
Advances in Linear Algebra & Matrix Theory, 2014, 4, 156-171
Published Online September 2014 in SciRes. http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2014.43014

How to cite this paper: Benhamadou, M. (2014) On the FOM Algorithm for the Resolution of the Linear Systems Ax = b.
Advances in Linear Algebra & Matrix Theory, 4, 156-171. http://dx.doi.org/10.4236/alamt.2014.43014

On the FOM Algorithm for the Resolution of
the Linear Systems Ax = b
Mongi Benhamadou
Department of Mathematics, Faculty of Sciences of Sfax, Sfax, Tunisia
Email: mongi.benhamadou@fss.rnu.tn

Received 18 July 2014; revised 18 August 2014; accepted 17 September 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we propose another version of the full orthogonalization method (FOM) for the res-
olution of linear system Ax b= , based on an extended definition of Sturm sequence in the calcu-
lation of the determinant of an upper hessenberg matrix in o(n2). We will also give a new version
of Givens method based on using a tensor product and matrix addition. This version can be used in
parallel calculation.

Keywords
FOM, Krylov Subspace, Hessenberg Matrix, Sturm Sequence, Givens Method

1. Introduction
The resolution of linear systems =Ax b is in the heart of numerous scientific applications: discretization of
partiel differentiel equations, image processing, the linearization of nonlinear problems in a sequence of linear
problems [1] [2] [3] etc. There are many kinds of methods that resolve linear systems. Some are direct, others
are iterative. Generally, direct methods [4]-[6], such as Gauss, Cholesky, QR, are efficient and proved solvers of
small size systems. But for problems of big size, these methods require quite prohibitive memory space and
therefore become numerically expensive. More and more, they are replaced by iterative methods. Most iterative
methods [2] [6] [7] treat linear systems through vector-matrix products with an appropriate data structure
permitting the exploitation of sparsity of the matrix A by storing only nonzero elements which are indi-
spensable for the calculation of these products, which reduces both the memory size and the processing time.
We distinguish two kinds of iterative methods for the resolution of linear systems:
• The asymptotic methods [6]-[8] are older and simpler to implement. Among the most known ones, we

mention Jacobi’s, Gauss-Seidel’s and the relaxation methods. Generally, these methods remain less reliable than
the direct methods, and more or less efficient with some specific problems. Currently, these methods are no

http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2014.43014
http://dx.doi.org/10.4236/alamt.2014.43014
http://www.scirp.org/
mailto:mongi.benhamadou@fss.rnu.tn
http://creativecommons.org/licenses/by/4.0/

M. Benhamadou

157

longer used as linear solvers but remain interesting as preconditioners for other iterative methods. The increase
of the size of the systems to be solved leads to the projection methods.
• Krylov methods: They are being used for some time and proved to be very efficient [2]. Their analysis is

more complicated than that of the asymptotic methods. They are based on a technique of projection on a Krylov
subspace, having the form: () ()1

0 0 0 0, , , , m
mK A r span r Ar A r−=  ; ()()0,mdim K A r m= , spanned by the succe-

ssive powers of A applied to the risudual vector 0 0r b Ax= − , where 0x is a vector of n , these Krylov’s
subspaces constitute an increasing sequence of subspaces, one being included in the other and permitting the
construction of a sequence of vectors converging towards the solution. The convergence of these methods is
theorically assured for m n= maximum. The Krylov methods resolve linear systems having nonsymmetric
matrices. The most used Krylov methods based on Arnoldi algorithm are: the full orthogonalization method
(FOM) and its varieties: the method of minimal residue (or shortly GMRES), Lanczos method, and that of
conjugate gradient for symmetric and symmetric positive definite matrices. These projection methods are more
generalisable, more powerful and currently the most used.

In the first section, we will review the orthogonal projection methods on Krylov’s subspaces, focusing on the
FOM method for the resolution of linear systems.

In the second section, we will extend the definition of Sturm sequence, which will serve for the calculation of
the determinant of upper hessenberg matrices.

In the third section, we will give a new variety of Givens method [4] for the resolution of linear systems
having an upper hessenberg matrix.

Finally, in the fourth section, we report the results of some numerical tests.
In what follows, we consider a real regular square matrix A , a vector nb∈ and the correspondent linear

system:
Ax b= (1)

If 0x is a starting approximation of solution (1), then the residual vector associated to 0x is 0 0r b Ax= − .
We call Krylov space of order m , noted mk , the vectorial space spanned by 0r and its ()1m − iterated by
A :

() ()1
0 0 0 0, , , , .m

mK A r vect r Ar A r−=  (2)

1.1. The Projection Method
In this part, we will review generallities over iterative methods of projection for the resolution of linear systems
(1), by using projections in particular subspaces, namely Krylov’s spaces [1] [2].

