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Abstract 
In this paper, we propose another version of the full orthogonalization method (FOM) for the res-
olution of linear system Ax b= , based on an extended definition of Sturm sequence in the calcu-
lation of the determinant of an upper hessenberg matrix in o(n2). We will also give a new version 
of Givens method based on using a tensor product and matrix addition. This version can be used in 
parallel calculation. 
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1. Introduction 
The resolution of linear systems =Ax b  is in the heart of numerous scientific applications: discretization of 
partiel differentiel equations, image processing, the linearization of nonlinear problems in a sequence of linear 
problems [1] [2] [3] etc. There are many kinds of methods that resolve linear systems. Some are direct, others 
are iterative. Generally, direct methods [4]-[6], such as Gauss, Cholesky, QR, are efficient and proved solvers of 
small size systems. But for problems of big size, these methods require quite prohibitive memory space and 
therefore become numerically expensive. More and more, they are replaced by iterative methods. Most iterative 
methods [2] [6] [7] treat linear systems through vector-matrix products with an appropriate data structure 
permitting the exploitation of sparsity of the matrix A  by storing only nonzero elements which are indi- 
spensable for the calculation of these products, which reduces both the memory size and the processing time. 
We distinguish two kinds of iterative methods for the resolution of linear systems: 
•  The asymptotic methods [6]-[8] are older and simpler to implement. Among the most known ones, we 

mention Jacobi’s, Gauss-Seidel’s and the relaxation methods. Generally, these methods remain less reliable than 
the direct methods, and more or less efficient with some specific problems. Currently, these methods are no 
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longer used as linear solvers but remain interesting as preconditioners for other iterative methods. The increase 
of the size of the systems to be solved leads to the projection methods. 
•  Krylov methods: They are being used for some time and proved to be very efficient [2]. Their analysis is 

more complicated than that of the asymptotic methods. They are based on a technique of projection on a Krylov  
subspace, having the form: ( ) ( )1

0 0 0 0, , , , m
mK A r span r Ar A r−=  ; ( )( )0,mdim K A r m= , spanned by the succe-  

ssive powers of A  applied to the risudual vector 0 0r b Ax= − , where 0x  is a vector of n , these Krylov’s 
subspaces constitute an increasing sequence of subspaces, one being included in the other and permitting the 
construction of a sequence of vectors converging towards the solution. The convergence of these methods is 
theorically assured for m n=  maximum. The Krylov methods resolve linear systems having nonsymmetric 
matrices. The most used Krylov methods based on Arnoldi algorithm are: the full orthogonalization method 
(FOM) and its varieties: the method of minimal residue (or shortly GMRES), Lanczos method, and that of 
conjugate gradient for symmetric and symmetric positive definite matrices. These projection methods are more 
generalisable, more powerful and currently the most used. 

In the first section, we will review the orthogonal projection methods on Krylov’s subspaces, focusing on the 
FOM method for the resolution of linear systems. 

In the second section, we will extend the definition of Sturm sequence, which will serve for the calculation of 
the determinant of upper hessenberg matrices. 

In the third section, we will give a new variety of Givens method [4] for the resolution of linear systems 
having an upper hessenberg matrix. 

Finally, in the fourth section, we report the results of some numerical tests. 
In what follows, we consider a real regular square matrix A , a vector nb∈  and the correspondent linear 

system:  
Ax b=                                              (1) 

If 0x  is a starting approximation of solution (1), then the residual vector associated to 0x  is 0 0r b Ax= − . 
We call Krylov space of order m , noted mk , the vectorial space spanned by 0r  and its ( )1m −  iterated by 
A :  

( ) ( )1
0 0 0 0, , , , .m

mK A r vect r Ar A r−=                                   (2) 

1.1. The Projection Method 
In this part, we will review generallities over iterative methods of projection for the resolution of linear systems 
(1), by using projections in particular subspaces, namely Krylov’s spaces [1] [2]. 

Most actual iterative techniques used in solving large linear systems use in one way or another a projection 
procedure. The main idea of projection techniques consist in extracting an approximate solution to system (1) of 
a subspace of n . It leads to a small linear system. This is a basic projection step. If we take ( )0,mK A r  of m  
dimension (the subspace searched for), then, generally, m  constraints must be imposed in order to be able to 
extract such an approximation. One usual way of describing these constraints is to impose to the residual vectors 
r b Ax= −  to be orthogonal to the linearly independent m  vectors, this will define another subspace noted 

mL  with dimension m , which we call “constraints space”. We are then seeking an approximate solution mx  
to problem (1) by imposing that m mx K∈  and that the new residual vector m mr b Ax= −  must be orthogonal to 

mL . If, in addition, we want to use the starting approximation 0x , then the approximate solution mx  must be 
searched for in the affine space 0 mx K+ , then the solution of (1) will be characterized as follows: 

0

0

: data
find such that :

.
m m

m m

x
x x K

r L


 ∈ +
 ⊥

                                   (3)

