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Abstract 
New strategies are required in the sugarcane selection process to optimize the 
genetic gains in breeding programs. Conventional selection strategies have the 
disadvantage of requiring the weighing of all the plants in a plot or a sample 
of stalks and the counting of the number of stalks in all the experimental 
plots, which cannot always be performed because more than 200,000 geno-
types routinely comprise the first test phase (T1) of most sugarcane breeding 
programs. One way to circumvent this problem is to use decision trees to rank 
the yield components (the stalk height, the stalk diameter and the number of 
stalks) and to subsequently use this categorization to select the best families 
for a specific trait. The objective of this study was to evaluate the categoriza-
tion of yield components using the classification and regression tree (CART) 
algorithm as a family selection strategy by comparing the performance of 
CART with those of conventional methods that require the weighing of stalks, 
such as the best linear unbiased prediction (BLUP) with sequential (BLUPS) 
or individual simulated (BLUPIS) procedures. Data from five experiments 
performed in May 2007 in a randomized block design were analyzed. Each 
experiment consisted of five blocks, 22 families and two controls (commercial 
varieties). CART effectively defined the classes of the yield components and 
selected the best families with an accuracy of 74% compared to BLUPS and 
BLUPIS. Families with at least 11 stalks per linear meter of furrow resulted in 
productivities that were above the average productivity of the commercial va-
rieties used in this study and are, therefore, recommended for selection. 
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1. Introduction 

Genetic breeding programs are central to the sugarcane agribusiness. The use of 
novel cultivars can increase the average productivity of the Brazilian sugar and 
alcohol sector and improve the quality of the raw materials used in the produc-
tion of sugar and ethanol [1]. 

Sugarcane genetic breeding programs usually consist of three test phases (T1, 
T2 and T3), an experimental phase (EP) and a multiplication phase [2]. Briefly, 
the first plant selections are performed in the T1 phase. A clone is selected in this 
phase that is cultivated in the subsequent phases through vegetative propagation. 
The clones are planted in experimental designs with replicates to identify poten-
tially superior clones. After 8 to 10 years of evaluation, the best clones are used 
in final evaluation experiments (EP) in different locations, wherein the clones 
are evaluated for 3 to 5 harvests. 

Although individual visual selection is routinely applied in the early phases of 
breeding programs [1] [3], this type of selection has been criticized for its ineffi-
ciency in terms of the absence of replicates, plant competition and confounding 
environmental effects [4]. The aforementioned authors have advocated the use 
of family selection followed by individual selection to produce greater gains than 
that obtained via mass selection, especially for low-heritability traits. 

Along this line of thought, some breeding programs have prioritized family 
selection followed by individual selection to find superior clones [3] [4] [5]. This 
strategy is motivated by the higher likelihood of finding individuals with favora-
ble traits in families with high genotypic values [5]. 

Reference [6] has shown that predicting genotypic values using the best linear 
unbiased predictor (BLUP) at individual level (BLUPI) procedure is the optimal 
sugarcane selection strategy. This procedure simultaneously uses information 
from families and individuals within families for selection. However, this pro-
cedure is seldom used in breeding programs because of the difficulty of collect-
ing data on an individual level. 

Some strategies to overcome this practical problem have been reported in the 
literature. Reference [3] developed what we shall call sequential BLUP (BLUPS). 
Families are ranked according to the trait being evaluated (usually tons of stalks 
per hectare—TSH), and the selection is performed for 40% of the families. The 
families comprising the 40% with the highest mean TSH are split into four 
groups. In the group of families with the highest means, 40% of the individuals 
from each family are selected, and in the other three groups, 30%, 20% and 10% 
of individuals are selected from each family. Reference [7] proposed the selec-
tion of families with genotypic values greater than the overall mean, followed by 
the simulation of the number of individuals to be selected in each family ac-
cording to the ratio between the genotypic values of the families and the number 
of individuals to be selected in the best family. The latter procedure is termed 
BLUP individual simulated (BLUPIS). 

