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Abstract 
Ability to modify plants at the genomic level by advanced molecular technology has enhanced the 
scope of improvements in plant traits attempted earlier through conventional breeding methods. 
Techniques such as genetic transformation have opened new vistas whereby functional genes, not 
commonly present in a particular species can be added from other species. The traits incorpo-
rated into the genetically engineered plants in the beginning were confined to those governed by 
dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time 
now also permit the transfer of complexly inherited traits such as drought and cold tolerance. 
Transgenic technology is also useful in understanding gene expression and metabolic pathways 
which can then be used to harness the full genomic potential of the plant. This review presents a 
narrative on development of transgenics and their use for the improvement of field, industrial and 
pharmaceuticals crops. In addition, discussions are made on current status on genetically modi-
fied crops, hurdles to genetic engineering, overcoming strategies and future scope. 
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1. Introduction 
The alteration or modification in an organism’s genome using modern DNA technology is called genetic engi-
neering or genetic modification. Since it involves the introduction of foreign DNA or synthetic genes into the 
organism of interest the resulting artifact is often referred as transgenic and or genetically modified (GM). The 
ability to introduce alien genes from distant species or life forms into plants has made available an entirely new 
and novel gene resource pool to breeders in their pursuit to improve crops for survival, productivity, and prod-
ucts. Transgenic crops can be generated with the use of recombinant DNA techniques which alter the crop’s ge- 
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netic makeup by manipulating the genome—either by introduction, deletion, substitution, or silencing of an in-
dividual gene or group of genes of interest. The functionality of transgenes has expanded with time. In the be-
ginning, only traits that exhibited complete dominance, free of the interaction from the native plant genome or 
the environment, were targeted. For such traits, only one copy of the trait introduced into one of the inbred par-
ents was required. Fortunately, some of these dominant traits such as insect resistance and herbicide tolerance 
provided solution to major production hurdles encountered by farmers in producing major crops of food and fi-
ber.  

Cultural practice modification offered by early transgenic varieties not only enhanced economic return to the 
farmer because of higher crop yields but also had multiplier effects of soil erosion prevention from reduced till-
age, and reduction in environmental pollution from the residual herbicides and insecticides. Now, the scope of 
transgenic technology has expanded to include quantitative traits such as stress tolerance and yield improvement 
that necessitate the interaction of the introgressed genes with native genes engaged in the metabolic pathway for 
the phenotypic trait expression where environment may also influence considerably the final phenotypic expres-
sion. Stacking of introgressed genes in hybrids to create value combination of traits is also receiving consider-
able attention. Genetic engineering (GE) is usually resorted when improvement through conventional breeding 
and mutagenesis have been exhausted. Such situations arise if a desired trait is not present in the crop germ-
plasm, the trait has proven difficult or very time consuming to improve through conventional breeding, or there 
is a need to remove or switch off particular genes. Commercialization of first genetically engineered crop started 
back in 1996 and since then it has reached new heights in its application and wide adaptability to various sectors 
of modern agriculture. Since 1996 to 2013 there has been tremendous increase in the acreage of genetically en-
gineered crops. Between 1996 and 2013 there has been more than 100 fold increase in the acreage of genetically 
engineered crops [1]. 

2. Development of Transgenic 
The ability of genetic engineering to incorporate foreign traits into plants was first exhibited in 1970s. Although 
approved earlier for limited sale, it was not until 1996 that the Monsanto Company (USA) got the approval to 
commercially market European corn borer (Ostrinia nubilalis) resistant corn (Zea mays L.), Colorado potato 
beetle (Leptinotarsa decemlineata) resistant potato (Solanum tuberosum L.), cotton bollworm complex (tobacco 
budworm—Heliothis virescence, bollworm—Helicoverpa zea, and pink bollworm—Pectinophora gossypiell) 
resistant cotton (Gossypium hirsutum L.), and a non-selective, broad spectrum herbicide glyphosate (N-phospho- 
nomethylglycine) tolerant soybean (Glycine max (L.) Merr.). The genes for all insecticidal proteins, modified 
cry1Ab in corn [2], modified cry1Ac in cotton [3], and modified cry3Ab in potato [4] derived from commonly 
found soil bacteria—Bacillus thuringiensis (Bt). Glyphosate tolerant soybean was developed by incorporating a 
bacterium glyphosate resistant EPSP (5-enolpyruvyl shikimate-3-phosphate) synthase gene [5]. The transgenic 
crop research developed over years can be grouped into three generations (Figure 1). Each generation represents 
unique thrust areas for developing transgenic crops and has contributed to the present pool of commercially 
adopted transgenic crops [6]. 