Most actual iterative techniques used in solving large linear systems use in one way or another a projection
procedure. The main idea of projection techniques consist in extracting an approximate solution to system (1) of
a subspace of n . It leads to a small linear system. This is a basic projection step. If we take ()0,mK A r of m
dimension (the subspace searched for), then, generally, m constraints must be imposed in order to be able to
extract such an approximation. One usual way of describing these constraints is to impose to the residual vectors
r b Ax= − to be orthogonal to the linearly independent m vectors, this will define another subspace noted

mL with dimension m , which we call “constraints space”. We are then seeking an approximate solution mx
to problem (1) by imposing that m mx K∈ and that the new residual vector m mr b Ax= − must be orthogonal to

mL . If, in addition, we want to use the starting approximation 0x , then the approximate solution mx must be
searched for in the affine space 0 mx K+ , then the solution of (1) will be characterized as follows:

0

0

: data
find such that :

.
m m

m m

x
x x K

r L


 ∈ +
 ⊥

 (3)

As such, the definition of the projection method is based on two conditions:
• The first fixes the “place” where we should look for the solution at the thk iteration: usually, this place is

an affine subvariety of n . According to Krylov’s methods, this affine subvariety is ()0 0,kx K A r+ , which
gives us the following “space condition”:

()0 0,k kx x K A r∈ + (4)

M. Benhamadou

158

• The second condition must fix the kx that is appropriate to that space (4). We hope that kx minimizes
the vector error k ke x x= − , or the residual vector k kr b Ax= − or one or those two vectors be orthogonal to a
space kL of dimension k . This condition is called “Petrov-Galerkin condition”, and is expressed as follows:

()0, .k kr K A r⊥ (5)

As for the projection method, we will study in the next part, Arnoldi’s method for the resolution of linear
systems. Let’s start now by recalling Arnoldi’s algorithm.

1.2. Arnoldi’s Algorithm
Arnoldi’s Algorithm is an iterative process consisting in calculating, simultaneously, an orthonormal basis mV
of mK , and an upper hessenberg matrix mH . The matrix mH is a representation of A with respect to this
basis.

In practice, constructing Krylov’s spaces leads to determining basis. The natural basis { }1
0 0 0, , , kr Ar A r−



can never be used, due to its numerical degeneration, and the Krylov’s matrices become increasingly ill-condi-
tioned [2]. To avoid this numerical degeneration of the natural basis of Krylov’s space, the solution consists in
putting in place an orthonormalization process. Arnoldi’s basis is then constructed by applying the modified
Gram-Schmidt orthonormalization method to vectors obtained by successive products matrix vector for
euclidien inner product. The Arnoldi’s algorithm takes the following form:

()

{ }

()

0 0 0 1

90
1 1 1

0 2

1

1, 2

1,

data : , , ,
, = , 1.0, 1

compute : , 10 , .

while

compute :
for 1 to

compute : ,
compute :

end
compute :

if 0, goto : "

n n n m
m

n
jp j

jp j

j

ij i

Arn ij i

j j

j j

n A m n V
x r b Ax h j

r
v V v

r

h

w Av
i j

h w v
A w w h v

i
h w

h

ε

ε

× ×

−

+

+

∈ ≤ ∈
∈ − = =

• = = =

≥

• =
=

• =
• = −

• =
=

 

{ }1 1 1 1
1,

end while"

compute : , : , , .

1
end while

/ / output : , matrices : , .

j j j
j j

m m

wv V v v
h

j j

m j V H

+ + +
+





















 • = =



= +



=



If we assign ijh as coefficient of orthogonalization of jAv with respect to iv , 1, 2, , 1i j= + and 1,j jh +

as norm of vector w obtained by orthogonalization of vector jAv with respect to vectors iv , then, the
formula of Arnoldi’s basis construction can be written:

1

1

j

j ij i
i

Av h v
+

=

= ∑ (6)

Let mV be the matrix having n rows and m columns, in which the m columns are the first vectors of
the Arnoldi’s basis. The orthonormality of vectors, in terms of matrices can be written:

t
m m mV V I= (7)

Likewise, Equation (6), which defines Arnoldi’s vectors, can be translated matricially by:

M. Benhamadou

159

1 1,m m m mAV V H+ += (8)

where the matrix 1,m mH + is a matrix having 1m + rows and m columns where ijh coefficients are the
coefficients of orthonormalization of the Equation (6): where 0ijh ≠ for 1i j< + , and the other coefficients
being zero.

11 12 1

21 22 2

32

1,

1

1

0
.

0 0
0 0

m

m

m m

mm mm

m m

h h h
h h h

h
H

h h
h

+

−

+

 
 
 
 
 

=  
 
 
 
 
 

  

  

 

    

    

 

  

 (9)

The main diagonal block of 1,m mH + is a square matrix of dimension m , noted mH , which, according the
Equations (7) and (8), verifies:

11 12 1

21 22 2

32

1

0
.

0 0

m

m

t
m m m

mm mm

h h h
h h h

h
H V AV

h h−

 
 
 
 

= =  
 
 
  
 

  

  

 

    

    

 

 (10)

Such a matrix is called “upper hessenberg”: , 0 1i jh i j= ∀ > + .
Equation (10) shows that mH is the matrix of the projection in Krylov’s space mK of the linear map

associated to the matrix A, in the basis { }1 2, , ,m mV v v v=  of Arnoldi’s vectors. This can be summed up as
follows:

Proposition 1:
In Arnoldi’s algorithm ()ArnA , we have at the step k the following relations:

()
1, 1

1 1,

kt
k k k k k k k

k k k k
t

k k k

AV V H h v e
AV V H
V AV H

+ +

+ +

 = +


=
 =

 (11)

where ()k
ke is the vector of the canonical basis of k

Proof: [2].

