

In Silico Mining of EST-SSRs in *Jatropha curcas* L. towards Assessing Genetic Polymorphism and Marker Development for Selection of High Oil Yielding Clones

Neeraj Jain^{1*}, Ganesh B. Patil², Poonam Bhargava³, Rajani S. Nadgauda¹

¹Plant Cell and Molecular Biology, Indian Institute of Advanced Research, Gandhinagar, India
 ²Molecular Breeding and Applied Genomics, MAHYCO Seeds Ltd., Dawalwadi, India
 ³Gujarat State Biotechnology Mission, Gandhinagar, India
 Email: *neerajjain@iiar.res.in

Received 14 March 2014; revised 12 April 2014; accepted 22 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

C Open Access

Abstract

In recent years, *Jatropha curcas* L. has gained popularity as a potential biodiesel plant. The varying oil content, reported between accessions belonging to different agroclimatic zones, has necessitated the assessment of the existing genetic variability to generate reliable molecular markers for selection of high oil yielding variety. EST derived SSR markers are more useful than genomic markers as they represent the transcriptome, thus, directly linked to functional genes. The present report describes the *in silico* mining of the microsatellites (SSRs) using *J. curcas* ESTs from various tissues viz. embryo, root, leaf and seed available in the public domain of NCBI. A total of 13,513 ESTs were downloaded. From these ESTs, 7552 unigenes were obtained and 395 SSRs were generated from 377 SSR-ESTs. These EST-SSRs can be used as potential microsatellite markers for diversity analysis, MAS etc. Since the *Jatropha* genes carrying SSRs have been identified in this study, thus, EST-SSRs directly linked to genes will be useful for developing trait linked markers.

Keywords

Bio-Diesel, Jatropha curcas L., EST, SSR, MAS, Diversity, Marker, Mining, Polymorphism, In Silico

1. Introduction

In recent years, Jatropha curcas L. has gained popularity as a potential biodiesel plant. It is commonly known as

*Corresponding author.

How to cite this paper: Jain, N., et al. (2014) In Silico Mining of EST-SSRs in Jatropha curcas L. towards Assessing Genetic Polymorphism and Marker Development for Selection of High Oil Yielding Clones. American Journal of Plant Sciences, 5, 1521-1541. <u>http://dx.doi.org/10.4236/ajps.2014.511167</u>

purging nut/Barbados nut. This plant belongs to the family Euphorbiaceae and is a native of Mexico and Central America and was later on introduced in many parts of tropics and subtropics. *J. curcas* is commonly known to be a poisonous plant. It is a semi-evergreen shrub or small tree reaching a height of 6 mt (20 ft). It can survive arid conditions; therefore, can be grown on drylands and wastelands. The seeds of this plant are highly toxic but produce oil that can be used as biodiesel after transesterification, besides that, in soap and candle making. Being traditionally considered as a weed, its oil has recently started gaining importance as "fuel of the future" or "green fuel" and has been in news, with transport companies eager to run trains, cars and aeroplanes using biodiesel to cut down both on cost and pollution.

The oil content in *Jatropha curcas* is reported to be varying between accessions belonging to different agroclimatic zones (40% to 58% in kernels) of India [1]-[3]. In recent years, emphasis has been laid on producing high oil yielding *Jatropha* plant which can be achieved through genetic selection and crop improvement methods. As a means to this end, it is necessary to assess the existing genetic variability and generate reliable molecular markers for selection.

DNA markers are not typically influenced by environmental conditions, therefore, can be used to describe patterns of genetic variation among plant populations and to identify duplicated accessions within germplasm collections [4]. To assess the genetic diversity, several types of popular PCR based markers like, RAPD (Random Amplified Polymorphic DNA) [5], ISSR (Inter Simple Sequence Repeat) [6] [7] and AFLP (Amplified Fragment Length Polymorphism) [8] [9] are routinely used due to the advantage of no requirement of prior sequence information [3].

The existing information regarding the extent and pattern of genetic variation in *J. curcas* population is limited [10]. Common molecular markers like AFLP [3] and, RAPD and ISSR [10] [11] have been used to assess the genetic diversity of *J. curcas*. The assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local *J. curcas* germplasm [12]. Basha and Sujatha [11] used RAPD, ISSR and SSR markers to study the diversity between *J. curcas* accessions from different countries, which revealed low genetic variability between accessions from same country and maximum divergence between Indian accessions and a non-toxic Mexican accession. They also developed SCAR markers to differentiate Indian accessions from non-toxic Mexican accession.