Modern agriculture has been quick to adopt the commercial first generation transgenic crops expressing her-
bicide tolerance and insect resistance since these effects were clearly visible in the crop production systems. The 
second generation transgenic crops were designed for product quality characteristics but they did not lived up to 
expectations, and no commercial crop with these specific characteristics is presently in the market. However, the 
first approved transgenic food, Calgene’s Flavr Savr tomato which reached the market in 1994, succeeded in 
delaying softening of the ripe fruit after harvesting but was a complete commercial failure and was withdrawn 
from the market in 1997 out of safety concerns. The third generation of transgenic crops has been engineered for 
use as biofactories or living reactors in the production of pharmaceuticals and industrial chemicals and is often 
referred as “molecular farming”. 

3. Genetic Engineering of Crops 
The early and most cost-reward producing use of GE has been in the development of insecticide and pesticide 
resistance in field crops. A great deal of interest has currently been shown in incorporating tolerance to envi-
ronmental stresses in crop cultivars in order to stabilize the yield under fluctuating environmental conditions. In  
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                   Figure 1. Development and characterization of genetically engineered crops.   
 
addition, as enhanced nutritive value of crop has gathered much interest to combat malnutrition in developing 
countries and to meet the food preference of naturalists, several transgenic cultivars with fortified nutritive val-
ues have been released. Some degree of success has also been accomplished in developing crops with chemical 
constituent of industrial value and the use of plants as hosts for pharmaceutical products.  

3.1. Field Crops 
Similar to the wide acceptance of hybrid corn due to its yield advantage more than sixty years ago, farmers in 
the United States now commonly plant transgenic cultivars of several field crops possessing traits that increase 
their value or yield potential. The typical transgenic traits approved for US crops are herbicide tolerance (bro-
moxynil, glufosinate, glyphosate, sulfonylurea), insect resistance (Bt kurstaki, Bt tenebrionis), virus resistance 
(Papaya ringspot virus, cucumber mosaic virus , zucchini yellow mosaic virus, watermelon mosaic virus, potato 
leaf roll virus, potato virus Y), male sterility (barnase/barstar), modified ripening (ACC synthase, ACC deami-
nase, SAM hydrolase, polygalacturonase), and modified oils (high lauric , myristic, oleic acids) [7]. Currently, 
transgenic acreage in several countries (4 - 17 different countries) for soybean, cotton, maize and canola account 
for 79%, 70%, 32% and 24% respectively of the total planting [1]. Table 1 lists different transgenic cultivars 
have been released or are at different stages of development. 

The transgenes currently employed in weed management confer resistance to crops allowing use of effective 
broad-spectrum herbicides. The gene characterizing bacterial enzyme conferring tolerance to glyphosate has 
been most widely used, however, transgenes conferring tolerance to bromoxynil (Buctril), glufosinate (Liberty), 
and sulfonylurea (Glean) are also registered [7]. Two classes of Cry genes from Bacillus thuringiensis have been 
incorporated to produce Cry protein in a number of plants species to control a lipidopteran and co-lipidopteran 
insects [7]. The protein breaks down in the insect intestine releasing a lethal toxin called delta-endotoxin. Duke 
[85] enumerated three strategies for alleviating the need for herbicidal kill utilizing transgenes, namely, 1) 
transgenic alteration of biocontrol agents to make them more effective in managing weeds, 2) transgenes that 
produce a more competitive crop or provide the ability to produce natural phytotoxins (allelochemicals) and 3) 
cover crops that will self-destruct near the time of main crop planting alleviating the need for herbicidal kill. The 
disease resistances of commercial value have been incorporated into papaya (Carica papaya L.) to bestow resis-
tance to papaya-ringspot-virus [86] and into rice (Oryza sativa L.) to give bacterial leaf blight resistance [87].  

Most of phosphorus (P) in the soil is present in insoluble form limiting its availability to the plant. However, 
López et al. [88] observed that engineering to overproduce citrate enhanced the ability of tobacco (Nicotiana 
tabacum L.) plants to use insoluble P in the soil with potential for commercial utilization. Researchers are at-
tempting to improve photosynthesis in C3 plants with the aim of boosting yield by achieving overexpression of 
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C4-cycle enzymes [89]-[91] but much work remains to accomplish this goal. In a recent review [92], the poten-
tial of transgenic approach in improving rice production has been shown by identifying a range of traits that can 
be addressed to develop transgenic for commercial adoption and cultivation. Response of a plant to environ-
mental stress can range from altered gene expression and cellular metabolism to changes in crop yields [93]. 
Genes have been introduced into cereals to fortify the grain nutritional value, e.g., cereals fortified with vitamin 
A to prevent partial or full blindness and with iron to relieve anemia due to iron deficiency in pregnant woman 
and children. Golden rice (Oryza sativa L.) is the result of the introduction of two genes from daffodils (Narcis-
sus pseudonarcissus L.) and one from a microorganism resulting in increased production of vitamin A precursor 
beta-carotene [94]. Also in rice, genes involved in the production of an iron-binding protein and enzyme that fa-
cilitates its availability have been introduced to develop genotypes exhibiting elevated levels of iron [95]. Con-
siderable amount of research has been devoted to enhance nutritive value of different crops with varied success. 
Researchers have also attempted to incorporate improved quality traits (delayed ripening, enhanced appearance, 
extended functionality, enhanced sweetness, and fats and oils) and nutritive value (fats and oils, protein, carbo-
hydrate, caroteniod and vitamin E) into crops (Table 1). 
 
