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Abstract 
Neurodegenerative diseases are characterized by progressive degeneration 
and/or death of neuronal cells and results in a wide array of cognitive im-
pairments and other serious neurological defects. The signaling pathways 
and definite cause underlying the development of neurodegenerative nerve 
diseases have not been well defined. There is evidence of mechanisms with-
in the endocannabinoid system that may suggest important pathways in-
volved the progression of neurodegenerative diseases as well as some can-
cers. The endocannabinoid system is an endogenous ubiquitous neuromo-
dulatory system that plays a critical in the development of the central nerv-
ous system (CNS), synaptic plasticity, as well as other primary neuronal 
functions. The recent identification of various cannabinoid receptors and 
their endogenous lipid ligands has generated an interest and significant in-
crease in research of the endocannabinoid system and its role in human 
health and diseases. The Endocannabinoid system possesses essential endo-
genous receptors—cannabinoid receptors type 1 (CB1R) and type 2 (CB2R)— 
which are involved in mechanisms that contribute to the progression of neu-
rodegenerative diseases and some cancers. In this review, we discuss the role 
of the endocannabinoid system in various neurodegenerative diseases as well 
as some cancers, and its promise as a targeted pharmacological therapy for 
patients of neurodegenerative diseases. 
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1. Introduction 

Cannabis sativa, an annual herbaceous flowering plant, contains over 500 dif-
ferent compounds. Cannabinoids are naturally occurring compounds, only 85 of 
which are characterized as cannabinoids [1]. Amongst the cannabinoid com-
pounds, 9-tetrahydrocannabinol (Δ9-THC) is known for its psychoactive effects 
on the central nervous system (CNS) and peripheral nervous system (PNS0) [2] 
[3]. Δ9-THC elicits its pharmacological effects by binding to cannabinoid recep-
tors (CBRs), cell membrane receptors that are present in the CNS and PNS and 
are further classified as CB1R and CB2R, which are members of the G-protein 
coupled receptor (GPCR) family [2] [4]. The downstream signaling of the CBRs 
is key in standard housekeeping functions and plays a substantial role in the en-
docannabinoid system, a ubiquitous lipid-based retrograde neurotransmitter 
signaling system that exerts protective pathophysiological conditions in the CNS 
and PNS [2]. Endogenous CBR ligands, such as N-arachidonoyl ethanolamine 
(AEA) and 2-arachidonoyl glycerol (2-AG), have shown their role in regulating 
key functions, particularly within the CNS and are termed endocannabinoids 
[1]. AEA and 2-AG (Figure 1) are endogenous lipid mediators that exert protec-
tive pathophysiological conditions, such chronic neurodegenerative and cardi-
ovascular diseases, and play a key role in the endocannabinoid system [5]. 

CB1R has shown an increased differential expression in human brain, skeletal 
muscle, liver, and pancreatic islets, which are also known as Langerhans cells [5]. 
Although CB1R expression is the highest expression in brain and skeletal mus-
cle, CB1Rb shows higher expression in liver and pancreatic islet cells and plays 
an important role in metabolic regulatory functions [4]. Compared to CB1R, 
CB1Rb has a 33 amino acid deletion at the N-terminus [4].  

Although expressed in non-neural cells, such as immune cells, CB1R differen-
tial expression is concentration-specific inhibitory and excitatory neurons, γ 
-aminobutyric acid (GABA)—releasing neurons and glutamatergic-releasing 
neurons, respectively [6]. Activation of the CB1R results in retrograde suppres-
sion of neurotransmitter release that can send inhibitory or excitatory signals 
depending on the location of the CB1R expression in the brain [7]. The hetero-
gonous distribution of CB1R in the CNS allows for the unique pharmacological 
effects of CB1R agonists to impair cognition, memory, and motor function alte-
ration [7]. Pharmacological CB1R agonist effects have allowed researchers to 
identify heavily populated CB1R regions within the brain; some of the heavily 
populated regions include cerebral cortex, hippocampus, lateral caudate puta-
men, substantia nigra pars reticulata, globus pallidus, entopeduncular nucleus 
and the molecular layer of the cerebellum [5]. CB1R is mostly found in the CNS 
as well as in nerve terminals within peripheral tissues including the heart, vas 
deferens, urinary bladder, and small intestine [2] [5]. Additionally, CB2R can be 
found in peripheral tissues including the testes and immune-modulating cells. 