1.3. Arnoldi’s Method for Linear Systems (FOM)
In this paragraph, we will remind the important results needed for the resolution of linear systems (1).

For that, we will begin by applying the Arnoldi’s algorithm ()ArnA to the matrix A , this allows us to obtain

at each step k , a matricial pair ()1,,k k kV H + where kV is an orthonormal basis of Krylov’s space 1kK + , and

1,k kH + is specific an upper hessenberg matrix given by (9).
The full orthogonalization method (FOM) is variant of problem (3), verifying the space condition (4) and

“Petrov-Galerkin condition” (5) by taking ()0,m m mL K K A r= = . This method is defined by:

0

0

data :
1, ,

find such that :

n

k k

k k

x
k m n

x x K
r K

 ∈

∀ = ≤


∈ +
 ⊥





 (12)

M. Benhamadou

160

Production of the Solution
We are seeking the solution mx verifying the space condition (4) and “Petrov-Galerkin condition” (5).

(4) 0 0m m m mx x K x x V y⇔ ∈ + ⇔ = + with my∈ .
So, the residual vector m mr b Ax= − is written:

0 ,m mr r AV y= − (13)
and “Petrov-Galerkin condition” becomes:
(5) m mr K⇔ ⊥ 0t

m mV r⇔ = , with (13)

()0 0t
m mV r AV y⇔ − = but then t

m m mV AV H=

()1 1
t

m mV v H yβ⇔ = . This is equivalent to:

()
1 1 .m

mH y eβ= (14)
So, (14) implies ()1

1 1
m

my H eβ −= , and the solution mx can be written:
()1

0 1 1
m

m m mx x V H eβ −= + (15)

and the problem becomes:

() ()
0

1 1

0

Given :

Seek verifying 14 : .
Compute the solution .

n

mm
m

m m

x

y H y e
x x V y

β

 ∈
• ∈ =
• = +



A method based on this approach is called a full orthogonalization method (FOM). It is given by Y. Saad in
1981.

This is the corresponding algorithm using the Arnoldi’s process ()ArnA .

()

{ }

()

0 0 0 1

90
1 1 1

0 2

1

1, 2

1,

data : , , ,
, = , 1.0, 1

compute : , 10 , .

while

compute :
for 1 to

compute : ,
compute :

: end
compute :

if 0, "Luc

n n n m
m

n
jp j

jp j

j

ij i

ij i

fom

j j

j j

n A m n V
x r b Ax h j

r
v V v

r

h

w Av
i j

h w v
w w h v

A i
h w

h

ε

ε

× ×

−

+

+

∈ ≤ ∈
∈ − = =

• = = =

≥

• =
=

• =
• = −

• =
=

 



{ }1 1 1 1
1,

1 1,

1 1

0

ky breakdown" then ; goto

compute : , : , , .

, 1
end while

/ / output : , matrices : ,
: compute :
compute : .

j j j
j j

jp j j j

m m

m

m m

m j
wv V v v

h

h h j j

m j V H
H y e
x x V y

β

+ + +
+

+



















 = 

 • = =

 = = +


 =

 =

 = +



The algorithm ()fomA depends on parameter m , which is the dimension of the Krylov’s subspace. In
practice, it is desirable to select m in a dynamic way. This is possible if the norm of the residue mr of the

M. Benhamadou

161

solution mx is calculated with a numerically low cost. (without having to compute mx itself). Then the
algorithm can be stopped at the appropriate step using this information. The following result gives an answer in
this direction.

Proposition 2:
The residue vector mr of the approximate solution mx calculated by the algorithm ()fomA is such that:

()
1, 1,mt

m m m m m mr b Ax h e yv+ += − = −

and so,
()

1,2
.mt

m m m mb Ax h e y+− = (16)

Proof: [2].
At this stage, the interesting feature is the possibility to compute the norm of residue without producing the

solution.
According to this proposition, at the step k , the residual norm

2kr is then given directly by the absolute
value of the last component ky of the vector ky∈ . This provides the stopping test and

allows to calculate kx only when the stopping criterion used for the solution is satisfied. This is the main
idea of this article. It consists in calculating locally, at each iteration k , uniquely the last component ky of the
vector ky∈ : solution of the system (14) ()

1 1
k

kH y eβ= . The classical formulae of Cramer’s rule directly

gives the component ky in the form of a determinant quotient:
()
()

k
k

k

det D
y

det H
= , the computation of determi-

nants ()kdet D is given by the following result:
Proposition 3:
Let k k

kH ×∈ be an invertible upper hessenberg matrix and ()
1 1

k keβ ∈ , the second member of the linear

system (14) ()
1 1

k
kH y eβ= . Then we have:

()
()
()

1,1 1, 1 1

2,1 2,2

3,2

1, 1

, 1

0

0
.

k

k k

k k k
k

k k

h h
h h

h
h
h det D

y
det H det H

β−

− −

−= =

 



  

 

 (17)

with:

() () 1
1 , 1

2
1 .

k
k

k i i
i

det D hβ+
−

=

= − ∏ (18)

() ()1 1, 2.k k k kdet D h det D k+ += − ∀ ≥ (19)

What we need now, is to calculate ()kdet H ; kH being an upper hessenberg matrix.