There are less popular but extremely useful markers like SSRs (Simple Sequence Repeats) and SNPs (Single Nucleotide Polymorphisms) [13] which can be used for genetic diversity profiling. Of these markers, SSRs [14], also known as Microsatellites or Tandem repeats are short repeating nucleotide sequences in DNA that provide greater confidence for the assessment of genetic diversity and relationship [15]. These are the markers of choice for plant genetics and breeding applications [16] [17] as the data generated by these markers can be used for selections during backcross breeding programs [15], and also because of their reproducibility, multiallelic nature, codominant inheritance, relative abundance and good genome coverage [17]. Marker Assisted Selection (MAS) has proved to be the best resource for improvement of many crops [18]. SSRs have been used for MAS in crops like rice [19] and common bean [20].

The traditional methods of developing SSR markers are usually time consuming and labor-intensive [21] [22]. In contrast to this approach, *in silico* mining of SSRs from available ESTs in public databases, with an increasing data accumulating at a fast rate, is an expeditious and cost effective alternative [21]. The search of SSRs in ESTs (representing genes or coding region) becomes more attractive in wake of report of abundance of SSRs in single or low-copy rather than in repetitive or non-coding sequences as assumed earlier [23]. Therefore, molecular SSRs can be searched in EST databases and employed for designing locus-specific primers [24]. Such markers are termed as EST-SSRs. By convention, the EST sequences containing SSRs are generally referred to as SSR-ESTs, whereas the markers developed from SSR-ESTs are called EST-SSRs [17] [25], the same has been followed throughout this paper.

Expressed Sequence Tags (ESTs) are generated by end sequencing of large number of randomly picked clones from cDNA library constructed using mRNA isolated from specific tissue or specific developmental stage of an organism. EST-derived SSR markers are generally less polymorphic than genomic SSRs [26] due to an associated lower polymorphism of coding regions in contrast to non-coding ones [27]. There are also reports of moderate [28] to very high polymorphism associated with EST-SSRs [29] [30]. In spite of contrasting reports about the level of polymorphism related to EST-SSRs, there are several advantages of using expressed sequences compared with genomic sequences as genetic markers. As the EST derived markers represent the functional component of the genome and are transferable across species [31], they can serve as efficient tool for gene

discovery and genetic mapping of genes [32] [33]. Therefore, EST-SSRs enhance the role of genetic markers by assaying variations in transcribed and known function of genes [21] [26] [34]. In spite of several studies, till date no genetic map of *Jatropha* has been reported [22] and there is a very recent report of SNP-based linkage map by Wang et al. [35]. There is also a need to develop molecular markers for MAS for high oil yielding variety and assessing the genetic diversity.

The present report describes the in silico mining of the microsatellites (SSRs) using the J. curcas ESTs from various tissues viz., embryo, root, leaf and seed available in the public domain of NCBI. At the time of mining, a total of 13513 ESTs were available and downloaded. From these ESTs, 7552 unigenes were obtained, and 395 EST-SSRs were generated from 377 SSR-ESTs. The EST-SSRs obtained through computational method in this study can be used as potential microsatellite markers for various studies like diversity analysis, MAS etc. Since, the Jatropha genes carrying SSRs have been identified in this study, thus, EST-SSRs directly linked to genes will be useful for developing trait linked markers.

2. Materials & Method

Search for EST-SSRs and Primer Designing

EST sequences of J.curcas were downloaded from NCBI's dbEST database (http://ncbi.nlm.nih.gov/) [36] which contains sequences generated from different tissue specific cDNA libraries of embryo, root, leaf and seed. These sequences were arranged in a single FASTA file, which was used for the sequence analysis using different softwares and Analysis Tools.

To find the singletons and to assemble the contigs from the total ESTs, an online tool "EGassembler" (<u>http://egassembler.hgc.jp/</u>) [37] was used. The main parameter provided was 'Overlap Identity cutoff (N > 65): 85'. From the unigenes (singletons+contigs), EST-microsatellites [EST-SSRs] were searched using "SSRlocator version 1" (http://www.ufpel.tche.br/faem/fitotecnia/fitomelhoramento/faleconosco.html) [38].