Table 1. Selected examples of transgenic crops targeting a specific trait or quality for crop improvement.                  

Scientific name Common 
name Trait/quality Target gene product/gene/source Reference 

Beta vulgaris Sugar beet Herbicide tolerance  
(glyphosate) 

5-Enolypyruvylshikimate-3-phosphate synthase (EPSPS),  
CP4 strain of Agrobacterium tumefaciens [8] 

Glycine max L. Soybean 

Herbicide tolerance  
(glufosinate ammonium) 

Carotenoids and vitamin E 
Fats and oil 

Protein 
Heat shock protein 

Phosphinothricin acetyltransferase (PAT),  
Streptomyces viridochromogenes 

Alpha-tocopherol 
Omega-3-fatty acid; increased oleic acid 

Methionine enriched glycinin 
P5CR-Increased proline accumulation 

[9] 
 

[10] 
[11] [12] 

[13] 
[14] 

Gossypium  
hirsutum L. Cotton 

Insect-resistance 
Increased ethanol  

production 

cry1F gene, from Bacillus thuringiensis var Aizawa 
ADH (Alcohol dehydrogenase) 

[15] 
[16] 

Helianthus  
annuus Sunflower 

Herbicide tolerance  
(imidazolinone) 

Fats and oil 

 
By selection of a naturally occurring mutant 

Docosahexaenoic 

 
[17] 
[18] 

Lens culinaris Lentil Chemically induced  
seed mutagenesis Acetohydroxyacid synthase (AHAS) [19] 

Linum  
usitatissimum L. 

Flax,  
Linseed 

Herbicide tolerance  
(sulfonylurea) Acetolactate synthase (ALS) [20] 

Brassica napus Argentine 
Canola 

Herbicide tolerance  
(glufosinate ammonium) Phosphinothricin acetyltransferase (PAT), S. viridochromogenes [21] 

Medicago  
sativa Alfalfa 

Herbicide tolerance  
(glyphosate) (lucerne) 
Drought and freezing 

5-Enolypyruvylshikimate-3-phosphate synthase (EPSPS),  
CP4 strain of Agrobacterium tumefaciens 
Sod, Mn-Sod, Mn superoxidase dismutase 

[22] 
[23] 

[24] [25] 

Oryza sativa Rice 

Herbicide tolerance  
(imidazolinone,  

imazethapyr) 
Protein 

Salinity and drought 
Submergence tolerance 

Cold tolerance 
Metal toxicity tolerance 

Acetolactate synthase (ALS), ethyl methanesulfonate (EMS) 
Beta-phaseolin 

HVA 1 
pdc1, Sub1 

Wx-control amylase synthesis, Gs2-chloroplastic  
glutamine synthetase 

Parβ-Glutathione S-transferase 

[26] 
 

[27] 
[28] 

[29] [30] 
[31] [32] 

[33] 

Triticum  
aestivum Wheat 

Herbicide tolerance  
(imidazolinone) 

Glyphosate tolerance 
Enhanced functionality 

 
 
 

Drought tolerance 

Acetohydroxyacid synthase (AHAS), ALS 
 

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS),  
Agrobacterium tumefaciens, strain CP4 

Protein modification of high molecular weight glutenins, flour  
functionality 

DREB1A, HVA1 

[34] 
 

[35] 
 

[36] [37] 
[38] [39]     

[40] 
[41] [42] 
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Continued 

Zea mays L. Maize 

Insect-resistance 
Herbicide tolerance  

(glyphosate) 
Corn rootworm resistance 

Drought tolerance 

cry1Ab, Bacillus thuringiensis subsp. kurstaki, 
modified 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) 

modified cry3A gene, E. coli 
 

NF-YB, MAPK 

[43] 
[44] 
[45] 

 
[46] [47] 

 Sugarcane Insect resistance Cry1a(b), synthetic cry1Ac, cry1Aa3, cry1Ab 
[48] [49] 
[50] [51] 
[52] [53] 

Lycopersicon 
esculentum Tomato Delayed ripening 

Freezing tolerance 
1-Aminocyclopropane-1-carboxyllic acid (ACC) synthase 

afa3 
[54] 
[55] 

Cucurbita  
pepo Squash 

Cucumber mosiac virus 
(CMV), zucchini yellows 

mosaic (ZYMV) and  
watermelon mosaic  

virus (WMV) 

Coat protein (CP) [56] 

Solanum  
tuberosum L. Potato 

Colorado potato beetle 
resistance 

Carbohydrate 
Enhanced sweetness 

Freezing 
Heat shock protein 

cry3A, Bacillus thuringiensis (subsp. Tenebrionis) 
Amylose and amylopectin structure/ratio 