There are several FDA approved exogenous cannabinoid therapeutic medica-
tions, such as Epidiolex®, Dronabinol (Marinol®), and Nabilone (Cesamet®) [8]. 
Epidiolex® is used in the treatment of Lennox-Gastaut syndrome and Dravet  
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(a)                                 (b) 

Figure 1. The chemical structures of the endogenous endocannabinoids 
compounds (a) anandamide, also known as N-arachidonoylethanolamine 
(AEA) and (b) 2-Arachidonoylglycerol (2-AG). 

 
syndrome, two rare forms of epilepsy [9] [10] [11]. Dronabinol is used as an an-
ti-emetic for patients with acquired immunodeficiency syndrome (AIDS) un-
dergoing chemotherapy and experiencing loss appetite [8]. Nabilone, synthetic 
analogue of Δ9-THC, is used by oncologists as a last resort as an anti-emetic in 
patients undergoing chemotherapy [8]. Other medications, some of which shown 
in Table 1, acting on CBRs are used to treat a wide array of indications such as 
multiple sclerosis, anorexia, and neuropathic pain include Bedrocan®, Bedrobi-
nol®, Bediol®, Bedica®, Cesamet®, Marinol®, and Sativex® [5] [8] [12] [13]. 

The endocannabinoid system and associated endocannabinoid compounds 
elicit unique retrograde signaling pathways and possess neuroprotective proper-
ties that elucidate the strong rationale to further investigate its ability as thera-
peutic targets in chronic neurodegenerative diseases and cancers.  

2. Chronic Neurodegenerative Diseases: Alzheimer,  
Post-Traumatic Stress Disorder, Huntington, and  
Parkinson 

Alzheimer’s Disease (AD) 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that presents in 
patients as short-term memory loss, aphasia, and apraxia [5] [14]. As AD ad-
vances, patients develop judgement and language impairment, anxiety, as well as 
mood and sleep disturbances [14]. Cognitive impairment in AD is associated 
with cerebral disturbances, particularly in the frontal cortex and hippocampus, 
regions rich in CB1R. Although the cause of AD is not well understood, re-
searchers have characterized AD pathology by the accumulation of β-amyloid 
(Aβ), aggregates of hyperphosphorylated tau proteins or neurofibrillary tangles 
(NFT’s) as well as neuroinflammation that result from hyper-activate glial cells 
[14]. The discovery of heterogeneous expression of CB1R within the limbic cor-
tex as well as in the hippocampus (the substantia nigra pars reticulata and the 
globus pallidus) and endocannabinoid compounds has shed light on the role of 
the endocannabinoid system in patients of AD [5].  

Cannabinoid receptor agonists, including AEA and 2-AG, have shown neuro-
protective concentration-dependent inhibition Aβ induced neurotoxicity in dif-
ferentiated human teratocarcinoma cell line, NTERA 2/cl-D1 neurons [15]. The 
CBR agonists mediate their protective effects on Aβ induced neurodegeneration 
by activating the mitogen-activated protein kinase (MAPK) pathway [15]. In  
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Table 1. Cannabinoid-based therapies used to treat disorders and/ or symptoms. 

Condition Cannabinoid-Based Drug Outcomes for Pain 
Outcomes for Depression and 
Anxiety 

FDA  
Approved 

Lennox-gastaut syndrome Epidiolex® ↓Pain, epileptic episodes ↓Anxiety Yes 

Dravet syndrome Epidiolex® ↓Pain, epileptic episodes ↓Anxiety Yes 

HIV Marijuana ↓Muscle, nerve pain ↓Anxiety No 

Cancer Nabilone ↓Pain score ↓Overall stress No 

Fibromyalgia Nabilone ↓Pain ↓Anxiety No 

Psychiatric disorders Nabilone ↓Pain 
↓Post-traumatic stress disorder 
symptoms 

No 

Chronic central neuropathic pain Δ9-THC ↓Pain and pain intensity ↓Anxiety No 

Diabetic peripheral neuropathy Sativex (Δ9-THC, cannabidiol) ↓Pain ↑Quality of life No 

 
another AD study, effects of CBR agonists on inhibiting Aβ fragments were 
counteracted by a CB1R antagonist, SR141716A, and were unsuccessful in inhi-
biting Aβ-induced toxicity [15].  