 
As such, the definition of the projection method is based on two conditions: 
•  The first fixes the “place” where we should look for the solution at the thk  iteration: usually, this place is 

an affine subvariety of n . According to Krylov’s methods, this affine subvariety is ( )0 0,kx K A r+ , which 
gives us the following “space condition”: 

( )0 0,k kx x K A r∈ +                                    (4) 
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•  The second condition must fix the kx  that is appropriate to that space (4). We hope that kx  minimizes 
the vector error k ke x x= − , or the residual vector k kr b Ax= −  or one or those two vectors be orthogonal to a 
space kL  of dimension k . This condition is called “Petrov-Galerkin condition”, and is expressed as follows: 

( )0, .k kr K A r⊥                                      (5) 

As for the projection method, we will study in the next part, Arnoldi’s method for the resolution of linear 
systems. Let’s start now by recalling Arnoldi’s algorithm.  

1.2. Arnoldi’s Algorithm 
Arnoldi’s Algorithm is an iterative process consisting in calculating, simultaneously, an orthonormal basis mV  
of mK , and an upper hessenberg matrix mH . The matrix mH  is a representation of A  with respect to this 
basis. 

In practice, constructing Krylov’s spaces leads to determining basis. The natural basis { }1
0 0 0, , , kr Ar A r−

   

can never be used, due to its numerical degeneration, and the Krylov’s matrices become increasingly ill-condi- 
tioned [2]. To avoid this numerical degeneration of the natural basis of Krylov’s space, the solution consists in 
putting in place an orthonormalization process. Arnoldi’s basis is then constructed by applying the modified 
Gram-Schmidt orthonormalization method to vectors obtained by successive products matrix vector for 
euclidien inner product. The Arnoldi’s algorithm takes the following form: 

( )

{ }

( )

0 0 0 1

90
1 1 1

0 2

1

1, 2

1,

data : , , ,
, = , 1.0, 1

compute : , 10 , .

while 

compute :
for 1 to

compute : ,
compute :

end 
compute :

if  0, goto : "

n n n m
m

n
jp j

jp j

j

ij i

Arn ij i

j j

j j

n A m n V
x r b Ax h j

r
v V v

r

h

w Av
i j

h w v
A w w h v

i
h w

h

ε

ε

× ×

−

+

+

∈ ≤ ∈
∈ − = =

• = = =

≥

• =
=

• =
• = −

• =
=

 

{ }1 1 1 1
1,

end while"

compute : , : , , .

1
end while

/ / output : , matrices : , .

j j j
j j

m m

wv V v v
h

j j

m j V H

+ + +
+





















 • = =



= +



=



 
If we assign ijh  as coefficient of orthogonalization of jAv  with respect to iv , 1, 2, , 1i j= +  and 1,j jh +  

as norm of vector w  obtained by orthogonalization of vector jAv  with respect to vectors iv , then, the 
formula of Arnoldi’s basis construction can be written: 

1

1

j

j ij i
i

Av h v
+

=

= ∑                                        (6) 

Let mV  be the matrix having n  rows and m  columns, in which the m  columns are the first vectors of 
the Arnoldi’s basis. The orthonormality of vectors, in terms of matrices can be written: 

t
m m mV V I=                                         (7) 

Likewise, Equation (6), which defines Arnoldi’s vectors, can be translated matricially by:  
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1 1,m m m mAV V H+ +=                                      (8) 

where the matrix 1,m mH +  is a matrix having 1m +  rows and m  columns where ijh  coefficients are the 
coefficients of orthonormalization of the Equation (6): where 0ijh ≠  for 1i j< + , and the other coefficients 
being zero. 

11 12 1

21 22 2

32

1,

1

1

0
.

0 0
0 0

m

m

m m

mm mm

m m

h h h
h h h

h
H

h h
h

+

−

+

 
 
 
 
 

=  
 
 
 
 
 

  

  

 

    

    

 

  

                              (9) 

The main diagonal block of 1,m mH +  is a square matrix of dimension m , noted mH , which, according the 
Equations (7) and (8), verifies: 

11 12 1

21 22 2

32

1

0
.

0 0

m

m

t
m m m

mm mm

h h h
h h h

h
H V AV

h h−

 
 
 
 

= =  
 
 
  
 

  

  

 

    

    

 

                    (10) 

Such a matrix is called “upper hessenberg”: , 0 1i jh i j= ∀ > + . 
Equation (10) shows that mH  is the matrix of the projection in Krylov’s space mK  of the linear map 

associated to the matrix A, in the basis { }1 2, , ,m mV v v v=   of Arnoldi’s vectors. This can be summed up as 
follows: 

Proposition 1:  
In Arnoldi’s algorithm ( )ArnA , we have at the step k  the following relations: 

( )
1, 1

1 1,

kt
k k k k k k k

k k k k
t

k k k

AV V H h v e
AV V H
V AV H

+ +

+ +

 = +


=
 =

                             (11) 

where ( )k
ke  is the vector of the canonical basis of k   

Proof: [2].  