Monellin 
BetA 

DcHSP17.7-improved cellular membrane stability and enhanced 
in-vitro tuberization 

[57] 
 

[58] 
[59] 
[60] 
[61] 

 Cassava Carbohydrate Amylose and amylopectin structure/ratio [62] 

 Sweet  
potato Protein Essential amino acid rich protein [63] 

 Carrot Salt tolerance  
(up to 400 mM) Badh [64] 

 Cucumber Enhanced sweetness Thaumatin [65] 

Carica papaya Papaya Papaya ringspot virus 
(PRSV) resistant Coat protein (CP) [66] 

Cucumis melo Melon 

Reduced accumulation of 
S-adenosylmethionine 

(SAM), and consequently 
reduced ethylene synthesis, 

S-Adenosylmethionine hydrolase [67] 

Musa acuminata Banana Carbohydrate Amylose and amylopectin structure/ratio [68] 

Prunus  
domestica Plum Plum pox virus (PPV) 

resistance Coat protein (CP) gene [69] 

Nicotiana  
tabacum L. Tobacco 

Herbicide tolerance  
(bromoxynil, ioxynil) 

 
Reduced nicotine content 

Salinity 
Drought 
Chilling 

Waterlogging tolerance 
 

Metal toxicity tolerance 

Nitrilase, Klebsiella pneumoniae 
 
 

Tobacco quinolinic acid phosphoribosyltransferase (QTPase) 
BetA, Mltd 

p5cs, TPS1, SacB 
ad7, Des9 

ACC 
 

MsFer-Ferritin (ion storage); arsC 

[70] 
 
 

[71] 
[72] [73] 
[55] [74] 

[75] 
[76] [77] 

[78] 
[79] [80] 

Cichorium  
intybus Chicory Male sterility Barnase ribonuclease, Bacillus amyloliquefaciens [81] 

Coffea  
arabica Coffee 

Resistance to pests 
(coffee leaf miner, coffee 

berry borer and nematodes) 
Bt [82] [83] 

[84] 

3.2. Industrial Crops 
The crop grown as a feedstock in the production of a commodity rather than for direct human consumption is 
referred to as industrial crop. The industrial crops contribute to the farm income and provide economic stimulus 
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to rural areas. The products from industrial crops also provide a pool of substitutes for classic imports from other 
nations. Some examples of industrial crops are: oil palm, rape seed, soybean, safflower, peas, plantago, potato, 
fiber hemp, flax, guar, agave, cassava, jojoba, kenaf. Fiber crops are amongst the most common industrial crops. 
Some transgenic plant lines, which produce compounds for specific industrial applications, are already commer-
cialized, and many more are at different stages of development by biotechnology companies, research institutes 
and universities. Progress has been slow in developing transgenic plants for important industrial uses. However, 
immense potential exists in employing GE for producing crops for biofuel, pulp and paper, plastics, oil and lu-
bricants, and soil remediation. 

3.2.1. Biofuel, Paper and Plastics 
Lignocellulosic biomass constitutes an important category of feedstock whose conversion into biofuel is accre-
tive to the environment due to its high carbon sequestration credential. However, there is a major impediment to 
the process of conversion of the biomass cellulose to ethanol as it is embedded within the lignin of the plant cell 
walls and not easily separable for direct chemical reaction. This recalcitrance adds extra and cumbersome steps 
to the conversion process and the release of all cell wall cellulose for utilization remains problematic. Research-
ers have genetically engineered the switchgrass (Panicum virgatum) to address the recalcitrance and reduced 
ethanol yield [96]. Overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lig- 
nin biosynthesis pathway, has shown promising results by increasing cellulosic ethanol yield from switchgrass 
by 2.6-fold and a dramatic reduction of recalcitrance [96]. Genetically engineered PvMYB4-OX switchgrass can 
thus provide a novel system for further understanding cell wall recalcitrance. Similar studies were done on 
transgenic alfalfa lines where it was found that recalcitrance to both acid pretreatment and enzymatic digestion 
is directly proportional to lignin content. Modifying the lignin biosynthetic enzymes yielded nearly twice as 
much sugar from cell walls as wild-type plants [97]. Lignin modification, by genetic engineering, could bypass 
the need for acid pretreatment and thereby facilitate bioprocess consolidation. Moreover, induction of genes that 
accelerates lignin degradation can be valuable for pulp and paper production from lignocellulosic biomass as 
well. Laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) enzyme present in white rot fungi has at-
tracted much attention because of its ability to degrade lignin [98]. Hood et al. [99] generated transgenic maize 
plants by employing an Agrobacterium-mediated system with fungal laccase gene (EMBL accession no. 
U44430) which showed highest expression in the maize embryo-preferred globulin 1 promoter and targeting of 
the protein to the cell wall. High oil germplasm was used to increase germination, as well as to assist in increas-
ing expression 20-fold in five generations through breeding and selection. It was hypothesized that the high oil 
lines might provide substrate (i.e. oil) for the laccase-generated free radicals to act upon, thereby preventing the 
accumulation of free radicals that alter seed physiology, such as increased lignification. Downregulation of one 
of the major enzymes involved in lignin biosynthesis, 4-coumarate: coenzyme A ligase (Pt4CL1) in transgenic 
aspen (Populus tremuloldes), resulted in a 45% decrease in lignin with a compensation of 15% increase in cel-
lulose, doubling the plant cellulose:lignin ratio without any change in lignin composition and without any ap-
parent harm to plant growth, development or structural integrity [100]. Changing levels of cinnamyl alcohol de-
hydrogenase (CAD) have also been found to modify lignin synthesis [101]. Poplar (Populus tremula × Populus 
alba) with CAD antisense constructs grows similar to control trees but with an increase in the proportion of free 
phenolic groups in lignin facilitating solubilization and fragmentation [102].  