Senile plaques, decaying nerve terminals around an Aβ core, in AD patients 
express CB1R and CB2R have shown to have a direct association with markers of 
microglial activation that results in Aβ-induced neurotoxicity [16]. In pharma-
ceutical experiments, GPCR and CB1R protein expression are notably decreased 
in patients with AD while the nitration of CB1R and CB2R proteins are found to 
be markedly elevated; these findings were evident consequences of microglial ac-
tivation [16] [17]. Microglial activation-induced learning and memory impair-
ments seen in patients with AD were induced by amyloid administration and 
reversed when WIN-55,212-2 (CB1R agonist) was administered to the rats [16]. 

Remarkably, Aβ-induced microglial activation was prevented by (HU-210, 
WIN-55,212-2, and JWH-133) in cultured glial cells [5]. Furthermore, JWH-015, 
a CB2R agonist, inhibited Aβ-induced CD-40 mediated microglial phagocytosis 
[18]. In addition to targeting CBRs in AD, studies have shown WIN-55,212-2 
preferentially targeting non-CBRs in colon, colorectal, and prostate cancer and 
therapeutically functioned to reduce tumor growth and proliferation [19] [20] 
[21]. Other studies investigating non-CBR targets in various cancers such as 
glioma, myeloma, and lung; the drugs cannabidiol, cannabigerol, and metha-
nandamide worked as agonists to induce apoptosis [22]-[28]. Arachidonoyl 
ethanolamide or anandamide was also shown to be effective against cancers such 
as neuroblastoma, cervical, and cholangiocarcinoma via a non-CBR mediated 
mechanism [29]-[34]. 

2-Arachidonoyl glycerol (2-AG) is a retrograde endocannabinoid messenger 
that inhibits postsynaptic neurotransmitter release upon presynaptic activation 
CB1R. Studies have shown that endocannabinoid cellular reuptake inhibitor, 
VDM11, rescued hippocampal and loss of memory loss retention in mice hip-
pocampi that have been superinfused with Aβ [35]; findings indicate that in-
creased levels of 2-AG can further promote decaying nerve terminals, particu-
larly around an Aβ core, in patients with AD [35]. 
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In another study, AEA has been upregulated by Notch-1 signaling in cultured 
cortical neurons exposed to Aβ and in the cortex of aged rats [36]. Interestingly, 
study findings provide evidence showing that although Aβ increases expression 
of the endogenous inhibitor of Notch-1, numb (Nb), AEA and 2-AG can reverse 
and restore the function of the Notch-1 signaling pathway [5] [36]. Anandamide 
mediates its effects on Notch-1 by upregulating the Nct expression, a component 
of the integral membrane protein γ-secretase [36]. In line with previous studies, 
a research study showed neuroprotective effects of cannabidiol, a non-psy- 
choactive compound in Cannabis sativa, on a PC12 cell line that is derived from 
a pheochromocytoma of rat adrenal medulla that contain a mixture of neurob-
lastic and eosinophilic cells; findings suggest that cannabidiol exerted protection 
against β-induced ROS production, lipid peroxidation, caspase-3-mediated 
apoptosis and elevation of the intracellular calcium concentration in PC12 neu-
ronal cells [37]. 

3. Post-Traumatic Stress Disorder (PTSD) 

Interestingly, there have been studies that propose a possible relationship be-
tween post-traumatic stress disorder (PTSD) and chronic neurogenerative dis-
eases such as dementia [38]. Post-Traumatic Stress Disorder is a trauma-related 
disorder with intrusive symptoms such as flashbacks or nightmares, avoidance 
of distressing reminders of the trauma, such as people or places, and persistent 
negative beliefs and/or expectations of oneself and others. Marked arousal and 
reactivity such as hypervigilance, difficulty concentrating, reactive angry out-
bursts with very little or no provocation, and behavior that is self-destructive are 
also symptoms of PTSD [39]. Having a stronger understanding of the endocan-
nabinoid system aids in finding new forms of therapeutic intervention, which is 
needed for individuals with PTSD to improve their response to therapy. 