The SSR search was carried out for repeat motifs (ranging from mono- to hexa-nucleotides). For each repeat motif the parameters were: Mononucleotide repeat-20, Dinucleotide repeat-10, Trinucleotide repeat-07, Tetranucleotide repeat-05, Pentanucleotide repeat-04, Hexanucleotide repeat-04 (the numbers indicating repeat unit *i.e.* minimum number of times the motif was repeated at a stretch); Space between SSRs-100, Space between imperfect SSRs [<=]-05. After obtaining the motifs, the sequence complementarity was taken into consideration and accordingly the complementary motifs like AG and CT or AC and GT or AAC and GTT motifs were grouped into a single class under mono-, di-, tri-, tetra-, penta- or hexa-nucleotides, respectively. After getting SSRs, the primers were designed from the flanking regions using the same software as for SSR search. The parameters provided in the software for primer designing are given in Table 1.

EST Sequences, which have credit in the primer designing, were searched for their gene annotations using BLASTX at The Arabidopsis Information Resource (TAIR) (<u>http://www.arabidopsis.org/index.jsp</u>) [39]. This data was used to get the Gene Ontology (GO) Annotations and functional categorization of ESTs using locus identifiers at Bulk Data Retrieval System of TAIR (http://www.arabidopsis.org/tools/bulk/go/index.jsp) [40].

3. Results and Discussions

3.1. Assembling of ESTs as Unigenes

The size of the available EST data used in this study has been calculated in accordance with the size of the

Table 1. Farameters	for primer designing.			
Sr. No.	Criteria	Minimum	Maximum	Optimum
1	Amplicon size	150	1000	-
2	GC Clamps	0	-	-
3	Primer Size	18	22	20
4	Tm	55	61	59
5	Content G/C	45	50	-
6	Region scanned	Auto	Auto	-
7	End Stability	250	-	-

Table 1 Parameters for primer designing

genome of J. curcas (C = 416 Mb) reported by Carvalho and coworkers [41]. The ESTs of J. curcas generated from tissue specific cDNA library of various tissues (viz. embryo, root, leaf and seed) available in the NCBI's public database dbEST, were downloaded and pooled. These downloaded ESTs were inclusive of the seed specific ESTs generated in our laboratory. The pooled set consisted of 13513 ESTs (~6.2 MB) in all, which comprised of 9844 ESTs of embryo, 1000 of leaf, 1304 of root and 1375 of seed library. Using the EGassembler, all the sequences were categorized into singletons and contigs. The EGassembler segregated 13513 ESTs into 6098 singletons and 7415 redundant sequences. Then it assembled the redundant sequences into 1454 contigs. Therefore, through the software, the total ESTs were categorized into contigs and singletons, which were together grouped as 7552 (~3.8 MB) Unigenes. These data showed that the 45% of the total ESTs, downloaded from the database, were singletons and the rest 55% were assembled into contigs (Figure 1). The assembling of the redundant ESTs into contigs was beneficial in reducing the errors in sequence analysis in addition to removing the redundancy so that only the unigenes were used for SSR mining and for annotation. As reported by Raji and coworkers [18], these unigenes, when used for the mining of SSRs result in a realistic estimate of the microsatellite repeat frequency and ensures that non redundant EST-SSR markers that correspond to unique loci in the genome are obtained. Therefore, in this study the unigenes were used for SSR search. The mining of the EST-SSRs starting with downloading of all the *Jatropha* ESTs is outlined in Figure 1.

3.2. Occurrence and Frequency of Microsatellites

For searching the SSRs, the repeat motifs in the software, were selected from mono- to hexa-nucleotide as

Figure 1. Overview of the study indicating the major steps and the statistics leading to generation of the EST-SSRs.

going above this motif range, the frequency of occurrence of SSRs is drastically reduced. Thus, the SSRs were obtained in the form of repeat motifs ranging from mono- to hexa-nucleotides. Out of the 7552 unigenes searched for SSRs, 395 SSRs (Table 2) were generated from 377 unigenes. These 395 SSRs can be termed as EST-SSRs and 377 unigenes possessing SSRs can be termed as SSR-ESTs according to the convention. The 377 SSR-ESTs amounted to approximately 5% (inclusive of the mononucleotide repeat motif) of total unigenes and 2.78% of total downloaded EST data set. The various studies show a representation ranging from 2.65% - 16.82% [25] to 26.84% [42] in dicot species and 7% - 10% [43] in cereals or monocots. The workers [17] [21] [25] who have carried out similar studies are of the view that the variation in the percentage may be due to variation in sample size, search criteria, size of database, and the tools used for EST-SSR development. The percentage of SSR-ESTs in the present study could be owing to more stringent preset parameters for EST mining compared to other similar studies [21] [42] that reported a higher percentage of SSR-ESTs.

