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Abstract 
Heatmap cluster figures are often used to represent data sets in the omic 
sciences. The default option of the frequently used R heatmap function is to 
cluster data according to Euclidean distance, which groups data mainly to 
their numerical value and not to its relative behaviour. The disadvantage of 
using the default clustering dendrograms of R is demonstrated. Instead, a 
script is provided that uses correlation as distance function, which better re-
veals biologically meaningful information. This optimized script was used to 
detect heterotic groups in Vitamaize hybrids (purple maize with high nutra-
ceutical value). A field trial with different genetic combinations was per-
formed through an agricultural phenomics approach (holistic evaluation of 
the phenotype). The grain yield data and other phenotypic variables were 
represented through heatmap figures. In the data set of Mexican tropical ma-
ize germplasm, at least three heterotic groups were detected, in contrast to 
only two heterotic groups reported earlier in temperate yellow maize from 
USA and Europe. This optimized script for heatmap correlation bicluster can 
also be used to better represent metabolomic fingerprints and transcriptomic 
data sets. 
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1. Introduction 

The bidirectional linkage between the genotype and the phenotype is one of the 
central challenges of experimental research in biological systems. To better un-
derstand the complexity of living organisms, the omic sciences such as genomics 
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[1], transcriptomics [2] [3], proteomics [4], metabolomics [5] [6] [7], and phe-
nomics [8] are continuously developing new technologies that generate a large 
amount of digital data from nucleic acids, proteins, and metabolites. Bioinfor-
matic [9], chemometric [10], cell fractionation [11], and biostatistical methods 
[12] are optimized in parallel, to automatize data mining, so that biological 
meaningful conclusions can be drawn from the vast amounts of numbers and 
letters. Raw data from the omic experiments need to be analysed and converted 
into figures, models, and other visual representations to be shared among the 
scientific community. The holistic measurement of the phenotype of a crop 
plant such as maize or rice is the main objective of agricultural phenomics, also 
called field-omics [13]. Currently, yield and phenotypic data obtained by public 
breeding institutions such as Centro Internacional de Mejoramiento de Maiz y 
Trigo (CIMMYT) and the International Rice Research Institute (IRRI) are 
mostly provided as numbers within large tables in spreadsheet format. Numeri-
cal field trial data of phenomic experiments need to be converted into adequate 
charts to better visualize the major environmental and genetic effects [14] [15]. 

One of the most powerful types of figures for that purpose is heatmap biclus-
ters. These can be produced in the statistical programming environment R [16], 
which is widely used in the scientific community of genomics. Heatmaps can 
summarize data from large transcriptomic [2] and metabolomic experiments 
[17]. The data from rows and columns can be rearranged automatically employ-
ing different clustering algorithms [18]. Generated dendrograms demonstrate 
the relationships between groups in rows and columns. Since heatmaps have not 
yet been used for agricultural phenomics, we tested the algorithms for plant 
breeding and other heterogenic phenotypic data types. The default parameters of 
R heatmap function produced a graph that is not congruent with the real bio-
logical context. Thus, we created an R script that uses correlation as a distance 
measure for clustering and tested this procedure in several scenarios and data 
sets that are typical of plant research, molecular breeding, and biochemical phe-
notyping.  

Heterosis in plants is reflected by the fact that plants from the F1 generation 
(cross between two parents A × B) have much more vigour and produce higher 
grain yield than the parental homozygous lines A and B. Heterosis in crop plants 
such as maize is caused by genetic [19] [20] and epigenetic factors [21], both 
with additive and non-additive effects (e.g. overdominance). Heterotic vigour of 
corn provides the economic basis of a billion dollar business for selling hybrid 
seeds with agrochemicals in a package [22]. Breeding programs of modern corn 
varieties in Europe and USA usually consider only two heterotic groups, the 
northern flint and the southern dent types [23]. Inbred lines of these two hete-
rotic groups are sexually crossed in order to produce a commercial F1 hybrid 
[24]. For example, the line B73 has typically been crossed with the line Mo17 
resulting in a hybrid with larger cobs and higher grain yield [25].  