The difficulties encountered in using BLUPS [3] and BLUPIS [7] in in-
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ter-family and intra-family selection are related to the large volume of data that 
must be collected and the logistics that are required for timely data collection 
and processing to perform the selection because the data are collected at the end 
of the crop cycle. At least one representative sample of stalks from each experi-
mental plot must be weighed to use these methods. The difficulties in finding 
skilled labor and operating costs often restrict the number of families that can be 
evaluated in the field. 

Alternative data collection methods have been sought to streamline the family 
selection process by circumventing having to weigh plants from all the plots. 
Thus, a definition of classes (categorization) for the variables that incorporates 
crop yield components (the number of stalks, the stalk diameter and the stalk 
height) could significantly reduce the time expended on data collection, if such a 
definition were properly defined and experimentally validated. Decision trees 
can be used to categorize the yield components, specifically by using the classifi-
cation and regression trees (CART) algorithm [4], which is a statistical method 
potentially useful for identifying families with the highest yield potential by 
combining classes of variables. 

CART involves non-parametric statistical methods that are used in data parti-
tioning through specific rules performed by binary divisions [8]. The objective of 
this technique is to describe the variability in the dependent variable as a func-
tion of the independent variables through binary divisions [9]. Reference [10] 
has argued that the advantage offered by this technique is that the algorithm 
evaluates all the possible predictors and divisions. Furthermore, the algorithm 
may be applied to other data sets that include the same variables used in design-
ing the decision tree. 

The objective of this study was to examine the efficiency of categorizing su-
garcane yield components using the CART algorithm for sugarcane family selec-
tion to further the development of alternative data collection methods and re-
duce costs in the initial phase (T1) of sugarcane breeding programs. The effi-
ciency of the algorithm was measured by comparison with the selection per-
formed using conventionally used procedures i.e., BLUPS and BLUPIS. 

2. Material and Methods 
2.1. Plant Material 

In 2006, 110 full-sib families were assessed from biparental crosses performed at 
the Serra do Ouro Experimental Station of the Federal University of Alagoas, lo-
cated in the municipality of Murici, Alagoas, Brazil. 

Following acclimatization, the seedlings resulting from the crosses were used 
in experiments on families in the experimental field of the Sugarcane Research 
and Breeding Center at the Federal University of Viçosa, located in the munici-
pality of Oratórios, Minas Gerais, Brazil at a latitude of 20˚25'S, a longitude of 
42˚48'W and a 494-m altitude in a LVe soil. Oratórios has a climate classified as 
Aw according to Köppen and Geiger. The annual average temperature and rain-
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fall are respectively 21.6˚C and 1162 mm. 
Five experiments were performed in May 2007 using a randomized complete 

block design. Each experiment consisted of five blocks, 22 families and two con-
trols (commercial varieties). The same controls were used in all the experiments. 
Each plot consisted of 20 plants, which were distributed in two 5-m-long fur-
rows, 1.40 m apart, totaling 12,000 plants. Each family was thus represented by 
100 genotypes, which is considered to be a sufficient number for selection within 
the best families [11]. Agronomic practices including weed control and soil ferti-
lization were the usual for this crop at the experimental station. Field was not ir-
rigated. 

2.2. Data Collection 

In 2009, the mean stalk height (SH) and stalk diameter (SD) of all plots of the 
five experiments were assessed. Stalk height (SH) was measured in meters for 
one stalk from each clump in the plot from the base to the first visible dewlap. 
Stalk diameter (SD) was measured in centimeters using a digital caliper in the 
third internode from the stalk base to the apex of one stalk per clump in the plot. 
In addition to the stalk height and diameter, the total number of stalks per plot 
(NS) was also counted. 