One study explained that when an individual is having a flashback, a symptom 
of PTSD that causes the re-experiencing or re-living of a traumatic event, the 
pre-frontal cortex (PFC) is what holds the individual in the present and allows 
them to make logical decisions [40]. But when one’s amygdala is overactive, 
their PFC is inhibited which results in the individual making decisions based on 
anger and fear from the traumatic event [40] [41]. The dorsolateral prefrontal 
cortex (dlPFC) controls inhibitory responses, directing attention, thoughts, and 
actions [40]. The dlPFC regulates the ventromedial prefrontal cortex (vmPFC), 
which uses mental representations, decision-making, and emotional processing 
when regulating the amygdala [40]. When the release of catecholamine occurs, it 
aids in the dysfunction of the PFC, which harms one’s cognitive abilities and 
causes dysfunction of PTSD due to acute stress, decreasing grey matter in the 
PFC [40] [41] [42]. Individuals who develop PTSD have been shown to have 
smaller than average hippocampus volumes [43] [44] [45]. 

The endocannabinoids 2-AG and AEA have a role in buffering stress and re-
gulating it in the brain [46] [47] [48] [49]. However, chronic stress can impair 
the endocannabinoid system [49]. Impaired endocannabinoid signaling results 
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in susceptibility to psychological disorders, such as Anxiety, Major Depressive 
Disorder, and Post Traumatic Stress Disorder [49] [50] [51] [52]. The endocan-
nabinoids signaling is impaired in the hippocampus of adults and individuals 
who experienced early life stresses may have an allostatic load in their hippo-
campus in mice [49] [53]. When newborn mice are separated from their mothers 
there is a bidirectional change in the hippocampus and amygdala regarding 
2-AG and AEA [49]. The mice in adulthood had hindered endocannabinoid 
signaling in a reduction of both endocannabinoids and CB1 receptors in their 
hippocampus; however, the endocannabinoids levels in the amygdala were not 
affected [49]. Researcher’s noticed that when exposed to early life stress in mice 
their PFC’s endocannabinoids were not impacted, but the CB1 receptor was 
downregulated in adolescence and adulthood [49]. Endocannabinoids in the 
amygdala of mice during their 12 to 14 weeks of development decreased in AEA 
and increased in 2-AG, which was later stabilized; however, the CB1 receptors 
were down-regulated in adolescence and adulthood as well [49]. These findings 
are interesting as well because in animal models when the CB1 receptor is 
blocked in the amygdala it has been shown to increase anxiety and the fight or 
flight response in mice [54].  

The reason for the decrease in the endocannabinoid signaling in the hippo-
campus is due to early life stress which can cause the methylation of the promo-
ter sequence NR3C1 and down-regulate the expression of glucocorticoid recep-
tors in the hippocampus, and this results in glucocorticoid resistance [49] [55] 
[56]. The glucocorticoid resistance makes it difficult to regulate one’s response 
to stress and recover from it [49] [56]. 

The hippocampus of a young mouse is impacted by chronic early life stress 
similar to the effects of chronic stress in the adult hippocampus such as arbori-
zation of neurons, reduced dendritic spine densities, and minimal neurogenesis 
[46] [49] [57]-[62]. The endocannabinoids are fundamental in neuronal plastic-
ity, which is predominant in its development in early life, and when there is an 
impairment in its function it becomes difficult for someone who experienced 
early-life stress to adapt to adult stress due to the lack of plasticity [49] [53]. En-
docannabinoids have a role in memory formation and extinction is important 
because the greater the hippocampus volume, the greater the response to con-
textual modulation of fear extinction, signals that indicate a threat or no threat, 
in the most efficacious form of therapy which is prolonged exposure therapy 
[63]. 