Mexico is a centre of genetic diversity of maize and many other vegetative 
species [26]. Numerous Mexican corn varieties with different phenotypic prop-
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erties, such as grain colour, cob size, and biochemical profile are available in the 
gene pool [27]. Therefore, it can be expected that heterotic patterns in tropical 
and subtropical maize are different and not limited to only two groups such as in 
Europe and the USA.  

In an effort to produce more nutritious corn for human consumption, the Vi-
tamaize breeding program of the department of genetic engineering of 
CINVESTAV Irapuato has developed several tropical maize varieties that have 
grains with higher levels of antioxidants such as anthocyanins, phenols, and ca-
rotenes. Through sexual breeding (non-transgenic approach), inbred lines were 
generated that have dark purple grain colour. We started the work with the fol-
lowing questions: Are the default clustering parameters of R heatmaps adequate 
to represent the data from phenomic experiments? Could an optimized R script 
better reveal the heterotic pattern of tropical Vitamaize? How many heterotic 
groups can be found in a small set of twelve inbred Vitamaize lines? 

2. Methods 
2.1. Biological Materials: Vitamaize Lines and Hybrids 

Our research group developed, through a non-transgenic approach (sexual 
breeding), several new varieties of tropical purple corn. We started with Mexican 
landraces of purple colour (Xoxocotla and Tepalcingo) as donor parents and 
elite homocygotic lines from the subtropical and tropical breeding program of 
CIMMYT as recurrent parents. Near isogenic lines (NILs) were obtained by al-
lele introgression, through repetitive backcrossing of purple corn to recurrent 
parents (white and yellow elite lines from CIMMYT). For example, the Vitama-
ize lines VM311, VM321 and VM451 were generated as the corresponding NILs 
from CML311, CML321 and CML451 from CIMMYT. Backcrossing was done 
for 4 - 6 generations and selfings were continued for 3 - 5 further generations. In 
each generation, segregating seeds were carefully screened (non-destructively) for 
colour, revealing the profile of biochemical compounds such as anthocyanins, 
polyphenols, and carotenes. Fifty-two inbred lines were obtained that had dark 
purple grain colour, and twelve entries were selected for the genetic experiment 
and phenomic evaluation. Female lines were planted in rows and sexually 
crossed with pollen of 3 male tester lines (VM311, VM321 and VM451) to gen-
erate enough seeds of the 36 hybrids. A replicated field trial was established in a 
tropical environment at sea level (Rancho La Esperanza near Puerto Vallarta, 
Mexico) during the spring-summer season of 2014. Agronomic management 
was standard for the field station (drip irrigation every week, fertilization with 
100 kg + 400 kg of urea per ha, application of pesticides against insects and fungi 
when needed). Grain yield of the 36 Vitamaize hybrids was measured for 8 rep-
licate plots distributed across a homogenous field and the average calculated as 
tons/ha. 

2.2. Heatmap Bicluster Graphs 

A heatmap is a visual representation of numerical data where the individual val-
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ues are represented as colors or grayscale. Large numerical values are usually 
represented by dark squares and smaller values by lighter squares. It is a 2D dis-
play of data from two independent and one dependent variable (3 dimensional 
data). Heatmap bicluster figures combine the heatmap display with a specific 
reordering by a dendrogram tree. Results from a cluster analysis are displayed by 
permuting the rows and the columns of the heatmap to place similar values near 
each other [28]. The matrix data can be rearranged automatically with different 
clustering methods [18]. The relationships between groups of rows and columns 
are shown by the dendrogram branches. Heatmaps biclusters have not been pre-
vioulsy used for agricultural phenomics. Therefore algorithms for plant breeding 
and phenotypic experiments had to be developed and validated. An R script was 
created that uses the correlation coefficients as a distance measure for clustering. 
Comparisons are made with the graphs that are generated by the default para-
meters of R heatmap function. 