The 395 SSRs were present in 377 SSR-ESTs as 17 (4%) SSR-ESTs contained more than one SSR e.g. FM889616.1 with 3 SSRs, having motifs $(GA)_{32}$, $(AG)_{14}$, $(AG)_{14}$ (data not shown). The SSRs in mononucleotide class were found to be the most abundant with a frequency of 1/17.83 kb followed by dinucleotide 1/36.00 kb, trinucleotide 1/84.82 kb, tetranucleotide 1/424.11 kb, pentanucleotide 1/347.00 kb and hexanucleotide 1/381.70 kb.

3.3. Distribution of Microsatellite Classes and Motifs

The overall analysis of the distribution of the microsatellites into various classes of the repeat types (mono-, di-, tri-, tetra- penta- and hexa-nucleotides) showed that the number of the microsatellites decreased with increasing motif size (Figure 2, Table 3). It was observed that mononucleotide repeats were the most abundant (representing 54% of the total microsatellites), followed by dinucleotide (27%) and trinucleotide (11%). The least frequent were tetra-, penta- and hexa-nucleotides (2% - 3%). The abundance of mononucleotides is in accordance with several previous reports [23] [25] [44] and also that these contributed to nearly half of all the SSRs, is similar to those in certain species of dicots analysed previously [25]. The dinucleotides were the second most abundant class as reported across most of the dicots investigated by Kumpatla and Mukhopadhyay [25], suggesting an over-representation of UTRs (un-translated regions) compared with ORFs (Open Reading Frames).

The non-dominance of trinucleotides compared to other classes, by virtue of which the decreasing trend of various classes with increasing motif size, is in contrast to several earlier studies but in concurrence to that reported for several dicots [25]. These observations about the abundance and therefore, the dominance of one SSR motif category over other categories, holds significance in the chances of fixation of mutations against selection pressure [45]. The trinucleotides have more chances of getting fixed against mutation pressure due to selection against frameshift events [45] The prevalence of di- over tri-nucleotide in this study could be attributed to 1. increased stringency of preset parameters in this study compared to previous studies [21] [22], so as not to compromise on polymorphism level and thus their utility as markers. The results were also computed with relaxed preset parameter of repeat length which gave a higher percentage of total SSRs especially trinucleotides (data not shown). But, the results reported here are those obtained with more stringent parameter of minimum repeat length 2. a bias in representation of 5' and 3'UTRs in the EST dataset used for mining. A lowered representation of tetranucleotides, as also observed in this study, is also suggestive of under representation of 3'UTRs [25].

In terms of SSR coverage of available Unigenes data (~3.8 MB), it was observed that a total of 11.7 kb (0.31%) region was covered by SSR motifs. Out of this, mono-represented 6.5 kb (0.17%) region, di—3.3 kb (0.08%), tri—1.1 kb (0.03%), tetra—0.18 kb (0.004%), penta—0.26 kb (0.006%) and hexa-nucleotides 0.24 kb (0.006%).

The various classes of repeat motifs, when analyzed further, showed that some motifs in each category were more abundant than others (**Table 4**), e.g. among the dinucleotide repeats, the AG/CT motif was the most common (33%) followed by the motifs GA/TC (31%) and, the least common was AC/GT (0.94%). The abundance of AG/CT/GA/TC motifs are in concurrence with previous studies [25] [43] [44] where ESTs were used for mining SSRs, in contrast to abundance of AT motif when genomic data was used for mining SSRs [44] [46]. Thus, abundance of the motifs is attributed to systematic bias resulting from the use of ESTs (coding sequences) instead of genomic sequences (non-coding) as a source for SSR mining [43]. The CG motif was found to be to-tally absent, which is in concurrence to earlier studies, where it has been observed to be either the least [43] or absent [44]. Among the trinucleotide repeats, the most common motif is AGA/TCT subclass amounting to