2. Sturm Sequence for the Upper Hessenberg Matrices (U.H)
In this paragraph, we extend the definition of Sturm sequence to the hessenberg matrices, and then we give an
algorithm computing their determinants. Let’s start by reminding the following principal result:

Proposition 4:
Let n nH ×∈ be an (U.H) matrix and let ()kH Iλ− be the thk principal submatrix of ()H Iλ− , i.e.,

()

1,1 1,2 1,

2,1 2,2

3,2

1,

, 1 ,

0=

0 0

k

k kk

k k

k k k k

h h h
h h

hH I H I
h

h h

λ
λ

λ λ

λ
−

−

− 
 − 
 − = −
 
 
 − 

 



 

   



M. Benhamadou

162

and let ()kP λ be the charcteristic polynomial of kH , then: the polynomial ()kP λ , 0, ,k n=  are given
by to the following recurrent formula :

()
()

() ()() () () ()

0

1 1,1
1

, , 1 1 , 1
1 1

1

1
kk k i

k i k j j i k k k
i j i

P
P h

P h h P h P

λ
λ λ

λ λ λ λ
−

−
− − −

= = +


 = = −

 = − + −


∑ ∏

 (20)

Proof: by recurrence.
Definition 1:
The sequence (){ } 0

n
k k

P λ
=

 defined by (20) is called Sturm sequence of the upper hessenberg matrix.
Remark 1:

We note that, for the programming, we can win
()()1 2

2
n n− −

 memory words if we use a storage numbering

function [8] for upper hessenberg matrices by storing nonzero elements uniquely.

2.1. Computing the Determinant of the Hessenberg Matrix nH
For calculating the determinant of an upper hessenberg matrix, Proposition (2) gives us a simple method in
()2o n . This can be summed by the following result:
Corollary 1:
Let (),

n n
i jH h ×= ∈ be an invertible (U.H) matrix. If we set ()detk kHδ = , then we have:

()()

0

1 11

1
1 1 , , 1

2 2

1

1 2, , .
kk

k kk k k k k j j
j k

h

h h h k n

δ
δ

δ δ δ+
− + − − −

= = + −


 = =

 = + − ∀ =


∑ ∏

 






 (21)

()detn Hδ = . In the Formula (21), we calculate the products , 1
2

k

j j
j k

h −
= + −
∏



, without repeting multiplications.

So, we obtain a very interesting algorithm ()detA computing ()detn nHδ = as follows:

()

()

{ }

{ }

1

0 1 1,1

det
1,

,

1

Data : , U.H ,
1.0,

for 1 to 1 do :
begin

, 1.0, 1
for 1 step 1, 0 do :

begin
:

,
end

end
/ / Output : () =

n n n
n

kk k

i i

i k i

k

n n

n H
h

k n

S h codiag sg
i k

A
codiag codiag h
P h codiag
S S sg P sg sg

i
S

k
det H

δ
δ δ

δ

δ

δ

δ

× +

+

+

 ∈ ∈


= =
 = −

= ∗ = = −
= − −


= ∗

= ∗ ∗
= + ∗ = −

=

 




















The number of operations necessary in calculating nδ is:

M. Benhamadou

163

• additions: () ()
2

1
1

2
n
k

n n
k

=

−
− =∑

• multiplications:
()

1

5 1
5

2
n
k

n n
k

=

+
=∑ .

The total number of operations required is 23n . This is more convenient when n is big.
We will adopt the algorithm ()detA in the full orthogonalization method (FOM). Having at each step k ,

()1 1,,k k kV H+ + , we calculate by the Formulaes (18) and (19):
()
()

det
det

k
k

k

D
y

H
= . This gives us the stopping test and

allows to calculate kx only when the stopping criterion used for the solution is satisffied, namely:

1,2k k k kr h y ε+= ∗ <

where ε , being the required precision. The FOM algorithm ()FomA takes the following form:

()

()
{ }

{ }

8

1 1
0

0 0 0

0
1 0 0 0 02

1

0 0

0 00 0

Data : , , , 10 for example
, , , 1,1 :

Initialization : = , = 1.0,

compute : , , .