2.3. Script for Generating a Simulated Data Matrix 

#individual ABC data series 50 data points each 
A = runif (50) × 10; B = runif(50) × 10 + 3; C = runif(50) × 10 + 18 
#Build a data frame with 6 columns 
datam = data.frame (A100 = A + 100, B100 = B + 100, C100 = C + 100, A200 

= A + 200, B200 = B + 200,C200 = C + 200) 
datam = as.matrix (datam) 
#simulated CDE data series with both negative and positive correlation 
C = runif (50) × 10; D = runif(50) × 10 + 5; E = runif(50) × 10 + 10 
dataPNC = data.frame (C1 = C + 100, D1 = D + 100, E1 = E + 100, C2 = C + 

150, D2 = D + 150, En = 100-E) 
dataPNC = as.matrix (dataPNC) 

2.4. Script for Generating Correlation Graphs 

#Function to put histograms on the diagonal. Add-in to pairs function 
panel.hist = function(x, ...) { 
  usr = par("usr"); on.exit(par(usr)) 
par(usr = c(usr[1:2], 0, 1.5) ) 
  h = hist(x, plot = FALSE) 
  breaks = h$breaks 
  nB = length(breaks) 
y = h$counts; y = y/max(y) 
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)} 
#Function to put R2 values and p values in the upper panels. Add-in to pairs 
function 
panel.cor2 = function(x, y, digits=2, prefix="", cex.cor) { 
usr = par("usr"); on.exit(par(usr)) 
  par(usr = c(0, 1, 0, 1)) 
  r = abs(cor(x, y, use = "pairwise.complete.obs")) 
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  r2 = r*r 
  txt = format(c(r2, 0.123456789), digits = digits) [1] 
txt = paste(prefix, txt, sep="") 
  if(missing(cex.cor)) cex.cor = 0.8/strwidth(txt) 
  text(0.5, 0.5, txt, cex = cex.cor) 
   modelo=summary(lm(x~y)) 
valorP=signif(modelo$coefficients [8], digits = digits) 
text(0.7, 0.2, valorP)} 

2.5. Script for Figure 1 and Figure 2 

#Figure 1(a): boxplot 
boxplot(datam, col = 8, las = 2) 
#Figure 1(b): Correlation plot 
Pairs (datam, lower.panel = panel.smooth, upper.panel = panel.cor2, diag.panel = 

panel.hist, gap = 0, main = "Correlations") 
#default heatmap with Euclidean distance. Figure 2(a) scaled by column 
hv <- heatmap(datam, col = gray(24:0/24), scale="col", main="colscaled") 
#default heatmap with Euclidean distance. Figure 2(b) scaled by row 
hv <- heatmap(datam, col = gray(24:0/24), scale="row", main="rowscaled") 

2.6. Script for Heatmap Clustering with Correlation as Distance  

#definition of function for distance based on R value (both negative and posi-
tive) 

cor.dist<- function(x){ as.dist(1 -cor(t(x), use="pairwise.complete.obs"))} 
#definition of function for distance based on R2 value (only positive) 
cor2.dist <- function(x){ as.dist(1- cor(t(x), use="pairwise.complete.obs")^2)} 

2.7. Differences between the Correlation Measures 

The previously defined functions cor.dist and cor2.dist are both based on linear 
correlation (Pearson coefficient). The difference is that the cor2.dist function 
provides only positive values, whereas cor.dist provides both negative and posi-
tive values. The function cor2.dist produces a distance rage from 0 to 1, whereas 
the cor.dist produces a distance range from 0 to 2, with the maximal distance 
being for samples with R = −1. The consequence is that samples with a high 
negative correlation will be separated more strongly than samples with zero cor-
relation when using the cor.dist function for clustering. On the contrary, the 
cor2.dist function will cluster samples with negative R = −1 together with posi-
tive R = 1. 