Poly 3-hydroxyalkanoates (PHAs) are a class of microbially produced polyesters comprising of at least 100 
different PHA constituents and at least five different dedicated PHA biosynthetic pathways [103] with potential 
application as biodegradable plastics. Arai et al. [104] was able to transfer from Aeromonas caviae FA440 
modified PHA synthase gene (phaCAc) into Arabidopsis thaliana that enabled the plant to accumulate PHA in 
its tissues.  

3.2.2. Industrially Desirable Fatty Acids 
Cahoon et al. [105] reported that expression of a gene from pot marigold encoding an enzyme that introduces 
conjugated double bonds into polyunsaturated fatty acids resulted in the accumulation of calendic acid, a novel 
conjugated polyunsaturated fatty acid, to amounts of 20% - 25% of the reported total soybean seed oil. Calendic 
acid is even more oxidatively unstable than linolenic acid, thus improving the drying properties of coating ap-
plications. However, the level of calendic acid concentration in soybean at 20% - 25% remains much lower than 
55% concentration found in the marigold. 
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Castor (Ricinus communis L.) oil contains high levels (up to 90%) of ricinoleic acid needed for conversion to 
substitutes for petroleum derived lubricants, emulsifiers, inks, and nylons. Unfortunately, castor cultivation is 
prohibited in most countries as the seeds also contain toxin ricin. The level of ricinoleic acid achieved in tobacco 
and Arabidopsis have been only to the amount of ˂1% and 17%, respectively [97] [98] [106] [107]. Singh et al. 
[108] observed that although a single gene (FAH12) may regulate ricinoleic acid synthesis, its accumulation in 
triglycerol most likely required involvement of other genes. Napier [109] noted that, thus far, it has been diffi-
cult to attain levels of industrially desirable fatty acids in transgenic plants similar to found in the non-agrono- 
mic source plants. 

McKeon [110] reported the ongoing efforts to enhance industrial chemical constituents in important crops. 
Canola with high laurate for detergent and soybean with high oleate for food and monomers have reached com-
mercial stage, while canola with petroselenate for food and monomers, soybean with vernolate for plasticizers 
and coatings, cotton with low-saturates for food uses are in development. 

3.2.3. Phytoremediation 
There are many reports of transgenic plants exhibiting tolerance to varying levels of heavy metals, a trait useful 
for phytoremediation of contaminated soils [111]-[118]. Arabidopsis thaliana transformed by type 2 MT (met-
allothioneins) gene (tyMT) from cattail (Typha latifolia) exhibited an increased tolerance to Cu2+ and Cd2+ [119]. 
Indian mustard (Brassica juncea) plants overexpressing ATP sulphurylase were shown to have higher shoot Se 
concentrations and enhanced Se tolerance compared to wild type when grown in the presence of selenite [120] 
[121]. Family of sulfur rich peptides termed phytochelatins (PCs) are able to bind to Cd and some other heavy 
metals [122] and transgenic tobacco plants over expressing cysteine synthase in either the cytosol or chloroplasts 
were more tolerant to metals such as Cd, Se and Ni [123]. Transgenic plants have been developed with altered 
transporter genes with the aim to exclude a toxic metal ion, transporting the metal into the apoplastic space and 
vacuole where metal would be less likely to exert a toxic effect [124]. Phytoremediation uses different plant 
processes and mechanisms normally involved in the accumulation, complexation, volatilization, and degradation 
of organic and inorganic pollutants [125]. Table 2 shows categorization of different processes used by some of 
the model transgenic plants in phytoremediation. Most of the information available today is either from labora-
tory and or greenhouse experiments. Elaborated field testing is required to validate and establish the effective-
ness of these transgenic plants for actual cleanup of contaminated metal sites. 