The total plot mass (TPM), in kg, was determined by weighing all the stalks 
using a dynamometer. The stalk productivity, in tons of sugarcane per hectare 
(TSH), was estimated using the equation 10TSH TPM PA= × , where TPM is 
the total mass of the plot in kg, and PA is the plot area in m2. In the present 
study, PA = 14 m2. 

2.3. Selection Using CART 

In this study, regression trees were used to create classes for the three yield 
component variables. Only the SH, SD, NS and TSH data of the controls that 
were tested in the experiments, totaling 50 observations, were used in designing 
the regression trees. However, since regression trees may be incorrectly gener-
ated or, in an extreme case, even not generated, if the number of observations is 
too small, we decided to also simulate control data prior to using the CART al-
gorithm, resulting in a procedure known as “data synthesis”. The use of synthet-
ic data to improve the amount of data for comparing statistical methods or tech-
niques has been previously used in other research works [12] [13] [14]. 

The simulation was performed based on the covariance matrix ∑(4 × 4, posi-
tive definite) of the variables TSH, NS, SH and SD of two of the controls that 
were used in all five experiments. In the simulation algorithm, the Cholesky de-
composition of the covariance matrix ∑ was used to generate CC′Σ = , where C 
is a lower triangular matrix m m×  known as the Cholesky factor. A normal 
multivariate vector X CZµ= +  was simulated, where μ is the mean vector of 
the controls, C is the Cholesky factor derived from the covariance matrix ∑, and 
Z is a vector of random independent and identically distributed (IID) variables 
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with a standard normal distribution. This procedure was used to generate 1000 
row vectors of the type [ ]1 2 3 4, , ,i i i iX X X X , wherein Xij (i = 1 to 1000, and j = 1 
to 4) represents the simulated value of the variable j (TSH, NS, SD or SH) for in-
dividual i. The algorithm presented ensured that these four variables had a cova-
riance matrix ∑ and a mean vector μ [15] [16] [17]. 

The generated data were subsequently subjected to the standard CART algo-
rithm procedure. The NS distribution is discrete (Poisson) and is characterized 
by a parameter λ = mean number of stalks per plot; however, this distribution 
can be approximated by a normal distribution [18] because λ is relatively large 
(mean = 111.74). Thus, the simulated value was approximated to the nearest in-
teger. Tree pruning was performed according to the 1-SE rule [8] and 10-fold 
cross-validation [19] methods to generate more accurate estimates, to reduce 
over fitting and to facilitate the interpretation of results. In summary, regression 
trees were obtained using simulated data based on the control observations 
(1000 observation vectors), and pruned (according to the 10-fold cross-validation 
and the 1-SE rule methods) and unpruned regression trees were obtained using 
non-simulated data (50 observation vectors). 

Combinations of variables that could produce TSH levels higher than the 
mean productivity of both controls were located in the generated trees to obtain 
a clone selection cutoff point. The intra-family selection procedure was subse-
quently defined as follows: the selected families were split into three classes to 
define the number of individuals to be selected in each family, as indicated by 
the CART algorithm. The classes were defined based on the number of replicates 
(plots) in which the family was selected by the algorithm. The family was se-
lected in each plot (replicate) when the combination of variables used in the 
classifier met the selection criterion defined by the designed regression tree. The 
first class consisted of the families selected by CART in all five plots (or repli-
cates) of the family. The second class consisted of the families selected in four 
replicates. Finally, the third class consisted of the families selected in three repli-
cates. Thus, for the intra-family selection, 30% of the individuals from each fam-
ily were selected in the best class, followed by 20% and 10% of the individuals 
from each family in the second and third classes, respectively. Note that other 
ratios could have been chosen, which could modify the results presented here. 
The choice reported herein was based on the aforementioned BLUPS procedure. 
In future studies, we will analyze the best selection ratio within our proposed use 
of CART. 

