the paper that she clarified her money circulation equation, there exists a description regarding the input-output theory (Cf. Augustinov-
ics [14] p. 45). Leontief seems to have known her equation because the paper which he wrote with András Brody refers to Augustinovics [14  
(Cf. Leontief & Brody [15] p. 225). 
14Augustinovics [14] pp. 44-45. 
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Here, we define kyx as 

for ,yx yx yk q b x y N= ∀ ∈                                   (25) 

Considering Equations (24) and (25), we can derive 

( )1 forxx x yx y xy xk b k b h x N
≠

− − = ∀ ∈∑  

We collect this formula from x = 1 to n and regard them as a system of simultaneous equations in 1 2, , , nb b b . 
It is Augustinovics’ money circulation equation. 

Let E be a unit matrix, and b be the column vector with the yth element equal to by, and h be a column vector 
with the xth element equal to hx, and K be a square matrix with the (x, y)th element equal to kyx. Then, Augusti-
novics’ money circulation equation can be denoted as (E − K)b = h. 

Moreover, let ryx be the (y, x)th element of the inverse of E − K. The solution of Augustinovics’ equation can  
be denoted as y yx xx Nb r h

∈
= ∑  for y N∀ ∈ . Further, considering Equation (25), we can derive  

( )yz yz yx xx Nq k r h
∈

= ∑  for ,y z N∀ ∈ . Since ryx can be calculated from kij of all civilian agents, the gross receipt  

of each agent and each separate transfer can be calculated from hi and kij of all agents. 
Many readers may feel that Augustinovics’ equation resembles our money circulation equation. However, 

they do not share every point. We will examine the commonalities and differences between the two equations. 
What does each concept of Augustinovics’ equation correspond to in our equation? 
As we confirmed before, hi expresses the credit supplied from the bank. If most money consists of credit, it 

can be interpreted that hi corresponds to the beginning money (Ψi) in our equation. 
If we interpret our transfer as restricted to the civilian trading, qij corresponds to the separate transfer (Zij) in  

our equation. Thus, ijj N q
∈∑  corresponds to expenditure (Xi) and iji N q

∈∑  corresponds to revenue (Yj). There-  

fore, bi corresponds to the gross source (Ψi + Yi). 
The two equations are common at the point to be calculated from the beginning money, but they differ at the 

point that Augustinovics’ equation calculates the gross source where our equation calculates expenditure. 
Then, what does kij, which is the (j, i)th coefficient of Augustinovics’ equation, correspond to? Based on Equ-

ation (25), it corresponds to ( )ij i iZ YΨ +  directly. By the law of gross disposal (Equation (8)), it can be re-
written to ( )ij i iZ X +Ω . Further, we can transform it as follows. 

( ) ( ){ }( )ij ij i i i i i ij i i ijk Z X X X Z X θ µ= +Ω = +Ω =                     (26) 

That is, kij corresponds to the product of the expenditure rate and the expenditure distribution rate. In other 
words, it is the separate expenditure rate. On the other hand, the (j, i)th coefficient of our equation is θjμij. Both 
coefficients are common at the point of the product of the expenditure rate and the distribution rate. However, 
their subscripts of the expenditure rate are different. It is appropriate that the coefficient of Augustinovics’ equa-
tion is called a separate expenditure rate, but it is not appropriate that the coefficient of our equation is called 
like that. 

The latter can be transformed to 

( ){ }( ) ( ){ }( )j ij j j j ij i ij j j j iX X Z X Z X X Xθ µ = +Ω = +Ω  

( )ij j jZ X +Ω  should not be called the separate expenditure rate because Zij is not a part of Xj but of Xi. 
Since Xj + Ωj = Ψj + Yj holds by the law of gross disposal (Equation (8)), ( )ij j jZ X +Ω  is equal to  

( )ij j jZ YΨ + . As Zij is a part of Yj, ( ) ( )ij j j ij j jZ X Z Y+Ω = Ψ +  should be called the separate revenue rate. 
In addition, Xj/Xi is included in the above expression. Like this, the coefficient of our equation is different from 
that of Augustinovics’ equation. 

Eventually, Augustinovics’ equation is a method which calculates the gross source from the beginning money 
and the separate expenditure rate, whereas our equation calculates expenditure from the beginning money, the 
expenditure rate and the expenditure distribution rate. 

The two equations are not the same exactly, but they are certainly similar. Therefore, Augustinovics is quali-
fied to be called a pioneer of our monetary theory. 
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5. Concluding Comments 
Although Augustinovics’ money circulation equation resembles our money circulation equation, we have given 
new and distinct findings about the solvability of the equation. 