1.3. Arnoldi’s Method for Linear Systems (FOM) 
In this paragraph, we will remind the important results needed for the resolution of linear systems (1). 

For that, we will begin by applying the Arnoldi’s algorithm ( )ArnA  to the matrix A , this allows us to obtain 

at each step k , a matricial pair ( )1,,k k kV H +  where kV  is an orthonormal basis of Krylov’s space 1kK + , and  

1,k kH +  is specific an upper hessenberg matrix given by (9). 
The full orthogonalization method (FOM) is variant of problem (3), verifying the space condition (4) and 

“Petrov-Galerkin condition” (5) by taking ( )0,m m mL K K A r= = . This method is defined by: 

0

0

data :
1, ,

find such that :

n

k k

k k

x
k m n

x x K
r K

 ∈

∀ = ≤


∈ +
 ⊥





                             (12) 
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Production of the Solution 
We are seeking the solution mx  verifying the space condition (4) and “Petrov-Galerkin condition” (5). 

(4) 0 0m m m mx x K x x V y⇔ ∈ + ⇔ = +  with my∈ . 
So, the residual vector m mr b Ax= −  is written: 

0 ,m mr r AV y= −                                   (13) 
and “Petrov-Galerkin condition” becomes: 
(5) m mr K⇔ ⊥  0t

m mV r⇔ = , with (13) 

( )0 0t
m mV r AV y⇔ − =  but then t

m m mV AV H=  

( )1 1
t

m mV v H yβ⇔ = . This is equivalent to: 

( )
1 1 .m

mH y eβ=                                   (14) 
So, (14) implies ( )1

1 1
m

my H eβ −= , and the solution mx  can be written:  
( )1

0 1 1
m

m m mx x V H eβ −= +                                   (15) 

and the problem becomes:  

( ) ( )
0

1 1

0

Given :

Seek verifying 14 : .
Compute the solution .

n

mm
m

m m

x

y H y e
x x V y

β

 ∈
• ∈ =
• = +



 

A method based on this approach is called a full orthogonalization method (FOM). It is given by Y. Saad in 
1981. 

This is the corresponding algorithm using the Arnoldi’s process ( )ArnA . 

( )

{ }

( )

0 0 0 1

90
1 1 1

0 2

1

1, 2

1,

data : , , ,
, = , 1.0, 1

compute : , 10 , .

while 

compute :
for 1 to

compute : ,
compute :

: end 
compute :

if  0, "Luc

n n n m
m

n
jp j

jp j

j

ij i

ij i

fom

j j

j j

n A m n V
x r b Ax h j

r
v V v

r

h

w Av
i j

h w v
w w h v

A i
h w

h

ε

ε

× ×

−

+

+

∈ ≤ ∈
∈ − = =

• = = =

≥

• =
=

• =
• = −

• =
=

 



{ }1 1 1 1
1,

1 1,

1 1

0

ky breakdown" then ; goto

compute : , : , , .

, 1
end while

/ / output : , matrices : ,
: compute :
compute : .

j j j
j j

jp j j j

m m

m

m m

m j
wv V v v

h

h h j j

m j V H
H y e
x x V y

β

+ + +
+

+



















 = 

 • = =

 = = +


 =

 =

 = +



 

The algorithm ( )fomA  depends on parameter m , which is the dimension of the Krylov’s subspace. In 
practice, it is desirable to select m  in a dynamic way. This is possible if the norm of the residue mr  of the 
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solution mx  is calculated with a numerically low cost. (without having to compute mx  itself). Then the 
algorithm can be stopped at the appropriate step using this information. The following result gives an answer in 
this direction. 

Proposition 2: 
The residue vector mr  of the approximate solution mx  calculated by the algorithm ( )fomA  is such that:  

( )
1, 1,mt

m m m m m mr b Ax h e yv+ += − = −  

and so,  
( )

1,2
.mt

m m m mb Ax h e y+− =                                   (16) 

Proof: [2]. 
At this stage, the interesting feature is the possibility to compute the norm of residue without producing the 

solution. 
According to this proposition, at the step k , the residual norm 

2kr  is then given directly by the absolute 
value of the last component ky  of the vector ky∈ . This provides the stopping test and  

allows to calculate kx  only when the stopping criterion used for the solution is satisfied. This is the main 
idea of this article. It consists in calculating locally, at each iteration k , uniquely the last component ky  of the  
vector ky∈ : solution of the system (14) ( )

1 1
k

kH y eβ= . The classical formulae of Cramer’s rule directly 

gives the component ky  in the form of a determinant quotient: 
( )
( )

k
k

k

det D
y

det H
= , the computation of determi-  

nants ( )kdet D  is given by the following result: 
Proposition 3: 
Let k k

kH ×∈  be an invertible upper hessenberg matrix and ( )
1 1

k keβ ∈ , the second member of the linear 

system (14) ( )
1 1

k
kH y eβ= . Then we have:  

( )
( )
( )

1,1 1, 1 1

2,1 2,2

3,2

1, 1

, 1

0

0
.

k

k k

k k k
k

k k

h h
h h

h
h
h det D

y
det H det H

β−

− −

−= =

 



  

 

                        (17) 

with: 

( ) ( ) 1
1 , 1

2
1 .

k
k

k i i
i

det D hβ+
−

=

= − ∏                                     (18) 

( ) ( )1 1, 2.k k k kdet D h det D k+ += − ∀ ≥                                   (19) 

What we need now, is to calculate ( )kdet H ; kH  being an upper hessenberg matrix. 