2.4. Selection Using BLUPS and BLUPIS 

The TSH data were analyzed using restricted maximum likelihood (REML)/ 
BLUP mixed models and a statistical model associated with genotype assess-
ment in an incomplete block design at plot means level by considering the ma-
trix equation [6] y Xr Zg Wb e= + + + . In this equation y represents the data 
vector ( )( ),y N Xr V ; r is the presumed fixed effects vector; g is the geno-
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typic effects vector (presumed to be random), where ( )0,g N G  and G = 
the genetic covariance matrix of genotypes ( )2

gG Iσ= ; b is the environmental 
effects vector of the incomplete blocks (presumed to be random), where 

( )20, bb N Iσ ; and e is the vector of errors or residuals (random), where
( )0,e N R , R = residual covariance matrix ( )2

eR Iσ= . X, Z and W are the 
incidence matrices for the said effect. The variance components 2

gσ , 2
bσ  and 

2
eσ  correspond to the genotypic variance, the block variance and the residual 

variance, respectively. 
The selection in the BLUPS procedure was performed following the strategy 

used by the Australian breeding program [3] to select 40% of the families tested. 
The selected families were split into four classes based on the TSH means. Each 
class consisted of 11 families, and 40% of the individuals within each family of 
the first class and 30%, 20% and 10% of individuals in each family in classes 2, 3 
and 4 were selected, respectively. 

In the BLUPIS procedure, the families with TSH means higher than the over-
all mean were selected [7]. The number of individuals selected from each family 
k (k = 1 to 52) was calculated using ( )ˆ ˆk j jn g g n= , wherein ˆkg  refers to the 
estimated genotypic value of family k, ˆ jg  refers to the estimated genotypic 
value of the best family, and nj is the number of individuals selected from the 
best family. In the present study, nj = 27 individuals were selected from the best 
family. A mixed models analysis was performed using the SELEGEN-REML/BLUP 
software [20]. 

2.5. Comparison between BLUPS, BLUPIS and CART 

Confusion matrices were generated for each tree to facilitate the visualization of 
the similarities and differences among the selection methods BLUPS and 
BLUPIS (which were considered as conventional methods and, therefore, consi-
dered correct and were subsequently used for comparison purposes) and CART 
(the method being tested) (Figure 1). 

This confusion matrix was used to calculate four useful statistical parameters 
to assess the applicability of the selection method: 1) the choice accuracy (CAc), 
where CAc = (A + D)/TABCD; 2) the apparent error rate (AER), where AER = 1 − 
CAc; 3) the selection precision (SeP), where SeP = A/TAC; and 4) the error of 
omission (EOm), where EOm = 1 − SeP. 

 

 
Figure 1. Schematic of a confusion matrix showing frequencies of occurrence (A, B, C 
and D) for combinations of classes (Selects or Fails to select): the “conventional method” 
corresponds to the method used in practice, which is considered to be “ideal” or “true”; 
the “Tested method” corresponds to the novel method that was developed in this study. 

Conventional method
Selects Fails to select Total

Tested Selects A B TAB

method Fails to select C D TCD

Total TAC TBD TABCD
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The selection obtained using BLUPIS or BLUPS was considered to be the cor-
rect selection in the comparisons because these procedures are routinely used in 
breeding programs. 

The CAc refers to the number of families selected or not selected by CART 
and BLUPS or BLUPIS relative to the total number of experimental families. The 
AER corresponds to the selection error. The SeP is the number of families si-
multaneously selected by CART, BLUPIS or BLUPS divided by the total number 
of families selected by BLUPS or BLUPIS. Finally, EOm is the error relative to 
the failure to select some families, as indicated by BLUPS or BLUPIS. 

All the analyses and graphs of the CART algorithm were generated in the free 
software R [21] using the package rpart() [22]. 