3.3. Pharmaceutical Crops 
Genetic transformation studies have shown the potential of producing recombinant proteins, including pharma-
ceuticals and industrial proteins, and other secondary metabolites in plants. Several substances have already 
been produced in transgenic plants and are in different stages of clinical trials (Table 3) but none of them were 
approved as pharmaceutical for humans until 2012. Recently, an enzyme, for treating the rare hereditary 
Gaucher disease (Elelyso, developed by Protalix) generated in carrot tissue became the first Plant Made Phar-
maceutical (PMP) for human use to gain regulatory approval by the US FDA [140]. At present, many crops are 
being developed to produce drugs or biologics for the diagnosis, treatment, or prevention of diseases in human 
and animals. These include enzymes, hormones, anticoagulant factors, vaccines, and monoclonal antibodies tar-
geted at a variety of disease, such as cystic fibrosis or non-Hodgkin’s lymphoma [141]. 

Current therapeutic proteins biosynthesis systems utilizing prokaryotes, yeasts and cultured mammalian cell 
mediums are handicapped in several ways [142]. Prokaryotes can only biosynthesize simple therapeutic proteins 
such as insulin, interferon or growth hormone as complex proteins produced in them are not always properly 
folded or processed for proper level of biological activity [143]. Complex proteins produced from yeasts have 
co- and post-translational modifications (PTMs) problems while cultured mammalian cells are difficult to scale 
up to large volume productions due to lack of bioreactor capacities, high operating cost, and are subject to virus 
or prion contamination [138]. Recent studies have suggested transgenic plants could be suitable alternatives for 
large scale, low cost, and safe production of complex therapeutic mammalian proteins [144]. A range of plant/ 
crop species have been used in production of commercial pharma/crop products. An extensive review by Saklani 
and Kutty [145] describes the status on plant derived compounds in clinical trials with a special emphasis on 
plant-based anticancer drugs.  

Using plants as bioreactor can substantially alleviate capacity problem especially in cases of therapeutic  
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Table 2. Selected example of transgenic plants overexpressing genes for improved phytoextraction and phytovolatilization 
efficiency and phytodegradation potential.                                                                    

Target plant Gene Product/source Performance Reference 
Phytoextraction efficiency 

Tobacco, rapeseed MT2 Metallothionein—human Enhanced Cd tolerance [126] 

Tobacco,  
cauliflower MT1 Metallothionein—mouse Tolerated 200 mM CdCl2 

Tolerated 400 mM CdCl2 in hydroponic medium 
[127] 
[128] 

Arabidopsis PsMTA Metallothionein—pea 8× higher Cu accumulation [129] 

Indian mustard gshl γ-Glutamyl-cystein  
(E. coli) 

3 - 5× higher γ -ECS and GSH levels and 90% higher shoot Cd 
concentrations [130] 

Poplar gshI γ-Glu-cys synthetase  
(E. coli) Cd tolerance and increase of total sulfur in shoot [131] 

Phytovolatilization efficiency 

Arabidopsis merB Organomecurial  
lyase-bacteria Volatilization of up to 763 ng Hg (0) min−1∙g−1 [132] 

Yellow poplar merApe9 Hg(II) reductase- 
mutagenized merA Volatilization of 10× more mercury than WT plants [133] 

Indian mustard SMT 
Selenocysteine  

methyltransferase  
A. bisulcatus 

Volatilized 2.5× more Se than WT plants when  
supplied with selenate [134] 

Phytodegdration potential 
Tobacco Onr PETN reductase Enhanced detoxification of nitroglycerin [135] 
Poplar gshl y-ECS Elevated herbicide tolerance and rapid herbicide degradation [136] 

Indian mustard gshI and gshII y-ECS and GS Enhanced tolerance and 2 - 12× increase 
in nonprotein thiol level [137] 

Rice, Potato P450CYP Mammalian cytochrome Enhanced detoxification and cross tolerance  
toward several herbicides [138] [139] 

 
Table 3. Plant made pharmaceuticals for human use at different stages of regulatory approval.                          

Product Crop Class Application Status Organization Reference 
Glucocerebrosidase 

ELELYSO/UPLYSO 
Carrot cell 

culture 
Therapeutic  

enzyme Gaucher’s disease US FDA approved, 
May, 2012 Protalix [165] 

Alpha-galactosidase 
(PRX-102) 

Carrot cell 
culture 

Therapeutic  
enzyme Fabry’s disease Phase I/II Protalix [166] 

Acetylcholesterase 
(PRX-105) 

Carrot cell 
culture 

Therapeutic  
enzyme Biodefense Phase I Protalix [167] 

Apo-A1Milano Safflower Therapeutic  
protein 

Cardiovascular  
disease Preclinical SemiBioSys  

Genetics [168] 