2. Sturm Sequence for the Upper Hessenberg Matrices (U.H) 
In this paragraph, we extend the definition of Sturm sequence to the hessenberg matrices, and then we give an 
algorithm computing their determinants. Let’s start by reminding the following principal result: 

Proposition 4: 
Let n nH ×∈  be an (U.H) matrix and let ( )kH Iλ−  be the thk  principal submatrix of ( )H Iλ− , i.e., 

( )

1,1 1,2 1,

2,1 2,2

3,2

1,

, 1 ,

0=

0 0

k

k kk

k k

k k k k

h h h
h h

hH I H I
h

h h

λ
λ

λ λ

λ
−

−

− 
 − 
 − = −
 
 
 − 

 



 

   


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and let ( )kP λ  be the charcteristic polynomial of kH , then: the polynomial ( )kP λ , 0, ,k n=   are given 
by to the following recurrent formula :  

( )
( )

( ) ( )( ) ( ) ( ) ( )

0

1 1,1
1

, , 1 1 , 1
1 1

1

1
kk k i

k i k j j i k k k
i j i

P
P h

P h h P h P

λ
λ λ

λ λ λ λ
−

−
− − −

= = +


 = = −

 = − + −


∑ ∏

                     (20) 

Proof: by recurrence. 
Definition 1: 
The sequence ( ){ } 0

n
k k

P λ
=

 defined by (20) is called Sturm sequence of the upper hessenberg matrix. 
Remark 1: 

We note that, for the programming, we can win 
( )( )1 2

2
n n− −

 memory words if we use a storage numbering  

function [8] for upper hessenberg matrices by storing nonzero elements uniquely. 

2.1. Computing the Determinant of the Hessenberg Matrix nH  
For calculating the determinant of an upper hessenberg matrix, Proposition (2) gives us a simple method in 
( )2o n . This can be summed by the following result: 
Corollary 1: 
Let ( ),

n n
i jH h ×= ∈  be an invertible (U.H) matrix. If we set ( )detk kHδ = , then we have: 

( )( )

0

1 11

1
1 1 , , 1

2 2

1

1 2, , .
kk

k kk k k k k j j
j k

h

h h h k n

δ
δ

δ δ δ+
− + − − −

= = + −


 = =

 = + − ∀ =


∑ ∏

 






                 (21) 

( )detn Hδ = . In the Formula (21), we calculate the products , 1
2

k

j j
j k

h −
= + −
∏



, without repeting multiplications. 

So, we obtain a very interesting algorithm ( )detA  computing ( )detn nHδ =  as follows: 

( )

( )

{ }

{ }

1

0 1 1,1

det
1,

,

1

Data : , U.H ,
1.0,

for 1 to 1 do :
begin

, 1.0, 1
for 1 step 1, 0 do :

begin
:

,
end

end
/ / Output : ( ) =

n n n
n

kk k

i i

i k i

k

n n

n H
h

k n

S h codiag sg
i k

A
codiag codiag h
P h codiag
S S sg P sg sg

i
S

k
det H

δ
δ δ

δ

δ

δ

δ

× +

+

+

 ∈ ∈


= =
 = −

= ∗ = = −
= − −


= ∗

= ∗ ∗
= + ∗ = −

=

 




















 

The number of operations necessary in calculating nδ  is: 
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•  additions: ( ) ( )
2

1
1

2
n
k

n n
k

=

−
− =∑  

•  multiplications: 
( )

1

5 1
5

2
n
k

n n
k

=

+
=∑ . 

The total number of operations required is 23n . This is more convenient when n  is big. 
We will adopt the algorithm ( )detA  in the full orthogonalization method (FOM). Having at each step k ,  

( )1 1,,k k kV H+ + , we calculate by the Formulaes (18) and (19): 
( )
( )

det
det

k
k

k

D
y

H
= . This gives us the stopping test and  

allows to calculate kx  only when the stopping criterion used for the solution is satisffied, namely:  

1,2k k k kr h y ε+= ∗ <  

where ε , being the required precision. The FOM algorithm ( )FomA  takes the following form: 

( )

( )
{ }

{ }

8

1 1
0

0 0 0

0
1 0 0 0 02

1

0 0

0 00 0

Data : , , , 10 for example
, , , 1,1 :

Initialization : = , = 1.0,

compute : , , .