3. Results and Discussion 

Table 1 outlines the number of individuals selected from the families with the 
highest TSH means according to the BLUPS, BLUPIS and CART strategies using 
the original data (without simulation) and via CART after increasing the volume 
of control data through simulation. Whereas the families were ranked based on 
the TSH genotypic means obtained using the BLUPS and BLUPIS procedures, 
the families selected using CART were ranked based on the number of replicates 
in which each family was indicated for selection. A total of 52 families were se-
lected using the BLUPIS procedure, corresponding to families that had genotyp-
ic means higher than the overall mean of the original population (102 t∙ha−1). A 
total of 44 families were selected using the BLUPS procedure, corresponding to 
40% of the 110 families considered in this study. CART selected 52 families 
when simulation was not used and 49 families following simulation (Table 1 and 
Table 2). 

Although all the yield components (NS, SD and SH) were used to generate the 
regression trees, CART discarded the components SH and SD when predicting 
the TSH values. This result indicates that, according to the data analysis, the 
number of stalks was the variable that most strongly affected the productivity. 
Various studies on sugarcane path analysis and logistic regression have shown 
that NS is more important than other yield components [23] [24] [25]. The 
aforementioned authors have reported that families and clones with high TSH 
values can be successfully selected using NS only because NS is the main deter-
minant of variation in TSH. 

For the selection intensity used, BLUPS indicated 40 individuals in the best 
family for selection, whereas BLUPIS indicated 27 individuals, and CART indi-
cated 30 individuals. Considering the intra-family selection criteria defined in 
this study, a total of 1100 individuals were indicated for selection by BLUPS, 
1077 by BLUPIS, 1022 by CART using non-simulated data, and 890 by CART 
using simulated data (Table 1). 

Table 2 shows the confusion matrices among CART, BLUPS and BLUPIS and 
the respective measures used to assess the CART efficiency. In the specific  
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Table 1. Genotypic TSH means (u + g) of families selected using BLUPS, BLUPIS and 
CART using data with and without simulation, number of replicates (plots) wherein each 
family was selected using CART (Rep) and number of individuals selected within each 
family (nk). 

Order 

Without simulation With simulation 

Family u + g Rep 
nk 

Family Rep 
nk 

BLUPS BLUPIS CART CART 

1 28 157.0236 5 40 27 30 28 5 30 

2 90 156.0278 5 40 27 30 90 4 20 

3 42 151.0156 4 40 26 20 42 2 0 

4 75 150.6422 3 40 26 10 75 3 10 

5 69 150.0833 4 40 26 20 69 5 30 

6 39 140.8769 5 40 24 30 39 5 30 

7 113 139.3131 5 40 24 30 113 4 20 

8 117 137.7323 5 40 24 30 117 5 30 

9 106 137.2079 5 40 24 30 106 5 30 

10 70* 136.7379 1 40 24 0 70 1 0 

11 38 133.924 5 40 23 30 38 5 30 

12 26 130.6799 3 30 22 10 26 3 10 

13 2 127.906 5 30 22 30 2 5 30 

14 61 127.8761 5 30 22 30 61 5 30 

15 78 127.8528 4 30 22 20 78 4 20 

16 27 125.4197 5 30 22 .30 27 5 30 

17 34 124.4823 4 30 21 20 34 4 20 

18 66 124.1805 5 30 21 30 66 5 30 

19 100 123.5837 3 30 21 10 100 3 10 

20 89 121.6171 1 30 21 0 89 1 0 

21 81 121.2884 3 30 21 10 81 3 10 

22 12 120.4981 4 30 21 20 12 4 20 

23 29 119.5196 1 20 21 0 29 1 0 

24 43 118.4544 2 20 20 0 43 2 0 

25 65 117.1188 4 20 20 20 65 4 20 

26 67 116.4488 4 20 20 20 67 3 10 

27 7 115.7334 3 20 20 10 7 3 10 

28 80 115.419 1 20 20 0 80 1 0 

29 71 114.8461 4 20 20 20 71 4 20 

30 50 114.7471 5 20 20 30 50 5 30 

31 25 114.2707 4 20 20 20 25 3 10 

32 23 114.2551 2 20 20 0 23 2 0 
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Continued 