/ /calculate the column of the matrix
compute : , , .
compute :

:

n n

n n m m n m

Fom

n A m n
x H V sg sign

r b Ax
r

r v V v

h H
w Av h w v

A

ε
δ

δ

β
β

× −

+ + × ×

∈ ≤ =
∈ ∈ ∈ ∈ ∈ −

−

= = =

= =

[] []

()

00 0

1,0 1,02

1 0 1 0 1
1,0

1 0,0 1 0,02

2

compute : if 0,"Luckybreakdown",goto

compute : , , ,

1; , 1 , ;
while
/ /calculate the colomn of the matrix
compute :
for 0 to
compute : ,

k

k

k k

k

ik

w w h v
h w h

wv H h V v v
h

k h detDkm r h
r

h H
w Av

i k
h w v

δ β
ε

= −
= = 

= = =

= = = =

>

=
=

=

[]
[]

()

1, 1,2

1 0 1
1

01,

,

compute :
end
compute : , if 0,"Luckybreakdown", goto

, ,
compute : = ,

, ,
/ /compute det

; 1.0; 1;
for 1 to 0 step 1

i

ik i

k k k k

k k
k

k kk k

k

k k k

w w h v
i

h w h
V v vwv
H h hh

H
detHk h codiag sg

i k
codiag codiag h

δ

+ +

+ +
+

+

= −

= = 
 =
 =

= ∗ = = −
= − −
= ∗





{ }
()

1,

1 , 1

1,2

1 1

;
;

; ;
end

; 1 ;
; ;

1 , : 1;
end while
Output : , resolve : .

i i

ik i

k k k

k k k k k

m
m

P h codiag
detHk detHk sg P sg sg

i
detHk detDk detDkm h

y detDk detHk r h y
detDkm detDk k k

m k H y e

δ

δ

β

+

+ −

+






























= ∗ ∗
= + ∗ = −

= = − ∗
= = ∗

= = +

 = =




















When the stopping criterion used for the solution is satisffied, we take the value ky for calculating 1,ky −
2 1, ,ky y−  by using the following algorithm:

M. Benhamadou

164

2.2. Algorithm of Resolution of the System: 1 1mH y e= β

()

[] ()
[] ()

()

1

0 1 ,

0 1

0 1 1

1

1
, 1

2;
= , ,
= , ,Data :

, , calculated already
, , = .

compute the system solution :
: 1, ,1, step 1

/ / being , com

m m n m

m m m
m

m
mn n m

Res
m

ij j
j i

i
i i

i
m

n m
V v v M
H h h M
y y
x x b e

Hy b
A i m

h y
y

h
A

y

β

β

−

−

−

=
−

−

≥ ≥ ∈
 ∈
 ∈
 ∈ ∈


∈ ∈ ∈
• =
∀ = − −

= −

∈

∑











 
  


0

pute the solution
compute : ;

n

m

x
x x V y

















 ∈
• = + ∗



The above algorithm ()ResA requires 2nm flops.
Several authors solve the linear system ()

1 1
m

mH y eβ= using Givens method applied to an upper hessenberg
matrix.

3. The Givens Method for (U.H) Matrices
In this section, we give a new variant of the Givens method for the resolution of linear systems with an upper
hessenberg matrices coming from Arnoldi’s algorithm. This method is based on the addition of two matrices and
two tensorial products.

The Givens rotations constitute an important tool to selectively eliminate certain coefficients of a matrix. This
is the case of our upper hessenberg matrix, where we eliminate the codiagonal in order to obtain an upper
triangular matrix.

To justify the next results, we introduce the following notations:
• ()r

ka : the thk row of the matrix ()rA at the step r .

• ()rA : the matrix ()rA with the thr and ()1 thr + row put to zero.
• ka : thk column vector of A .
• t X : the superscript t will denote the matrix or the transposed vector.
• tx y⊗ : tensor product of two vectors ,x y in n

 .
• ij k

g   : thk column vector of the rotation matrix ,i jG in the plan { },i je e .

3.1. Givens Formulation for Upper Hessenberg Matrices
The classical formulation of the Givens method for an upper hessenberg matrix n nH ×∈ is given under the
following form:

()

() ()

() ()

() ()

()

() ()

1

2 1
21

3 2
32

1
1,

1 2
1, 2

1
, 1

k k
k k

n n
n n

n n
n n

H H
H G H
H G H

H G H

H G H
H G H

+
+

− −
− −

−
−

 =


= ×
 = ×


 = ×

 = ×
 = ×





 (22)

with 1,k kG + is of the form:

M. Benhamadou

165

1,

1

1

1

1
1

1

k k
k k

k k

k k

O

c skG k s c

O

+

+
↓ ↓

 
 
 
 →=  + → −
 
 
 
 

 

  

 

     

     

 

  

 

 (23)

with ()1,det 1k kG + = and where kc and ks are calculated at each step k by the following formulas:

() ()() ()()
()

()

()

()

2 2

1, , 1,

,

1,

1,

1,

.

.

.

k k k
k k k k k k

k
k k

k k
k k
k

k k
k k

k k

d h h

h
c

d
h

s
d

+ +

+

+

+


 = +

 =


 =


 (24)

The relations (22) give us an upper triangular matrix, ()nH :
()

, 1 1, 2 3,2 2,1= ,n
n n n nH G G G G H− − −  (25)

and therefore ()1 1 1 1
21 32 1, 2 , 1 .n

n n n nH G G G G H− − − −
− − −= 

As the matrices ijG are orthogonal, we have: t
ij ij dG G I= , from which

()
21 32 1, 2 , 1 .nt t t t

n n n nH G G G G H− − −=  (26)

Theorem 1:
If ,n nH ∈ is an invertible upper hessenberg matrix, then 1 1k n∀ ≤ ≤ −

() () () () () ()1 1
1, 1, 1, 11

.k k k k k k
k k k k k k k kk k

H G H H H g h g h+ +
+ + + ++

   = ⇔ = + ⊗ + ⊗   
 

 (27)

where ()k
kh is the thk row vector of the matrx ()kH and 1,k k k

g +   is the thk column vector of the matrix 1,k kG + .