The function cor2.dist is useful for mathematical purposes, but the cor.dist 
function is more adequate to reflect biological reality. A sample that behaves 
with negative correlation is mathematically similar, but biologically and chemi-
cally it is the total opposite and should be clustered far apart from the other. The 
choice of either R or R2 as distance measure depends on the experimental ques-
tion to be addressed. For most applications of agricultural phenomics, for the 



A. Tiessen et al. 
 

507 

majority of plant phenotypic traits, we recommend using the cor.dist function. 

2.8. Script for Figure 3 and Figure 4 

#correlation plot. Figure 3(a) 
pairs(dataPNC, lower.panel=panel.smooth, upper.panel=panel.cor2, di-

ag.panel=panel.hist, gap=0, main="Correlations") 
#default heatmap. Figure 3(b) 
hv <- heatmap(dataPNC, col = gray(24:0/24), scale="none", main="default") 
#heatmap with cor2.dist Figure 3(c) 
hv <- heatmap(dataPNC, distfun=cor2.dist, col = gray(24:0/24), scale="none", 

main="R2 cor2.dist") 
#heatmap with cor.dist Figure 3(d) 
hv <- heatmap(dataPNC, distfun=cor.dist, col = gray(24:0/24), scale="none", 

main="R cor.dist") 
#heatmap with optimized distance measure based on R2 correlation. Fig. 4A 

scaled by column 
hv <- heatmap(datam, distfun=cor2.dist, col = gray(24:0/24), scale="column", 

main="Cor2Distcol ") 
#heatmap with optimized distance measure based on R2 correlation. Fig. 4B 

scaled by row 
hv <- heatmap(datam, distfun=cor2.dist, col = gray(24:0/24), scale="row", 

main="Cor2Distrow") 

2.9. Script for Heatmap Correlation Using Vitamaize Data (Figure 5) 

#import data. Copy Table 1 with column titles and row names into clipboard. 
data=read.table(file="clipboard", header=T, sep="\t", na.strings = ".") 
datam=as.matrix(data[,-1]) #remove row names and convert to numerical 

matrix 
rownames(datam)=data[,1] #define rownames on first imported column 
#non-scaled default heatmap. Figure 5(a) 
hv <- heatmap(datam, col = gray(24:0/24), scale="none", main="default ") 
#non-scaled heatmap with optimized distance measure based on negative and 

positive R values. Figure 5(b) 
hv <- heatmap(datam, distfun=cor.dist, col = gray(24:0/24), scale="none", 

main="R cor.dist") 

3. Results and Discussion 
3.1. Figures Produced with Simulated Data Demonstrate the 

Suitability of the Default Option Parameters for Each 
Experimental Purpose 

Data graphs can be used to support different scientific conclusions from the 
same set of experimental results. In order to reveal the strengths and weaknesses 
of default heatmap figures, we produced a small data set, consisting of a data 
matrix of six samples and fifty simulated data points in arbitrary units. A box-
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plot figure best demonstrated that samples A100, B100, and C100 had a higher 
median value than samples A200, B200, and C200 (Figure 1(a)). A plot figure 
produced by our optimized script using the pair function demonstrated that the 
A, B, and C data series did not correlate to each other (Figure 1(b)). However, 
sample A100 correlated perfectly only to A200 (R2 ≈ 1), B100 to B200 and C100 
to C200, respectively (Figure 1(b)). 

The heatmap function of R with the default procedure for clustering (based on 
Euclidean distance) produced two figures (Figure 2). We implemented grayscale 
coding to indicate the numerical value of each data point, with darker colour 
representing higher units. Depending on the selected scaling option, the figures 
look different despite representing identical data (Figure 2). Nevertheless, the 
hierarchical clusters of the heatmaps scaled by column (Figure 2(a)) or by row 
(Figure 2(b)) are both identical. The default clustering function groups the six 
samples in two big nodes (Figure 2). Samples A100, B100 and C100 are grouped 
together and clearly separated from samples A200, B200 and C200 (Figure 2). 
The dendrogram branches according to intensity of the colour (Figure 2(b)) and 
not because of the relative behaviour of the data (Figure 1(a)). The vertical den-
drogram (on top) follows the colour according to rowwise scaled data (Figure 
2(b)), whereas the horizontal dendrogram (on the left) follows the colour ac-
cording to columnwise scaled data (Figure 2(a)). This clearly demonstrates that 
the default clustering function reflects the numerical values rather than the cor- 