33 54 114.1181 3 20 20 10 54 3 10 

34 84 114.0369 1 10 20 0 84 2 0 

35 88 113.5553 3 10 20 10 88 3 10 

36 47 111.458 0 10 19 0 47 0 0 

37 9 108.5093 4 10 19 20 9 3 10 

38 111 108.037 3 10 19 10 111 3 10 

39 76 107.3001 4 10 18 20 76 4 20 

40 94 106.6959 2 10 18 0 94 2 0 

41 35 105.795 3 10 18 10 35 1 0 

42 96 105.5061 4 10 18 20 96 4 20 

43 63 105.3483 2 10 18 0 63 0 0 

44 53 105.1904 4 10 18 20 53 4 20 

45 6 104.6934 3 0 18 10 6 3 10 

46 72 104.3787 1 0 18 0 72 1 0 

47 68 104.1732 2 0 18 0 68 2 0 

48 14 104.0509 4 0 18 20 14 4 20 

49 24 103.9342 3 0 18 10 24 3 10 

50 118 103.8421 1 0 18 0 118 1 0 

51 95 103.7601 4 0 18 20 95 4 20 

52 101 103.5018 0 0 18 0 101 2 0 

53 22 101.9428 5 0 0 30 22 4 20 

55 1 101.2394 5 0 0 30 1 4 20 

56 55 101.1084 4 0 0 20 55 3 10 

60 56 99.605 4 0 0 20 56 3 10 

61 20 99.4583 3 0 0 10 20 3 10 

63 45 98.8018 4 0 0 20 45 4 20 

65 103 97.8211 4 0 0 20 103 4 20 

66 109 97.158 3 0 0 10 109 3 10 

69 17 96.0743 4 0 0 20 17 3 10 

71 64 95.8345 3 0 0 10 64 3 10 

82 49 87.8862 4 0 0 20 49 4 20 

83 4 85.0302 3 0 0 10 4 3 10 

84 3 84.9651 4 0 0 20 3 4 20 

93 11 75.5039 3 0 0 10 11 0 0 

Total 1100 1077 1020  Total 890 

*Families not selected using CART because they failed to exhibit satisfactory results (≥11 stalks/m) in at 
least 50% of plots are shown in bold. 
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Table 2. Confusion matrices between the family selection strategies using CART, BLUPIS 
and BLUPS, together with measures of choice accuracy (CAc), apparent error rate (AER), 
selection precision (SeP) and error of omission (EOm) for the original data (without si-
mulation) and following simulation (with simulation). 

Without simulation 

CART 
BLUPIS 

Total 
BLUPS 

Total 
S N S N 

S* 38 14 52 34 18 52 

N 14 44 58 10 48 58 

Total 52 58 110 44 66 110 

CAc (AER) 0.745 (0.255) 0.745 (0.255) 

SeP (EOm) 0.731 (0.269) 0.773 (0.227) 

With simulation 

CART 
BLUPIS 

Total 
BLUPS 

Total 
S N S N 

S 36 13 49 32 17 49 

N 16 45 61 12 49 61 

Total 52 58 110 44 66 110 

CAc (AER) 0.736 (0.264) 0.736 (0.264) 

SeP (EOm) 0.692 (0.308) 0.727 (0.273) 

*S = selected families, N = non-selected families. 

 
context of sugarcane family selection, the higher the choice accuracy (CAc) and 
the smaller the error of omission (EOm) are, the better is the CART perfor-
mance. In a breeding program, the error of omission (EOm) is more compro-
mising than the error of selecting more families improperly, that is, the error 
corresponding to B/TAB. The genotypes that pass to the next phase, coming 
from the families improperly selected by CART, would be subjected to new se-
lection cycles within the breeding program, where these genotypes could then be 
excluded, if necessary. That is, the performance of CART improves for a higher 
number of correct predictions of selected and non-selected families (higher 
CAc), as indicated by the other procedures (BLUPS or BLUPIS), and a smaller 
number of families selected using BLUPS and BLUPIS and discarded by CART 
(smaller EOm). 