The Givens algorithm for the triangularisation of the matrix n nH ×∈ (U.H), is simplified to be written in its
new form:

()

()

()

() ()

()

() ()() ()()
()

()

()

1

1,

1,
2 2

1, , 1,

1, , 1,

1, 1,

Data : , augmented U.H matrix of
for 1 to 1 do :

If 0.0 then : continue
calculation of the rotation matrix 23

compute
:

compute ,

:

n n

k
k k

k
k k

k k k
k k k k k k

k k kk k k k k k
k kk

k k k k

Giv

n H b
k n

h
G

d h h
G h h

c s
d d

A

× +

+

+

+ +

+
+

+ +

• ∈
= −

=
•

• = +

• = = ()

() () () ()

{ }

1, 1, 1

1
1, 1, 11

0 0

0 0

compute : ;

0 0

0 0
compute :

k

k k
k k k kk kk k

k k k k
k k k k k kk k

c ck kg gs s

H H g h g h
fin k

+ + +

+
+ + ++









 

 
 
 
    
    
    
    

← ←       • = =   −    
    
    

       
   • = + ⊗ + ⊗    



 

 

 


M. Benhamadou

166

3.1.1. Complexity of the Algorithm ()GivA
To eliminate the (n − 1) elements situated under the diagonal, we need (n − 1) rotations ()

1,
k

k kG + . Each rotation

requires 5 operations and an extraction of a square root () .

For a fixed k
→ Computation of tensor product:
• ()

1,
k

k k kk
g h+  ⊗ 

 : () ()2 2 *n k− +

• ()
1, 11

k
k k kk

g h+ ++
  ⊗ 

 : () ()2 2 *n k− +
→ Computation of matricial addition:
• () ()

1, 1, 11

k k
k k k k k kk k

g h g h+ + ++
   ⊗ + ⊗   

  : () ()2 2n k− + +

and 1, , 1k n∀ = − , we have:

() ()21 1 2
1 1 =0

6 2 5 6 2 d 3
nn n

k k k
n k n k k n

−− −

= =
− + + − +∑ ∑ ∫ 

Conclusion: The complexity of Givens’ algorithm ()GivA for an upper hessenberg matrix requires 23n

flops and () ()1 n − .

In consequense, we find the calculating formula of the determinant of the matrix H given by:
Corollary 2 :
Let H be an (U.H) matrix. By applying classical Givens’ formulation, given by the relation (22) and the

Formula (26), we obtain:

() ()() ()
,

1
det det .

n
n i

i i
i

H H h
=

= =∏ (28)

We can decompose H matrix (U.H) of rank n , into an addition of a triangular matrix and ()1n −
matrices of rang 1 given by:

() () () () ()
1

1
1, 1, 1 11

1
.

n
n k k

k k k k k k k kk k
k

H H g e h g e h
−

+
+ + + ++

=

   = − − ⊗ + − ⊗   ∑   (29)

3.1.2. Numerical Example
Let 4 4H ×∈ be an invertible matrix (U.H), and 4b∈ .

We want to resolve Hx b= .

1 0 1 2 6
1 2 3 0 4

;
0 1 1 0 1
0 0 1 1 1

H b

−   
   − −   = =
   − −
   

−   

We apply the algorithm ()GivA to the augmented matrix 4 5H ×∈ by the second member b .
step k = 1

• Compute the rotation in plane { }2 1,e e : 21

2 2
2 2

2 2
2 2

G

 
 
 =
 
− 
 

Column 1: []21 1

2
2

2
2

g

 
 
 =
 
− 
 

; column 2: []21 2

2
2
2

2

g

 
 
 =
 
 
 

M. Benhamadou

167

()

()

[] [] ()

()

[] [] ()

1 1
1 2

1

1 1
21 21 1 21 21 21 1 2 2

: 1 0 1 2 6 : 1 2 3 0 4

2 2 2 2 2 2 2 2 20 0 0 0 0 0 2 6 2 3 0 4
2 2 2 2 2 2 2 2 20 0 0 0 0

 2 2 2 2 2 2 2 2 20 1 1 0 1 0 2 6 2 3 0 4
2 2 2 2 2 2 2 2 20 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2

0 2 2 2 5 2
0 1 1 0 1
0 0

h h

H

g g h g g h

− − −

  − − −
 
  + +
 − − − − − − − − 

− 

⊗ ⊗

−

− − −=
− −
−

 



 

()2
1 1 1
H

 
 
 
 
 
 
 

step k = 2

• Compute the rotation in plane { }3 2,e e : 32

2 1
3 3
1 2
3 3

G

 
 
 =  −  
 

Column 2: []32 2

2
3
1
3

g

 
 
 =
 −
 
 

; column 3: []32 3

1
3
2
3

g

 
 
 =
 
 
 

()

()

[] [] ()

()

[] [] ()