/ /calculate the column of the matrix
compute : , , .
compute :

:

n n

n n m m n m

Fom

n A m n
x H V sg sign

r b Ax
r

r v V v

h H
w Av h w v

A

ε
δ

δ

β
β

× −

+ + × ×

∈ ≤ =
∈ ∈ ∈ ∈ ∈ −

−

= = =

= =

[ ] [ ]

( )

00 0

1,0 1,02

1 0 1 0 1
1,0

1 0,0 1 0,02

2

compute : if 0,"Luckybreakdown",goto

compute : , , ,

1; , 1 , ;
while
/ /calculate the colomn of the matrix
compute :
for 0 to
compute : ,

k

k

k k

k

ik

w w h v
h w h

wv H h V v v
h

k h detDkm r h
r

h H
w Av

i k
h w v

δ β
ε

= −
= = 

= = =

= = = =

>

=
=

=

[ ]
[ ]

( )

1, 1,2

1 0 1
1

01,

,

compute :
end 
compute : , if 0,"Luckybreakdown", goto

, ,
compute : = ,

, ,
/ /compute det

; 1.0; 1;
for 1 to 0 step 1

i

ik i

k k k k

k k
k

k kk k

k

k k k

w w h v
i

h w h
V v vwv
H h hh

H
detHk h codiag sg

i k
codiag codiag h

δ

+ +

+ +
+

+

= −

= = 
 =
 =

= ∗ = = −
= − −
= ∗





{ }
( )

1,

1 , 1

1,2

1 1

;
;

; ;
end 

; 1 ;
; ;

1 , : 1;
end while
Output : , resolve : .

i i

ik i

k k k

k k k k k

m
m

P h codiag
detHk detHk sg P sg sg

i
detHk detDk detDkm h

y detDk detHk r h y
detDkm detDk k k

m k H y e

δ

δ

β

+

+ −

+






























= ∗ ∗
= + ∗ = −

= = − ∗
= = ∗

= = +

 = =




















 

When the stopping criterion used for the solution is satisffied, we take the value ky  for calculating 1,ky −  
2 1, ,ky y−   by using the following algorithm: 
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2.2. Algorithm of Resolution of the System: 1 1mH y e= β  

( )

[ ] ( )
[ ] ( )

( )

1

0 1 ,

0 1

0 1 1

1

1
, 1

2;
= , ,
= , ,Data :

, , calculated already
, , = .

compute the system solution :
: 1, ,1, step 1

/ / being , com

m m n m

m m m
m

m
mn n m

Res
m

ij j
j i

i
i i

i
m

n m
V v v M
H h h M
y y
x x b e

Hy b
A i m

h y
y

h
A

y

β

β

−

−

−

=
−

−

≥ ≥ ∈
 ∈
 ∈
 ∈ ∈


∈ ∈ ∈
• =
∀ = − −

= −

∈

∑











 
  


0

pute the solution
compute : ;

n

m

x
x x V y

















 ∈
• = + ∗



 

The above algorithm ( )ResA  requires 2nm  flops. 
Several authors solve the linear system ( )

1 1
m

mH y eβ=  using Givens method applied to an upper hessenberg 
matrix.  

3. The Givens Method for (U.H) Matrices 
In this section, we give a new variant of the Givens method for the resolution of linear systems with an upper 
hessenberg matrices coming from Arnoldi’s algorithm. This method is based on the addition of two matrices and 
two tensorial products. 

The Givens rotations constitute an important tool to selectively eliminate certain coefficients of a matrix. This 
is the case of our upper hessenberg matrix, where we eliminate the codiagonal in order to obtain an upper 
triangular matrix. 

To justify the next results, we introduce the following notations: 
•  ( )r

ka : the thk  row of the matrix ( )rA  at the step r . 

•  ( )rA : the matrix ( )rA  with the thr  and ( )1 thr +  row put to zero. 
•  ka : thk  column vector of A . 
•  t X : the superscript t  will denote the matrix or the transposed vector. 
•  tx y⊗ : tensor product of two vectors ,x y  in n

 . 
•  ij k

g   : thk  column vector of the rotation matrix ,i jG  in the plan { },i je e .  

3.1. Givens Formulation for Upper Hessenberg Matrices 
The classical formulation of the Givens method for an upper hessenberg matrix n nH ×∈  is given under the 
following form:  

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

1

2 1
21

3 2
32

1
1,

1 2
1, 2

1
, 1

k k
k k

n n
n n

n n
n n

H H
H G H
H G H

H G H

H G H
H G H

+
+

− −
− −

−
−

 =


= ×
 = ×


 = ×

 = ×
 = ×





                                      (22) 

with 1,k kG +  is of the form: 
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1,

1

1

1

1
1

1

k k
k k

k k

k k

O

c skG k s c

O

+

+
↓ ↓

 
 
 
 →=  + → −
 
 
 
 

 

  

 

     

     

 

  

 

                         (23) 

with ( )1,det 1k kG + =  and where kc  and ks  are calculated at each step k  by the following formulas:  

( ) ( )( ) ( )( )
( )

( )

( )

( )

2 2

1, , 1,

,

1,

1,

1,

.