Using non-simulated data, CART identified 38 of 52 families selected by 
BLUPIS (SeP = 0.731), that is, 73% of families with high TSH values (Table 2). 
CART failed to select 14 families selected by BLUPIS, resulting in an EOm = 
0.269. Coincidentally, 14 other families not selected by BLUPIS were selected by 
CART. This error corresponds to another type of selection error, which is less 
compromising than the EOm because the genotypes selected in the respective 
families are assessed in the subsequent stages of the breeding program, where 
these genotypes may be eventually excluded from the breeding population, as 
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previously mentioned. Similar reasoning applies when comparing the apparent 
error from CART selection relative to BLUPS selection (EOm = 0.227, Table 2).  

The CART choice accuracy values were similar to those obtained using 
BLUPIS and BLUPS (CAc = 0.745). In practical terms, this result indicates that 
CART successfully predicted 74.5% of the families selected or non-selected by 
BLUPS or BLUPIS, even when only using the number of stalks in the plot. This 
accuracy ratio is greater than 0.5 (p-value = 1.26e−07), a value that would be ex-
pected by chance if selection using CART had no relationship whatsoever with 
the other methods. 

CART, based only on NS, indicated the selection of 52 families, 14 (26.9%) of 
which would not have been selected by BLUPIS and 18 of which would not have 
been selected by BLUPS (Table 2). When considering only potentially superior 
families, that is, those families that should be selected, CART exhibited signifi-
cant selection precision compared to BLUPIS (SeP = 0.731, p-value = 0.0005976, 
H0:π = 0.5) or BLUPS (SeP = 0.727, p-value = 0.0001941, H0:π = 0.5). These per-
centages were relatively low but ensured that there was a reasonable amount of 
potential families in the subsequent stages of the breeding program at a rather 
reduced operation cost because only NS data were required. 

According to [26], approximately 60% of the best genotypes are concentrated 
in 10% of the best families, and little can be gained by selecting more than 20% 
of the families. Therefore, the use of the CART algorithm and the selection rate 
from the BLUPIS and BLUPS methods should ensure the selection of 10% to 
20% of the best families, and the best individuals would consequently be assessed 
in the second test phase (T2). 

When considering only simulated data, the CART choice accuracy values were 
also similar to those obtained using BLUPIS or BLUPS, with CAc = 0.736. The 
results obtained using simulated data (synthetic data) were actually very similar 
to those obtained using non-simulated data, most likely because of the relatively 
large number of control data (a total of 25 plots per control, which contributed 
data for the CART algorithm). Using simulation data prior to the CART proce-
dure has the potential advantage of enabling the means for ideotypes (ideal fam-
ilies) to be simulated at the researcher’s discretion, which can be used to define 
which families to select from those present in a specific experiment. The results 
in Table 2 show the relevancy of the simulation procedure because the measures 
of the choice accuracy and the selection precision of the simulated and 
non-simulated data were rather similar, indicating sustained algorithm perfor-
mance. Furthermore, the simulation can enable offsetting limited control data in 
a specific experiment. In the extreme case of the absence of controls, data could 
be simulated if the researcher is able to define a mean vector and a covariance 
matrix for the variables of interest according to the study population and consi-
dering the environment in which the selection is performed. This information 
could be retrieved from historical records from other experiments that have 
been conducted at the same location, for example, or from other studies report-
ing the information. 
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The use of tree pruning (1-SE rule or 10-fold cross-validation methods) to 
generate more accurate estimates resulted in no changes in the trees obtained, 
both for the simulated and non-simulated data. There was no change in the trees 
for which the pruning procedure was used because the algorithm could reach the 
optimal tree without using a fit to the model, which may have resulted from the 
good volume and quality of the data that were used in the analyses. 