Human serum albumin Flax Therapeutic  
protein 

Maintenance of blood 
plasma pressure Preclinical Agragen [169] 

 
antibodies production where rapid volume increases are of paramount concern. Plants also provide a wide array 
of species suited for use as bioreactors. A recombinant protein yield of up to 20 kg/ha have been reported using 
tobacco, corn, soybean or alfalfa [146] [147]. Newly developed plant expression systems in duckweed, moss, 
algae, and higher plant suspension-cultured cells offer the opportunity of fast turnover and high yield molecular 
farming in highly contained and completely controlled environment [142]. Unlike yeasts, transgenic plants pos-
sess the ability to carry out most PTMs needed to produce complex proteins such as plasma proteins, antigens, 
hormones, cytokines, enzymes and antibodies [144] [148]. In most cases, several PTMs including proteolytic 
cleavage(s), oligomerization and glycosylation are required to obtain therapeutic proteins of proper biological 
activity, pharmacokinetics, stability, and solubility [142]. Expression levels for therapeutic proteins in plants 
remain low and currently several approaches including codon optimization [149]-[151], RNA silencing [152] 
[153], targeted secretion of recombinant proteins by the roots [154] [155], stored into seed endosperm [156] and 
seed oilbodies [157], production in chloroplast [158] are being experimented to improve yields. Difference in 
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the protein molecule N-glycans produced by plants from mammalian glycoproteins may also trigger immune 
responses in humans and induce their fast clearance from the bloodstream [159] [160]. Strategies to obtain 
plant-derived antibodies with human-compatible carbohydrate profiles include their retention in the endoplasmic 
reticulum [161] [162] or alternatively transformation of plants with mammalian glycosyltransferase [163] [164]. 
As a result of these advances, plants have emerged as a potential safe and cost-effective alternative to microbial 
or mammalian expression systems especially for large quantity multimeric recombinant proteins. 

4. Current Status of Genetically Engineered Crops 
In the United States, the Animal and Plant Health Inspection Service (APHIS) regulates the development and 
release of transgenic crops. APHIS classifies phenotypic traits under AP (agronomic properties), BR (bacterial 
resistance), FR (fungal resistance), HT (herbicide tolerance), IR (insect resistance), MG (marker gene), NR 
(nematode resistance), OO (others), PQ (product quality), and VR (virus resistance) categories. APHIS issued a 
total of 2192 permits for different phenotypic traits in 2013. Other traits (OO), herbicide tolerance (HT) and ag-
ronomic properties (AP) topped the category by contributing 34.53, 21.94 and 20.12 percent [170] respectively 
(Figure 2). Permit for other traits also topped in year 2014 with more than 75% of total permit issued. One per-
mit can contain multiple phenotypes of phenotype categories while each phenotype category may include one to 
several traits. The FAO data [171] on developing countries showed more than thousand different GMOs under 
various stages of commercialization (Table 4). 

Since 1996 the increase in acreage of transgenic crops in industrial countries has moderated but the pace of 
planting these crops in developing countries has accelerated (Figure 3). The total area planted in genetically en-
gineered crops has increased from 1.7 million hectares in 1996 to 175 million hectares in 2013 reflecting a re-
markable increase global hectarage of genetically engineered crops by 100 folds. In 2013, transgenic crops were 
grown in a total of 27 countries where the top ten countries each grew more than 1 million hectares. A record 18 
million farmers, in 27 countries, have planted 175 million hectares (432 million acres) in 2013 [1]. If a trend like 
this continues, it is expected that 40 or more countries will adopt genetically engineered crops by 2015, the final 
year of the second decade of commercialization.  
 

 
Figure 2. Total permits issued by phenotype for the transgenic crops in the 
United States during year 2013.                                        

 
Table 4. Number of genetically modified organisms (GMOs) in developing countries under different stages of development.  

Region/(GMOs) Experimental phase Field trial Commercial phase Not specified 

Asia (679) 453 119 33 74 

Africa (85) 39 36 10 - 

Latin America and Caribbean (306) 99 185 15 7 

Europe (28) 18 6 2 2 

Near East (51) 31 16 2 2 

Grand total 1149 640 362 62 85 
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Figure 3. Trend of global growth in acreage of genetically engineered crop production 
between developing and industrial countries (adapted from Reference [1]).                  

5. Hurdles to Genetic Engineering and Overcoming Strategies 
The rapid commercialization of transgenic technology is not without controversy. In addition to public suspicion 
or outright opposition, the main scientific concerns regarding deployment of transgenic crops include potential 
harmful effects to non-target organisms, gene flow into related wild species and persistence of gene products in 
the environment. 

Transgenic technology is still in inception and faces a number of challenges. To start with, current methods of 
gene insertion are not precise to control the location and number of copies of the gene inserted. As the location 
has considerable influence on gene expression, if not placed suitably, “silencing” of the inserted gene can occur 
or inserted gene can silence the native genes. Transgenic traits are not always stable over generation and such 
instability could be deleterious to fertility, yield or other parameters of plant fitness or usefulness. Oftentimes, 
the inserted DNAs contain multiple stacked genes with the potential to cause undesirable interactions in the host 
plant. Pleiotropy is a common form of gene expression. Thus a gene known for a trait deemed desirable may 
produce unintended harmful side effects. King et al. [172] noted that glyphosate applied for weed control in 
soybean decreased biomass and seed yields when soil moisture was limiting. 