It is certain that descriptions about the solvability exist in Augustinovics’ paper. She said: 
“If the j-th holder of money raises one unit of credit from the bank and spends it according to his own struc-

ture of outlays, the money thus created flows from him to the other money-holders… For the others, receipts are 
generated and they, too, spend them according to their own structure of outlays. The money, therefore, will be 
diffused again… In this manner receipts are again generated for the most varied holders of money and they 
again spend them… The result of this endless chain is, however, finite as in each of the ‘steps’ some money will 
leave the circulation… Thus, in each of the steps, somewhat less money will circulate than in the preceding 
one… The sum of the series of steps tends to… a certain upper limit. It is just this upper limit that is contained 
in matrix R.”15 

This description evokes the space-time openness condition, which is a solvability condition of our money 
circulation equation. Though she did not clearly show a mathematical background of her description, it appears 
to be based on a convergence condition of an infinite series. As mentioned in the preceding section, Augusti-
novics’ equation is denoted ( )E K b h− = . The inverse of E − K exists if and only if an infinite series  

2E K K+ + +  is convergent, and ( ) 1 2E K E K K−− = + + + .16 However, since the author thinks that the 
infinite series expression is economically worthless,17 his opinion is that using the infinite series for the solvabil-
ity of the money circulation equation is unfavorable from this perspective. 

In connection with the solvability, Augustinovics also said: 
“The elements of K and the sum of the columns are usually smaller than unity.”18 
It appears she intended to describe that all column sums of K are less than unity. This is certainly a sufficient 

condition for the solvability of Augustinovics’ money circulation equation. Based on our interpretation of her 
equation, we explain this fact. 

kij = θiμij holds by Equation (26). Therefore, K is a non-negative matrix due to Equations (13) and (16). Fur-
ther, we can derive 

1 forij i ijj N j Nk i Nθ µ
∈ ∈

= ≤ ∀ ∈∑ ∑                                (27) 

from Equations (13) and (17). Since kij = θiμij is the (j, i)th element of K, Equation (27) means that all column 
sums of K are equal to or less than unity. 

Then, if the condition that all column sums of K are less than unity is satisfied, E − K is non-singular as 
shown by Hermann Minkowski more than one hundred years ago.19 This consequent means that Augustinovics’ 
equation has a unique solution. 

However, the condition is not necessary for the solvability of her equation. The necessary and sufficient con-
dition is that at least one column sum less than unity exists in any principal submatrix of K,20 but Augustinovics 
did not show it. 

On the other hand, this paper has shown a necessary and sufficient condition for the solvability of the money 
circulation equation. This is a novel contribution of this paper. 

Moreover, Augustinovics did not discuss the relationship between the solvability and time irreversibility. 
If we denote a subset of N as F, the necessary and sufficient solvability condition of Augustinovics’ equation 

can be expressed as i F∃ ∈  such that 1ij i ijj F j Fk θ µ
∈ ∈

= <∑ ∑  for F N∀ ⊆ . This condition is equivalent to  

i F∃ ∈  such that θi < 1 or 1ijj Fµ∈
<∑  for F N∀ ⊆ . If we denote the complement of F as G, the latter is 

equivalent to i F∃ ∈  such that 0ijj Gµ∈
>∑  because of Equation (17). Hence, i F∃ ∈  such that Ωi > 0 or  

i F∃ ∈ , j G∃ ∈  such that Zij > 0 for F N∀ ⊆  is derived as a necessary and sufficient solvability condition. 
That is, the space-time openness of all parts is also the solvability condition of her equation. Then, we can see 

 

 

15Augustinovics [14] p. 50. In the paper, the matrix R refers to the inverse of E − K (Cf. Augustinovics [14] p.49). 
16Cf. Nikaido [16] pp. 96-97, Berman & Plemmons [17] p. 133, Varga [18] pp. 88-89. 
17Cf. Miura [13] p. 148. 
18Augustinovics [14] p. 49. 
19Cf. Berman & Plemmons [17] p. 161, Plemmons [19] p. 176. 
20Cf. Theorem 2.17 in Miura [7]. The prototype of this condition was first shown in Beauwens [8]. 
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that this condition is satisfied due to the disposal irreversibility principle by Theorems 3.2 and 3.5. That is, the 
solvability of her equation is guaranteed by time irreversibility. 

This proof requires the recognition of the necessary and sufficient solvability condition. Since Augustinovics 
did not recognize the condition, it is reasonable that she could not show the proof. 

On the other hand, this paper has proved that time irreversibility guarantees the solvability of the money cir-
culation equation. By this proof, the money circulation equation has obtained a firm objective basis. This is also 
a novel contribution of this paper. 

The proof, however, is similar to that of the solvability of the economic input-output equation which the au-
thor has stated in the preceding paper. Therefore, some may feel that this paper has not shown any exciting nov-
el findings or inspiring ideas. 

Nevertheless, the author thinks that this paper is highly significant because it provides the basis for some in-
tended papers which the author will write in the near future. If you read them, you will notice the significance of 
this paper. 
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