Fatty Acid amide hydrolase (FAAH) is an enzyme which conducts hydrolysis 
that reduces the amount of AEA [64]. A single nucleotide polymorphism 
(C385A) in the FAAH gene had noted a result in a reduction PTSD hyperarousal 
and stress-induced anxiety compared to other PTSD subjects [64]. Researchers 
have shown that inhibiting the function of FAAH reduces anxiety symptoms by 
allowing AEA to increase [64]. Stressful events reducing the AEA are believed to 
be due to corticotropin-releasing hormone (CRH) that increases the production 
of FAAH [64] [65] [66]. One study found that boosting the 2-AG-CB1R signal-
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ing created resilience to acute chronic stress in mice that were found to be sus-
ceptible and hope to aid in new forms of therapy. Removing the CB1 receptor 
for 2-AG binding increased the anxiety-like behavior for the mice and dimi-
nished resilience in chronic stress [54]. 

4. Huntington Disease (HD)  

Huntington’s disease (HD) or Huntington’s chorea is an inherited progressive 
neurodegenerative disorder with no curative treatment caused by a mutation in 
the Huntingtin gene (Htt). Patients of HD can present with choreiform or un-
controlled jerky movements, loss of memory, and restlessness. In patients with 
HD, the Htt gene contains a trinucleotide repeat (cytosine-adenine-guanine, 
CAG) that is unstable and can vary in length and results in a polyglutamine 
(polyG) expansion in the N-terminus of Huntington [5] [67]. 

Increased N-methyl-D-aspartate receptor (NMDAr) activity has been linked 
with HD and has been shown to play a regulatory role in other medical condi-
tions such as strokes and epilepsy [68]. A study observed mitochondrial tox-
in-3-nitropropionic (3-NP)-induced striatal alterations within the basal ganglia 
in rats similar to the alterations observed in the brain of patients with HD; 3-NP 
was also shown to play in key role in inducing mitochondrial dysfunction and 
lipid peroxidation which augment the rate of neuronal cell damage [68] [69]. A 
study by administering WIN-55,212-2, a synthetic CBR agonist that primarily 
acts on CB1R was able to successfully inhibit the 3-NP-induced neuronal toxicity 
and damage in rats; this suggests the protective role of CBR agonists against 
3-NP-induced striatal neurotoxicity that is mediated by the dysfunctional 
NMDAr [68]. Further mechanistic studies of the CBR’s regulatory functions are 
warranted to further investigate the role of the endocannabinoid system in pa-
tients with HD.  

5. Parkinson’s Disease (PD)  

Parkinson’s disease is a neurodegenerative disorder of the CNS that primarily 
effects motor functions and is the second most common long-term degenerative 
disorder. The disease is characterized by the slow degeneration of the substantia 
nigra within the midbrain and degeneration of dopaminergic neurons [70] [71]. 
Patients of long-term PD start to develop degenerative effects in the extrapyra-
midal system starting with degeneration of the substantia nigra par compacta 
followed by striatal alterations to the globus pallidus, a major interconnected 
nucleus in the forebrain; this results in projection of the basal ganglia into to 
cortex [71]. Striatal projection neurons serve to directly send neuronal informa-
tion to the pars reciculata as well as to the lateral globus pallidus indirectly and 
thus playing a role in the motor deficits seen in patients of PD [5] [71]. Addi-
tionally, Lewy bodies, abnormal aggregates of protein, accumulate in residual 
dopamine neurons [70].  

The disease manifest in an ascending process where the lower brain stem is 
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affected first, followed by midbrain, and consequently the prefrontal cortex and 
neocortex [72]. Patients with PD present with a wide array of symptoms de-
pending on the severity and stage of the disease. The irreversible loss of 
DA-induced striatal functions leads to bradykinesia, impaired gait and mobility, 
postural instability, resting tremor, rigidity, and secondary effects such as de-
pression and cognitive impairment [71]. Although the direct and indirect con-
necting pathways of the striatal projection neurons are believed to play a role in 
a patient’s motor impairments, the circuitry and exact connections of these 
pathways are not well understood.  