There is fear that year-after year production of Bt crops will produce pest population resistant to cry proteins. 
This apprehension is appropriate as it has happened in the past after an insecticide was applied repetitively. The 
only way to overcome the threat from the acquired resistance by insects is to infuse into the plant new defense 
mechanism or build multiple barriers of defense. The incorporation of two Bt genes, cry1Ac and cry2Ab2 in 
cotton variety Bollgard II is an example of complex defense barrier through stacking of two resistance genes 
with different modes of action making it difficult for the pests to develop resistance to two proteins simultane-
ously. Eventually though, invasion of the barrier by the pests should be expected, and thus as with conventional 
breeding, transgenic breeding will also have to remain a continuous process.  

The public and scientific debate on the long-term consequences of unnecessary DNA-sequences introduced 
into the plant during the transformation process continues. It is feared that widespread use of antibiotic-resistant 
genes for markers could lead to the evolution of bacterial varieties resistant to antibiotics. Hohn et al. [173] has 
reviewed strategies employed to eliminate selectable marker recombinant DNA-sequences from the transgenic 
plants. Zuo et al. [174] effectively removed marker genes from transgenic plants using the Cre/loxP site-specific 
recombinase. Some transformation systems, now, can be performed with any selectable marker systems [175].  

Consumers rightfully should have a choice to consume or not to consume food grown out of transgenic crops. 
The separation of a crop produced by both transgenic and non-transgenic seeds on the same farm can be costly 
and bear chance of mix-up and resulting costly food recall similar to Starlink corn episode. Keenan and Stem-
mer [176] suggest transgene deletion from the food portion (grain, tuber) of the transgenic plants with appropri-
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ate recombinase to eliminate the need for identity preservation of food produced from non-transgenic crop va-
rieties. The recombinase protein itself should also be rapidly degradable. Regulatory guidelines as to the ac-
ceptable level of transgenic DNA “residue” in food should assure the public safeguard. 

There is also concern that pollen from a transgenic variety will drift and cross-fertilize the nontransgenic vari-
ety of the same crop in the vicinity or cross between herbicide resistant transgenics and related wild species will 
create “superweed”. Ways to prevent transgene outflow could consist of measures to ensure its inheritance only 
through maternally derived genome by engineered male sterility or introduction of transgene into the chloroplast 
rather than nuclear genome [168] [169] [177] [178], but these techniques have potential pitfalls. Male sterility 
will cause problems for farmers intending to save seeds for the next crop. The transfer of 0.1% - 0.5% of 
chloroplast traits via pollen [179] in tobacco as well as parental inheritance of chloroplast DNA in other higher 
plants has been observed [180] [181]. In addition, Huang et al. [182] observed that transgenes can migrate from 
the chloroplast to the nuclear genome. Singh et al. [183] described a strategy based on epigenetic inheritance 
(imprinting) and post-transcriptional gene silencing (PTGS)/RNA interference (RNAi) that would allow all 
seeds from self-pollinated transgenic plants to be harvested and re-sown, without the need for specific treat-
ments, while retaining all of the transgenes present in the parent while preventing outcrossing via either male or 
female gametophyte.  

6. Future Scope 
The overall prospects of acceptance of transgenic crops and products will depend on positive public perception 
of this technology, especially as the agrobiotech industry complies with regulations, conducts rigorous research 
on biosafety and successfully completes field trials of these crops. Like any other newly developed technology, 
transgenic crop agrobiotechnology industry faces its own unique challenges and hurdles, especially relating to 
consumer concerns on health risks and environmental safety and barriers to world-wide trade. Long term effects 
of GE foods must be rigorously studied but guidelines and regulations for field-testing and marketing of GM 
products likewise must be clearly defined to remove ambiguity and potential law suits.   

There are numerous technological challenges that must be overcome while attempting to introduce specific 
traits into a crop. Furthermore, the high cost (approximately US$100 - 136 million [184] [185]) of developing 
and obtaining authorization for the commercialization of a transgenic event limits the development of transgenic 
crops only for selecting traits of wide interest. Agro-based companies like Monsanto, Dupont, Syngenta, Dow 
Agro, and Bayer Crop Science have daunting task of generating profit for share holders while they are also sen-
sitive to the farming community and have a humanistic, consumer-oriented approach.   

On positive note, numerous successes have been documented especially with regard to agronomic traits like 
herbicide resistance, pest resistance and drought tolerance. The high adoption rate of genetically engineered 
crops and controlled field trials and research in many developing countries and some EU countries are optimistic 
developments. The need to feed a growing world population, enhancing ability of crops to withstand climate 
change, and public preference for plant based industrial and pharmaceutical products should drive further re-
search in GM plants and their production worldwide. Successful commercialization and marketing of transgenic 
crops and products would require mutual understanding and implementation of international standards and trade 
policies among nations.  
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