Figure 2 shows the regression tree with the non-simulated data generated by 
CART. The mean productivity of the controls was 145.81 TSH. Productivities 
higher than this value were generated by families with NS values higher than 
110.5. That is, the NS was ranked into two classes, of which the first consisted of 
families with total NS values per plot below 110.5, and the second consisted of 
families with corresponding values above 110.5. This cutoff point between the 
classes corresponded to at least 11 stalks per linear meter of furrow because the 
plots consisted of two five-meter furrows. 

Figure 3 shows the regression tree with the simulated data. The productivities 
generated for this tree were higher than 145.81 TSH when the total NS per plot 
was higher than 113.4, that is, at least 11 stalks per linear meter, which corrobo-
rated the result found using only the original data. However, the increase in the 
volume of data via simulation enabled additional classes of predicted values for 
TSH to be defined according to the total NS per plot of the family, which may be 
advantageous within the family selection process. Thus, it would be sufficient to 
select families with 13 to 15 stalks per linear meter if the breeder aims to select 
families with predicted TSH values ranging from 157 to 180 t∙ha−1. A NS per li-
near meter above 15 and below 18 would indicate families with predicted TSH 
values ranging from approximately 180 to 200 t∙ha−1. Families with more than 18 
stalks per linear meter would be associated with predicted TSH values above 230 
t∙ha−1. Although the yield components SD and SH are not included in the regres-
sion tree generated by CART, the breeder should assess these traits and others, 
including the disease resistance, the lateral bud outgrowth, the internode length, 
the growth habits and other agronomic aspects of plants, for selection in families 
with higher productivity potential. 

 

 
Figure 2. Regression trees generated using the CART algorithm for 
control data, wherein NS represents the total number of stalks per plot 
(two 5-m-long furrows), and the terminal nodes represent the pre-
dicted yield in tons of stalks per hectare (TSH); non-simulated data. 
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Figure 3. Regression trees generated using the CART algorithm for 
control data, wherein NS represents the total number of stalks per plot 
(two 5-m-long furrows), and the terminal nodes represent the pre-
dicted yield in tons of stalks per hectare (TSH); simulated data. 

 
Table 3. Mean of the selected population (Ms), in tons of stalks per hectare (TSH), and 
number of families (nf) selected using the BLUPS, BLUPIS and CART selection strategies. 

 BLUPS BLUPIS 
CART 

NSim* SimD 

Ms 123.4621 120.4744 115.5319 115.8233 

nf 44 52 52 49 

*NSim = non-simulated data; SimD = simulated data. 

 
The mean of the population selected by CART was lower than that selected by 

BLUP and BLUPIS for both the simulated and non-simulated data (Table 3). 
This result was obtained because CART selected families with TSH genotypic 
means below the overall mean of the original population (Table 1). However, 
the considerable advantage offered by CART is that the entire plot does not need 
to be weighed, which is necessary in the application of BLUPS or BLUPIS. 
Counting the number of stalks alone can be used to obtain a highly accurate se-
lection of the best families when using CART. 

The CART selection strategy may reduce operational costs because a smaller 
amount of manpower and a shorter execution time are required both to establish 
the experiments and to evaluate the families, which may result in a more effi-
cient process of individual selection in the initial phases of sugarcane genetic 
breeding programs. 

4. Conclusions 

The CART algorithm effectively defined the classes of yield components fol-
lowed by family selection with a mean accuracy of 74% compared to the BLUPIS 
and BLUPS selection procedures, which are usually applied in most sugarcane 
breeding programs.  

A regression tree based only on the number of stalks per plot was sufficient to 
predict the sugarcane productivity classes. This study shows that families with 
more than 11 stalks per linear meter of furrow are potentially more productive 
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and should be selected and inspected for other agronomic characteristics.  
Data simulation based on the covariance matrix between variables collected in 

controls had no effect on the results assessed in the present study because the NS 
showed a high correlation with the TSH. 
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