2
2

2

2
32 32 22 2

2
3

2
32 32 33 3

: 0 2 2 2 5 2
0 0 0 0 0 0

2 2 2 2 2 2
2 2 2 2 100 0 0 0 0 0
3 3 3 3 30 0 0 0 0
1 2 2 2 5 20 0 1 1 1 0
3 3 3 3 3

0 0 0 0 0 0

: 0 1 1 0 1
2 2 2 2 2 2

0 0 0 0 0 0
3 3 2 1101 1 1 10 0 3 3 3 3

3 3 3 3
2 4 20 0 02 2 2 20 0 3 3

3 3 3 3
0 0 0 0 0 0

h

H

g g h

h

g g h

− − −

 −
  − − −
  + 
 

− − − 

⊗

− −
−

− − −
− −

+ =

− −

⊗











()3
0 0 1 1 1

H

 
 
 
 
 
 
 
 
 − 

step k = 3

M. Benhamadou

168

• Compute the rotation in plane { }4 3,e e : 43

0 1
1 0

G  
=  − 

Column 3: []43 3

0
1

g  
=  − 

; column 4: []43 4

0
1

g  
=  
 

()

()

[] [] ()

()

[] [] ()

3
3

3

3
43 43 33 3

3
4

3
43 43 44 4

2 4 2: 0 0 0
3 32 2 2 2 2 2

0 0 0 0 0 03 3 2 110
0 0 0 0 0 03 3 3 3
0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 2 4 21 0 0 0
3 3

2 2 2 2 2 2
: 0 0 1 1 1

3 3 2 1100 0 0 0 0 0
3 3 3 3

0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 1 1

2 4 20 0 00 0 0 0 0 0
3 3

h

H
g g h

h

g g h

 −
 

− − − 
  +
 
 
  − −  −

⊗

 −
− 

− − −

+ =

−
−

−
−

⊗











()4H








 
 
 



we obtain a triangular system () ()4 4H x b= whose solution is x :

() ()4 4

2 2 2 2 2 2
13 3 2 110
23 3 3 3; ;

0 0 1 1 1 3
42 4 20 0 0

3 3

H b x

   −
   

 − − −   
    
    = = =
 −   
    − −     

   
   

and we have () ()()4det det 2H H= = .

4. Numerical Tests
In this section, we present four numerical tests for the resolution of linear systems (1): AX b= for the pro-
posed new version of full orthogonalization method (FOM). These tests are done using a portable DELL
(Latitude D505 intel (R) Pentium (R) M, processor 1.70 GHz, 594 MHz) and a program written in C++ , with
double precision.

Test 1: nA is band (SPD) matrix 2 1D d= + , 3d = , [9] and nX ∈ is the exact solution.

()

5 2 1 1 0 0 16 1
2 6 3 1 1 2 16 2
1 3 6 0 3

, ,1 1 3 16
0 3 1 15 23 2

1 1 3 6 2 13 18 1
0 0 1 1 2 5 9 7

nA b Xn
n n
n n
n n

     
     ×     
     
     

= = =−     
     − −
     

− −     
     −     



 

   

     

   

 



M. Benhamadou

169

From test 1, we deduce the following numerical results in Table 1.
Test 2: nA is a full matrix, X is the exact solution, and 1

nA− is the inverse matrix.

1

1 1 1 0 0
1 1

2 0
2

, , 0
1

1 0 0 1
2 2 1

2 0 0 1

n nA X A
n

n

−

−   
     
     
     = = =
     

−     
     −   



 

   

  

    

  

 





where: 12 1, 3n nA n A−
∞ ∞
= − = which imply: () 6ncond A n∞  .

() ()()2 1 1
2

1, ,

i

i i n i n i
b

i n

 − + + − +
=


∀ = 

 (30)

From test 2, we deduce the following numerical results in Table 2.
Test 3:
In the third test, we focus our attention on the resolution of the partial differential equations with Neuman

condition:
] [] [on 0, 0,

0 on the frontier

u u f
u

γ γ

ν

−∆ + = Ω = ×

 ∂

= Γ∂

 (31)

with:
()

*

0.01: step of discretization at

: num

and at .

1 .
ber of nodes on the axis.

x y

x

h h x y

n x
h nγ

= =

∈

= −









Table 1. Test 1’s numerical results.

n m ε
2kr

100 66 30.910− 30.810−

500 171 30.910− 30.89310−

1000 215 30.910− 30.89410−

1500 247 30.910− 30.8810−

2000 270 30.910− 30.89510−

2500 291 30.910− 30.89610−

3000 309 30.910− 30.89810−

Table 2. Test 2’s numerical results.

n m ε
2kr () 6ncond A n∞ 

100 47 30.910− 30.54310− 600

200 115 30.910− 30.84710− 3000

1000 169 30.910− 30.78810− 6000

1500 211 30.910− 30.78510− 9000

2000 246 30.910− 30.8710− 12,000

2500 278 30.910− 30.8410− 15,000

3000 307 30.910− 30.8310− 18,000

M. Benhamadou

170

If we consider () π 3, cos cosu x y x yπ
γ γ

   
=    

   
 as a solution, we obtain the function:

()
2 2

2

10π π 3π, cos cosf x y x yγ
γ γγ

     +
=      

    
 (32)

as a second member.
After doing a regular maillage and numbering the nodes, the calculation of the stiffness matrix leads to a

(SPD) “well-conditioned” matrix. For the resolution we use the new version of full orthogonalization method
(FOM).