 

 
Figure 1. Distribution plots of a simulated data matrix. Three independent groups were 
simulated so that the numerical values were either near to 100 or to 200, thus creating six 
samples (A100, B100, C100, A200, B200, C200). Sample A100 had a mean value close to 
that of B100 and C100, whereas sample A200 had a mean value close to B200 and C200. 
However, the A, B, and C data series did not correlate between each other. Sample A100 
correlated only to A200 (B100 to B200 and C100 to C200). (a) Boxplots of the simulated 
data series. (b) Panel of correlation plots. Fifty individual data points are shown in the 
lower panels. The R2 correlation value and p value are given in the upper panels.  
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Figure 2. Heatmaps with the default clustering method of R (Euclidean distance). (a) Default heatmap with the 
option scale by column. (b) Default heatmap with the option scale by row. In both panels it can be seen that the 
upper cluster branches in two major nodes. Samples A100, B100, C100 cluster separately from samples A200, 
B200, and C200. This clustering reflects the absolute numerical values rather than the correlation across data 
points (see Figure 1). 

 
relation among the data series (compare to Figure 1(b)).  

A more appropriate heatmap can be prepared when using our optimized R 
script instead (Figure 3). The cor2.dist function uses the R2 value of correlation 
as a distance measure to construct the hierarchical cluster dendrogram. The 
heatmap correlation groups the six samples correctly in three big nodes (Figure 
3) and not in two nodes as demonstrated previously with the default R options 
(Figure 2).  

In this optimized heatmap sample A100 correctly clusters together with A200 
and is clearly discriminated from B100 and all other samples (Figure 3), as one 
would expect from the data, in stark contrast to the clustering presented in Fig-
ure 2(b). The graphs of Figure 3 are better suited for experiments from biologi-
cal systems since they better reflect the correlation among the data series regard-
less of the median value of the numerical units (Figure 1(a)). 

Evidently, Figures 1-3 are very different from each other, despite having be-
ing prepared with an identical set of simulated data. Each figure allows drawing 
a different sort of conclusion, some better suited for mathematical purposes and 
others better suited for chemical or biological questions. The default dendogram 
(Figure 2) groups samples according to the absolute value as shown in a boxplot 
(Figure 1(a)), whereas the optimized heatmap (Figure 3) clusters samples ac-
cording to the relative behavior of the data as shown in the correlation plots 
(Figure 1(b)).  

In many instances of biological research (e.g. in molecular breeding and yield 
experiments), it is more appropriate to avoid scaling at all. Agronomic data and  
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Figure 3. Heatmaps with an optimized clustering method. (a) Optimized heatmap with the option ‘scale by col-
umn’. (b) Optimized heatmap with the option “scale by row”. In both panels the upper dendrogram correctly 
branches into three nodes. This clustering reflects the correlation across the data series regardless of the absolute 
numerical values (see Figure 1). 

 
breeder results need to be represented “as is” in the figure, without manipulation 
by any type of normalization or transformation algorithm to enable synchronous 
comparison of values across rows and across columns. If one applies any type of 
scaling or normalization, meaningful comparisons are strictly limited either 
among rows only or among columns only (compare Figure 3(a) and Figure 
3(b)). 