.

.

k k k
k k k k k k

k
k k

k k
k k
k

k k
k k

k k

d h h

h
c

d
h

s
d

+ +

+

+

+


 = +

 =


 =


                                  (24) 

The relations (22) give us an upper triangular matrix, ( )nH : 
( )

, 1 1, 2 3,2 2,1= ,n
n n n nH G G G G H− − −                                  (25) 

and therefore ( )1 1 1 1
21 32 1, 2 , 1 .n

n n n nH G G G G H− − − −
− − −=   

As the matrices ijG  are orthogonal, we have: t
ij ij dG G I= , from which  

( )
21 32 1, 2 , 1 .nt t t t

n n n nH G G G G H− − −=                                (26) 

Theorem 1: 
If ,n nH ∈  is an invertible upper hessenberg matrix, then 1 1k n∀ ≤ ≤ −  

( ) ( ) ( ) ( ) ( ) ( )1 1
1, 1, 1, 11

.k k k k k k
k k k k k k k kk k

H G H H H g h g h+ +
+ + + ++

   = ⇔ = + ⊗ + ⊗   
 

                       (27) 

where ( )k
kh  is the thk  row vector of the matrx ( )kH  and 1,k k k

g +    is the thk  column vector of the matrix 1,k kG + .  

The Givens algorithm for the triangularisation of the matrix n nH ×∈  (U.H), is simplified to be written in its 
new form:  

( )

( )

( )

( ) ( )

( )

( ) ( )( ) ( )( )
( )

( )

( )

1

1,

1,
2 2

1, , 1,

1, , 1,

1, 1,

Data : , augmented U.H matrix of
for 1 to 1 do :

If 0.0 then : continue
calculation of the rotation matrix 23

compute
:

compute ,

:

n n

k
k k

k
k k

k k k
k k k k k k

k k kk k k k k k
k kk

k k k k

Giv

n H b
k n

h
G

d h h
G h h

c s
d d

A

× +

+

+

+ +

+
+

+ +

• ∈
= −

=
•

• = +

• = = ( )

( ) ( ) ( ) ( )

{ }

1, 1, 1

1
1, 1, 11

0 0

0 0

compute : ;

0 0

0 0
compute :

k

k k
k k k kk kk k

k k k k
k k k k k kk k

c ck kg gs s

H H g h g h
fin k

+ + +

+
+ + ++









 

 
 
 
    
    
    
    

← ←       • = =   −    
    
    

       
   • = + ⊗ + ⊗    



 

 

 

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3.1.1. Complexity of the Algorithm ( )GivA   
To eliminate the (n − 1) elements situated under the diagonal, we need (n − 1) rotations ( )

1,
k

k kG + . Each rotation 

requires 5 operations and an extraction of a square root ( ) . 

For a fixed k 
→ Computation of tensor product: 
•  ( )

1,
k

k k kk
g h+  ⊗ 

 : ( ) ( )2 2 *n k− +  

•  ( )
1, 11

k
k k kk

g h+ ++
  ⊗ 

 : ( ) ( )2 2 *n k− +  
→ Computation of matricial addition: 
•  ( ) ( )

1, 1, 11

k k
k k k k k kk k

g h g h+ + ++
   ⊗ + ⊗   

  : ( ) ( )2 2n k− + +  

and 1, , 1k n∀ = − , we have: 

( ) ( )21 1 2
1 1 =0

6 2 5 6 2 d 3
nn n

k k k
n k n k k n

−− −

= =
− + + − +∑ ∑ ∫   

Conclusion: The complexity of Givens’ algorithm ( )GivA  for an upper hessenberg matrix requires 23n  

flops and ( ) ( )1  n − . 

In consequense, we find the calculating formula of the determinant of the matrix H  given by:   
Corollary 2 : 
Let H  be an (U.H) matrix. By applying classical Givens’ formulation, given by the relation (22) and the 

Formula (26), we obtain:  

( ) ( )( ) ( )
,

1
det det .

n
n i

i i
i

H H h
=

= =∏                                    (28) 

We can decompose H  matrix (U.H) of rank n , into an addition of a triangular matrix and ( )1n −  
matrices of rang 1 given by:  

( ) ( ) ( ) ( ) ( )
1

1
1, 1, 1 11

1
.

n
n k k

k k k k k k k kk k
k

H H g e h g e h
−

+
+ + + ++

=

   = − − ⊗ + − ⊗   ∑                  (29) 

3.1.2. Numerical Example 
Let 4 4H ×∈  be an invertible matrix (U.H), and 4b∈ . 

We want to resolve Hx b= . 