Table 3 contains the numerical results of Test 3:
Test 4: nA is band, (SPD) matrix 2 1D d= + , 2d = , [9].

()
()

5 4 1 0 0
0 1

4 6
2

1 0
0, ,

0 1
1 1

6 4
2 1

0 0 1 4 5

nA b X
n n
n n

− 
    −     
    
   = = = 
     − + −    −     +    − 



   



   



   

   



()()416sin π2 1 1, ,k k n k nλ = + ∀ =  (33)

On the one hand, the numerical results for the matrices nA are considerably polluted with rounding errors
because the matrices nA are very “ill-conditioned” But on the other hand, we are constructing matrices nM
very “well-conditioned” from matrices nA with translations:

n n n dM A Iµ= −

where ()()416sin π2 1n n nµ = + .
From Test 4, we deduce the following numerical results in Table 4.

Table 3. Test 3’s numerical results.

n m ε
2kr

100 25 30.910− 30.52410−

900 75 30.910− 30.48110−

1600 94 30.910− 30.66210−

2500 114 30.910− 30.610−

3600 131 30.910− 30.8510−

Table 4. Test 4’s numerical results.

n m ε
2kr ()2

1

n
ncond A λ

λ
= 2

n

n n d
M

cond A Iµ
 

−  
 


100 10 30.910− 30.8810− 71.777810 ()2 2ncond M 

500 11 30.910− 30.7610− 101.038910 ()2 2ncond M 

1000 12 30.910− 30.2610− 111.649110 ()2 2ncond M 

1500 11 30.910− 30.39110− 118.337710 ()2 2ncond M 

2000 12 30.910− 30.5210− 122.633710 ()2 2ncond M 

2500 12 30.910− 30.6510− 126.666710 ()2 2ncond M 

3000 12 30.910− 30.7810− 131.333310 ()2 2ncond M 

3500 13 30.910− 30.15610− 132.468010 ()2 2ncond M 

M. Benhamadou

171

5. Conclusions
Test 1 and 2 show the results of applying the proposed new version of full orthogonalization method (FOM): the
dimension m of Krylov’s space mK is acceptable compared to n because the matrices nA are moderately
“ill-conditioned”.

For the third test, the stiffness matrix coming from the discretization of the partial differential Equations (31)
leads to a (SPD) well-conditioned matrix. We note that dimension m of Krylov’s space mK is weak com-
pared to n , which can give a positive judgment about the new version of (FOM) method.

In the final test, the constructed matrices nM are very “well-conditioned”, and the dimension m is as
small as required.

Acknowledgements
The author is grateful to the referees for their valuable comments and suggestions which have helped to improve
the presentation of this work.

References
[1] Toumi, A. (2005) Utilisation des filtres de Tchebycheff et construction de préconditionneurs spéciaux pour l’accélération

des methods de Krylov. Thèse No. 2296, de l’Institut National Polytechnique de Toulouse, France.
[2] Saad, Y. (2000) Iterative Methods for Sparse Linear Systems. 2nd Edition, Society for Industrial and Applied Mathe-

matics, Philadelphia.
[3] Benhamadou, M. (2000) Développement d’outils en Programmation Linéaire et Analyse Numérique matricielle. Thèse

No. 1955, de l’Université Paul Sabatier Toulouse 3, Toulouse, France.
[4] Wilkinson, J.H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.
[5] Gastinel, N. (1966) Analyse Numérique Linéaire. Hermann, Paris.
[6] Ciarlet, P.G. (1980) Introduction à l’Analyse Numérique Matricielle et à l’Optimisation. Masson, Paris.
[7] Lascaux, P. and Théodor, R. (1993) Analyse Numérique Matricielle Appliquée à l’Art de l’Ingénieur. Tome 1, Tome 2,

Masson, Paris.
[8] Jennings, A. (1980) Matrix Computation for Engineers and Scientists. John Wiley and Sons, Chichester.
[9] Gregory, R.T. and Karney, D.L. (1969) A Collection of Matrices for Testing Computational Algorithms. Wiley-Inter-

science, John Wiley & Sons, New York, London , Sydney, Toronto.

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	On the FOM Algorithm for the Resolution of the Linear Systems Ax = b
	Abstract
	Keywords
	1. Introduction
	1.1. The Projection Method
	1.2. Arnoldi’s Algorithm
	1.3. Arnoldi’s Method for Linear Systems (FOM)
	Production of the Solution

	2. Sturm Sequence for the Upper Hessenberg Matrices (U.H)
	2.1. Computing the Determinant of the Hessenberg Matrix Hn
	2.2. Algorithm of Resolution of the System:

	3. The Givens Method for (U.H) Matrices
	3.1. Givens Formulation for Upper Hessenberg Matrices
	3.1.1. Complexity of the Algorithm
	3.1.2. Numerical Example

	4. Numerical Tests
	5. Conclusions
	Acknowledgements
	References