3.2. Heatmap Clustering for Biological Scenarios That Include  
Negative Correlation 

In a dataset with both positive and negative correlation, the choice of the dis-
tance function had a major effect on the clustering results (Figure 4). For exam-
ple, inthe simulated dataPNC matrix (see methods), the heatmap dendograms 
looked very differently from each other, depending on the option parameters 
(compare panels in Figure 4). The default parameters of the heatmap function 
groups samples C1 and C2 tightly together (Figure 4(b)), despite having zero 
correlation to each other (Figure 4(a)). This demonstrates that the default 
heatmap (Figure 4(b)) was the worst and had no biological meaning consider-
ing the data point distribution (see Figure 4(a)). The best dendogram was ob-
tained with the cor.dist function by which sample E1 was clustered most far 
apart from sample En (Figure 4(d)). The cor.dist function is more adequate to 
reflect biological reality since a sample that behaves with negative correlation is 
mathematically similar, but biologically and chemically it is the total opposite 
(samples belong to different groups and branches). Therefore, it is advisable to 
use the cor.dist function for agricultural phenomics and for plant breeding. 
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Figure 4. Heatmaps of simulated data with both positive and negative correlation. (a) Panel of correlation plots. R2 
values and p values are given in the upper panels. (b) Heatmap with default clustering (Euclidean distance). (c) 
Heatmap with cor2.dist function that uses only positive R2 values. In this case, samples E1 and En were grouped to-
gether, similarly as C1 and C2 were also grouped. (d) Heatmap with cor.dist function that uses negative and positive 
R values. In this case, sample E1 is clustered very far apart from sample En since it correlates negatively (it displays 
the total opposite behaviour). 

3.3. Heatmap Clustering with Correlation Better Reveals 
Heterotic Groups in Vitamaize Hybrids 

In order to measure heterosis and hybrid vigour in several Vitamaize varieties, 
we performed a genetic experiment by crossing all twelve inbred lines (females) 
to three tester lines as males: VM311, VM321 and VM451. We phenotypically 
evaluated the resulting thirty-six F1 hybrids in a field trial in a tropical environ-
ment (Puerto Vallarta, Mexico). After harvest, grain yield was measured for each 
plot individually and averaged for each hybrid combination (Table 1).  
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Table 1. Grain yield of thirty-six Vitamaize hybrids evaluated during the spring-summer 
season 2014 by field trial in Puerto Vallarta, Mexico. Data is given in tons/ha and 
represents the average of eight replicate plots distributed across a homogenous field expe-
riment (n = 8). 

Female Line 
Yield (ton/ha) Male Parent (Tester Line) 

VM311 VM321 VM451 

Mz491492 5.47 5.84 4.63 

MzATFW112 4.76 4.07 6.97 

MzATFW1211 4.80 5.55 3.23 

MzATFW1221 4.88 6.24 5.38 

MzATFW1413 6.01 4.88 4.34 

MzATFW512 5.33 6.14 5.70 

MzATFW521 4.67 5.71 4.06 

MzATFW641 2.67 5.18 2.93 

MzDTP111 4.59 4.41 5.76 

VM311a 0.40 4.74 5.53 

VM321a 7.33 1.12 5.81 

VM451 7.29 5.47 0.49 

 
Most lines expressed a higher heterosis when crossed to one male line than to 

the other two. For example, VM311 crossed to itself (VM311a) resulted in low 
yield (Table 1). It expressed no heterosis as expected, since this hybrid is equiv-
alent to an inbred line. However, crosses VM311 × VM321 and VM311 × 
VM451 demonstrated increased productivity. The same effect may be observed 
for the line MzATFW1211, which crossed best with VM321 and VM311 but 
poorly with VM451. A similar effect was observed for the line MzATFW641, 
which crossed best with VM321 but poorly with VM451 and VM311 (Table 1). 

The two hybrids with the highest grain yield were VM321 × VM311 and 
VM451 × VM311 indicating that the line VM311 worked well as male parent 
rather than as female parent. The line VM451 worked both well as female as 
male parent, since the crosses VM451 × VM311 and MzATFW112 × VM451 had 
also good yield (Table 1). 

In order to genetically classify the inbred lines, the data matrix of grain yield 
was used to prepare two heatmap figures without scaling (Figure 5). The default 
clustering parameters of R (Euclidean distance) produced the first heatmap 
(Figure 5(a)) that grouped the samples (female lines) in many branches of dif-
ferent lengths.  