1 0 1 2 6
1 2 3 0 4

;
0 1 1 0 1
0 0 1 1 1

H b

−   
   − −   = =
   − −
   

−   

 

We apply the algorithm ( )GivA  to the augmented matrix 4 5H ×∈  by the second member b . 
step k = 1 

•  Compute the rotation in plane { }2 1,e e : 21

2 2
2 2

2 2
2 2

G

 
 
 =
 
− 
 

 

Column 1: [ ]21 1

2
2

2
2

g

 
 
 =
 
− 
 

; column 2: [ ]21 2

2
2
2

2

g

 
 
 =
 
 
 
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( )

( )

[ ] [ ] ( )

( )

[ ] [ ] ( )

1 1
1 2

1

1 1
21 21 1 21 21 21 1 2 2

: 1 0 1 2 6 : 1 2 3 0 4

2 2 2 2 2 2 2 2 20 0 0 0 0 0 2 6 2 3 0 4
2 2 2 2 2 2 2 2 20 0 0 0 0

 2 2 2 2 2 2 2 2 20 1 1 0 1 0 2 6 2 3 0 4
2 2 2 2 2 2 2 2 20 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2

0 2 2 2 5 2
0 1 1 0 1
0 0

h h

H

g g h g g h

− − −

  − − −
 
  + +
 − − − − − − − − 

− 

⊗ ⊗

−

− − −=
− −
−

 



 

( )2
1 1 1
H

 
 
 
 
 
 
 

 

step k = 2 

•  Compute the rotation in plane { }3 2,e e : 32

2 1
3 3
1 2
3 3

G

 
 
 =  −  
 

 

Column 2: [ ]32 2

2
3
1
3

g

 
 
 =
 −
 
 

; column 3: [ ]32 3

1
3
2
3

g

 
 
 =
 
 
 

 

( )

( )

[ ] [ ] ( )

( )

[ ] [ ] ( )

2
2

2

2
32 32 22 2

2
3

2
32 32 33 3

: 0 2 2 2 5 2
0 0 0 0 0 0

2 2 2 2 2 2
2 2 2 2 100 0 0 0 0 0
3 3 3 3 30 0 0 0 0
1 2 2 2 5 20 0 1 1 1 0
3 3 3 3 3

0 0 0 0 0 0

: 0 1 1 0 1
2 2 2 2 2 2

0 0 0 0 0 0
3 3 2 1101 1 1 10 0 3 3 3 3

3 3 3 3
2 4 20 0 02 2 2 20 0 3 3

3 3 3 3
0 0 0 0 0 0

h

H

g g h

h

g g h

− − −

 −
  − − −
  + 
 

− − − 

⊗

− −
−

− − −
− −

+ =

− −

⊗











( )3
0 0 1 1 1

H

 
 
 
 
 
 
 
 
 − 

 

step k = 3 
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•  Compute the rotation in plane { }4 3,e e : 43

0 1
1 0

G  
=  − 

 

Column 3: [ ]43 3

0
1

g  
=  − 

; column 4: [ ]43 4

0
1

g  
=  
 

 

( )

( )

[ ] [ ] ( )

( )

[ ] [ ] ( )

3
3

3

3
43 43 33 3

3
4

3
43 43 44 4

2 4 2: 0 0 0
3 32 2 2 2 2 2

0 0 0 0 0 03 3 2 110
0 0 0 0 0 03 3 3 3
0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 2 4 21 0 0 0
3 3

2 2 2 2 2 2
: 0 0 1 1 1

3 3 2 1100 0 0 0 0 0
3 3 3 3

0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 1 1

2 4 20 0 00 0 0 0 0 0
3 3

h

H
g g h

h

g g h

 −
 

− − − 
  +
 
 
  − −  −

⊗

 −
− 

− − −

+ =

−
−

−
−

⊗











( )4H








 
 
 



 

we obtain a triangular system ( ) ( )4 4H x b=  whose solution is x : 

( ) ( )4 4

2 2 2 2 2 2
13 3 2 110
23 3 3 3; ;

0 0 1 1 1 3
42 4 20 0 0

3 3

H b x

   −
   

 − − −   
    
    = = =
 −   
    − −     

   
   

 

and we have ( ) ( )( )4det det 2H H= = . 

4. Numerical Tests 
In this section, we present four numerical tests for the resolution of linear systems (1): AX b=  for the pro- 
posed new version of full orthogonalization method (FOM). These tests are done using a portable DELL 
(Latitude D505 intel (R) Pentium (R) M, processor 1.70 GHz, 594 MHz) and a program written in C++ , with 
double precision. 

Test 1: nA  is band (SPD) matrix 2 1D d= + , 3d = , [9] and nX ∈  is the exact solution. 

( )

5 2 1 1 0 0 16 1
2 6 3 1 1 2 16 2
1 3 6 0 3

, ,1 1 3 16
0 3 1 15 23 2

1 1 3 6 2 13 18 1
0 0 1 1 2 5 9 7

nA b Xn
n n
n n
n n

     
     ×     
     
     

= = =−     
     − −
     

− −     
     −     



 

   

     

   

 


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From test 1, we deduce the following numerical results in Table 1. 
Test 2: nA  is a full matrix, X  is the exact solution, and 1

nA−  is the inverse matrix.  