A study suggests that blockade of CB1R may alleviate motor impairments ob-
served in PD [5]. The study developed in a rat model of PD with affected nigral 
dopaminergic neurons showed similar neurotoxicity to that of patients of PD, 
when administered rimonabant, a CB1R antagonist, which partially attenuated 
hypokinesia [73]. In another study, a cannabinoid CB1R antagonist adminis-
tered to rats with severe nigral lesions showed enhanced motor asymmetries as 
well as enhanced dopamine 1 receptor (D1R) function [74]. Levodopa or 
L-DOPA, unlike dopamine, is a prodrug that is able to cross the protective blood 
brain barrier and binds to the D1R and it is the current therapeutic treatments 
for PD [60] [75]. Increasing sensitivity or the function of D1R using CB1R an-
tagonist can augment the action of L-DOPA [5] [72] [76]. 

Blockage of CB1R by administration of SR141716A along with D1R (SKF- 
38393) and D2R (quinpirole) agonists into striatum, globus pallidus, and subtha-
lamic nucleus showed reduced motor asymmetry in parkinsonian rats compared 
to the D1R and D2R alone [77]. In another study, CB1R selective antagonist 
(1-[7-(2-chlorophenyl)-8-(4-chlorophenyl)-2-methylpyrazolo[1,5-a]-[1,3,5]  
triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid amide benzenesulfonate (CE)) 
was injected in rhesus monkeys with moderate and severe PD as a monotherapy 
and in combination with L-DOPA [72]. Results indicated that rhesus monkeys 
treated with a combination of CE and L-DOPA exhibited increased response to 
L-DOPA compared to when treated with L-DOPA only. Findings indicate that 
CB1R antagonist may enhance the antiparkinsonian actions of dopaminomi-
metics and allow for lower doses of L-DOPA and thereby reducing any un-
wanted pharmacological effects [72].  

6. Cancers: Colorectal Cancer (CRC)  

In vitro and in vivo studies provide evidence that suggests efficacy of cannabi-
noid agonists in reducing tumor growth and proliferation [19]. Δ9-THC has 
been used as an approved treatment for cancer patients with AIDS experiencing 
chemotherapy-induced nausea, vomiting, and anorexia [78]. Additionally, can-
nabinoids have shown to have significant benefit cancer-associated pain and has 
shown a synergistic effect when combined with opioid analgesics [5]. A recent 
study has identified synthetic cannabinoid compounds that reduce colorectal 
cancer (CRC) cell viability mediated by an unknown mechanism [78]. 
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Colorectal cancer, the third most common cause of cancer death, is characte-
rized by mutations in the adenomatous polyposis coli (APC), KRAS, and p53 
genes [79]. CB1R and CB2R are expressed in human colorectal adenoma and 
carcinoma [80]. In another study, CB2R activation was found to contribute to 
the disease progression in CRC indicating potential use of CB2R antagonist for 
therapy [81] [82]. Moreover, Δ9-THC was identified as potent RAS-MAPK and 
PI3K-AKT signaling inhibitor inducing BAD-mediated apoptosis in CRC cells; 
findings indicate that CB1R and proapoptotic BCL-2 family member BAD play a 
role in regulating the apoptosis in CRC cells [80]. In addition to receptor targets, 
other cancer-related off-receptor targets have been identified to mediate their 
effects on cancer by interacting with the endocannabinoid systems and its vari-
ous components and cannabinoid ligands [19]. Although other cancers—such as 
lung cancer, colon cancer, and pancreatic cancer—have been identified to inte-
ract with the endocannabinoid system, additional mechanistic studies are war-
ranted to further investigate CBR’s regulatory functions [5] [19] [83] [84]. 

7. Conclusion 

The endocannabinoid system is a complex and ubiquitous cell-signaling system 
that has not been fully understood. There has been evidence suggesting the role 
of endocannabinoids, cannabinoid receptors, and other parts of the endocanna-
binoid system in degenerative diseases and cancers. Researchers have been de-
veloping preclinical animal models aimed to study and understand the effects of 
pharmacological therapeutics on the endocannabinoid system. Pharmacological 
studies have shown therapeutic strategies that have shown both neuroprotective 
and symptom-relieving properties in patients with neurodegenerative diseases 
and certain cancers. There is great promise in understanding the endocannabi-
noid system for its function as targeted pharmacological therapeutics for neuro-
degenerative diseases and various cancers.  
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