In contrast, the optimized R script that uses the R value of correlation (both 
negative and positive correlation) produced a heatmap that grouped the samples 
differently (Figure 5(b)). In this second heatmap, three mayor branches of fe-
male lines appeared, which corresponded to the genotypes that better crossed 
with either VM311, VM321, or VM451. This outcome revealed the heterotic 
pattern of general combining ability (GCA) and specific combining ability 
(SCA) (genetic complementation).  
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Figure 5. Heatmaps of grain yield across Vitamaize hybrids. The darker the colour, the 
higher the yield in ton/ha. (a) Heatmap with default clustering (Euclidean distance). (b) 
Heatmap with clustering according to correlation (positive and negative R values). The 
female lines are shown in the rows, whereas the 3 male tester lines are shown in the col-
umns. The colour coding of the female lines correspond to the heterotic grouping. 

 
The cluster dendrogram in Figure 5(a) has no biological meaning besides 

grouping samples by the average yield, whereas cluster groups in Figure 5(b) 
elegantly revealed an important biological feature, which is the genetic corres-
pondence to a specific heterotic group. Default clustering of R heatmaps (Figure 
5(a)) revealed mathematical proximity of the numerical values of grain yield, 
whereas the optimized heatmap based on correlation (Figure 5(b)) better 
represented genetic patterns of heterosis in those twelve Vitamaize lines.  

This information is further useful as a tool to continue and expand the breed-
ing program by intercrossing lines of the same heterotic group, to improve their 
per se performance, and to cross them among complementary heterotic groups. 
It is expected that this procedure will generate a hybrid with high yield and im-
proved nutritional quality (antioxidants) that can be commercially released to 
farmers. 

Maize varieties and inbred lines from temperate regions belong to a strict pat-
tern of two heterotic groups, which facilitates hybrid breeding programs, since a 
line from group A is always crossed to a line from group B in order to generate a 
commercial hybrid. Either A × B or B × A are crossed, depending of the choice 
of the female and male lines. In comparison, tropical maize germplasm such as 
the Vitamaize hybrids were classified into three groups by the heatmap correla-
tion function (Figure 5(b)). The existence of at least three heterotic groups 
opens many more breeding possibilities to generate F2 hybrids. Different types 
of three way F2 hybrids are possible such as A × B/C, A × C/B, B × A/C, B × 
C/A, C × A/B, or C × B/A. The occurrence of three heterotic groups in tropical 
germplasm may explain the fact that in Mexico three way hybrids are the pre-
dominant form of released commercial varieties, whereas in temperate regions 
maize lines are classified as flint or dent (one way F1 hybrids are much more 
common.  

Further phenomic experiments will be performed with tropical germplasm to 
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optimize the genotypes for production. The numerical data matrices should to 
be analyzed with optimized data mining algorithms and visualization tools in 
order to better explain the complex link between genotype and phenotype in a 
worldwide crop plant such as maize. Our optimized script for heatmap correla-
tion bicluster is not only is useful for agricultural phenomics, but also to im-
prove the interpretation of other omic sciences, such as metabolomic finger-
prints [29] [30] and transcriptomic data sets [2]. 

4. Conclusion 

The program environment R allows efficiently analyzing a vast amount of data 
from omic experiments. Heatmap cluster figures are powerful tools to summar-
ize large data matrices. Many users with chemical and biological background are 
unaware of the advantages/disadvantages of different clustering algorithms 
available in R. The challenge for experimental scientists is to carefully select and 
adjust the function parameters in order to produce figures that support mea-
ningful biological conclusions. The default parameters of R heatmaps based on 
Euclidean distance were chosen for mathematical purposes, but they are not 
adequate for the representation of biological experiments in the omics fields. We 
provide a short R script based on correlation (either R or R2 values) that allow 
plotting optimized heatmap dendrograms. This procedure was suitable to classi-
fy samples according to phenotypic or genetic traits. The script can be used to 
prepare meaningful heatmap figures for molecular breeding programs, but it can 
also be applied for data matrices obtained from transcriptomic and/or metabo-
lomic experiments [31] of any biological system. 
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