1

1 1 1 0 0
1 1

2 0
2

, , 0
1

1 0 0 1
2 2 1

2 0 0 1

n nA X A
n

n

−

−   
     
     
     = = =
     

−     
     −   



 

   

  

    

  

 





 

where: 12 1, 3n nA n A−
∞ ∞
= − =  which imply: ( ) 6ncond A n∞  .  

( ) ( )( )2 1 1
2

1, ,

i

i i n i n i
b

i n

 − + + − +
=


∀ = 

                               (30) 

From test 2, we deduce the following numerical results in Table 2. 
Test 3: 
In the third test, we focus our attention on the resolution of the partial differential equations with Neuman 

condition:  
] [ ] [on 0, 0,

0 on the frontier

u u f
u

γ γ

ν

−∆ + = Ω = ×

 ∂

= Γ∂

                            (31) 

with: 
( )

*

0.01: step of discretization at

: num

and at .

1 .
ber of nodes on the axis.

x y

x

h h x y

n x
h nγ

= =

∈

= −







  

 
Table 1. Test 1’s numerical results.                                                                

n  m  ε  
2kr  

100 66 30.910−  30.810−  

500 171 30.910−  30.89310−  

1000 215 30.910−  30.89410−  

1500 247 30.910−  30.8810−  

2000 270 30.910−  30.89510−  

2500 291 30.910−  30.89610−  

3000 309 30.910−  30.89810−  

 
Table 2. Test 2’s numerical results.                                                                

n  m  ε  
2kr  ( ) 6ncond A n∞   

100 47 30.910−  30.54310−  600 

200 115 30.910−  30.84710−  3000 

1000 169 30.910−  30.78810−  6000 

1500 211 30.910−  30.78510−  9000 

2000 246 30.910−  30.8710−  12,000 

2500 278 30.910−  30.8410−  15,000 

3000 307 30.910−  30.8310−  18,000 
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If we consider ( ) π 3, cos cosu x y x yπ
γ γ

   
=    

   
 as a solution, we obtain the function:  

( )
2 2

2

10π π 3π, cos cosf x y x yγ
γ γγ

     +
=      

    
                              (32) 

as a second member. 
After doing a regular maillage and numbering the nodes, the calculation of the stiffness matrix leads to a 

(SPD) “well-conditioned” matrix. For the resolution we use the new version of full orthogonalization method 
(FOM). 

Table 3 contains the numerical results of Test 3: 
Test 4: nA  is band, (SPD) matrix 2 1D d= + , 2d = , [9]. 

( )
( )

5 4 1 0 0
0 1

4 6
2

1 0
0, ,

0 1
1 1

6 4
2 1

0 0 1 4 5

nA b X
n n
n n

− 
    −     
    
   = = = 
     − + −    −     +    − 



   



   



   

   



 

( )( )416sin π2 1 1, ,k k n k nλ = + ∀ =                                (33) 

On the one hand, the numerical results for the matrices nA  are considerably polluted with rounding errors 
because the matrices nA  are very “ill-conditioned” But on the other hand, we are constructing matrices nM  
very “well-conditioned” from matrices nA  with translations:  

n n n dM A Iµ= −  

where ( )( )416sin π2 1n n nµ = + . 
From Test 4, we deduce the following numerical results in Table 4. 

 
Table 3. Test 3’s numerical results.                                                               

n  m  ε  
2kr  

100 25 30.910−  30.52410−  

900 75 30.910−  30.48110−  

1600 94 30.910−  30.66210−  

2500 114 30.910−  30.610−  

3600 131 30.910−  30.8510−  

 
Table 4. Test 4’s numerical results.                                                                

n  m  ε  
2kr  ( )2

1

n
ncond A λ

λ
=  2

n

n n d
M

cond A Iµ
 

−  
 


 

100 10 30.910−  30.8810−  71.777810  ( )2 2ncond M   

500 11 30.910−  30.7610−  101.038910  ( )2 2ncond M   

1000 12 30.910−  30.2610−  111.649110  ( )2 2ncond M   

1500 11 30.910−  30.39110−  118.337710  ( )2 2ncond M   

2000 12 30.910−  30.5210−  122.633710  ( )2 2ncond M   

2500 12 30.910−  30.6510−  126.666710  ( )2 2ncond M   

3000 12 30.910−  30.7810−  131.333310  ( )2 2ncond M   

3500 13 30.910−  30.15610−  132.468010  ( )2 2ncond M   
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5. Conclusions 
Test 1 and 2 show the results of applying the proposed new version of full orthogonalization method (FOM): the 
dimension m  of Krylov’s space mK  is acceptable compared to n  because the matrices nA  are moderately 
“ill-conditioned”. 

For the third test, the stiffness matrix coming from the discretization of the partial differential Equations (31) 
leads to a (SPD) well-conditioned matrix. We note that dimension m  of Krylov’s space mK  is weak com- 
pared to n , which can give a positive judgment about the new version of (FOM) method. 

In the final test, the constructed matrices nM  are very “well-conditioned”, and the dimension m  is as 
small as required. 
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