Repeat Type	Repeat Motif					N	lum	ber o	f Rep	eat U	nits				Total	Analysis	
Repeat Type	Repeat Wohi	4	5	6	7	8	9	10	11	12	13	14	15	>20	Total	Anarysis	
Mononucleotide	A/T	-	-	-	-	-	-	-	-	-	-	-	-	211	211	214 (54%)	
	G/C	-	-	-	-	-	-	-	-	-	-	-	-	3	3		
														214			
	AG/CT	-	-	-	-	-	-	6	4	4	1	4	2	14	35		
	AT/AT	-	-	-	-	-	-	-	1	2	2	1	1	13	20		
Dinucleotide	AC/GT	-	-	-	-	-	-	-	-	-	-	-	1	-	1	106 (27%)	
	ΤΑ/ΤΑ	-	-	-	-	-	-	3	3	1	-	1	2	7	17		
	GA/IC	-	-	-	-	-	-	4	7	5	4	-	3	10	33		
								13	15	12	7	6	9	44			
	AAC/GTT	-	-	-	1	-	-	-	-	1	-	-	-	-	2		
	AAT/ATT	-	-	-	1	I	-	-	-	I	-	-	-	-	3		
	ACC/GGT	-	-	-	1	-	-	-	-	-	-	-	-	-	1		
	AGA/ICI	-	-	-	4	-	3	1	3	-	1	-	-	-	12		
	AGC/GCT	-	-	-	2	-	-	-	-	-	-	-	-	-	2		
		-	-	-	1	2	-	1	1	-	-	-	-	-	5		
Tripualaatida	CAC/CAT	-	-	-	-	-	1	-	-	-	-	-	-	-	1	<i>45 (</i> 11 <i>5</i> 9/)	
Timucieonde	CAC/OTO	-	-	-	1	-	-	-	-	-	-	-	-	-	1	45 (11.570)	
	CTT/AAG	-	-	-	1	-	-	-	-	-	-	-	-	-	3 1		
	GAA/TTC	_		-	2	1	1	-	_	-	-	-	-		4		
	GCA/TGC	_	_	_	1	1	-	_	_	_	_	_	-	-	2		
	GGA/TCC	_	_	_	1	-	-	_	_	_	_	_	-	-	1		
	TAA/TTA	-	-	-	1	-	2	1	2	-	_	-	-	-	6		
	TTG/CAA	-	-	-	1	-	-	_	-	-	_	-	-	-	1		
					19	5	8	3	7	2	1				_		
	AAGA/TCTT	-	2	-	-	-	-	-	-	-	-	-	-	-	2		
	AATT/AATT	-	1	-	-	-	-	-	-	-	_	-	-	-	1	1	
	CATA/TATG	-	1	-	-	-	-	-	-	-	-	-	-	-	1		
	TATT/AATA	-	1	-	-	-	-	-	-	-	-	-	-	-	1	9 (2%)	
Tetranucleotide	TTAA/TTAA	-	1	-	-	-	-	-	-	-	-	-	-	-	1		
	TTAT/ATAA	-	-	1	-	-	-	-	-	-	-	-	-	-	1		
	TTCT/AGAA	-	1	-	-	-	-	-	-	-	-	-	-	-	1		
	TTTA/TAAA	-	1	-	-	-	-	-	-	-	-	-	-	-	1		
			8	1													
	AAGAA/TTCTT	-	1	-	1	-	-	-	-	-	-	-	-	-	2		
	AGGAA/TTCCT	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	ATTTT/AAAAT		1	-	-	-	-	-	-	-	-	-	-	-	1		
	CTTCT/AGAAG	1	_	-	-	-	-	-	-	-	-	-	-	-	1		
Pentanucleotide	TAAAA/TTTTA	1	_	-	-	-	-	-	-	-	-	-	-	-	1	11 (3%)	
	TATTT/AAATA	1	_	1	-	-	-	-	-	-	-	-	-	-	2	(; , ; ,	
	TCTTT/AAAGA	_	1	_	-	_	-	_	_	_	_	_	-	-	1		
	ΤΤΑΤΑ/ΤΑΤΑΑ	1	-	_	_	_	_	_	_	-	_	_	_	-	1		
	TTTCT/AGAAA	-	1	_	_	_	_	_	_	-	_	_	_	_	1		
		5	1	1	1										1		
		1	-	1	1										1		
	AAAAAG/CIIIII	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	CAGCIC/GAGCIG	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	GCIGGI/ACCAGC	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
Hexanucleotide	GGATCA/IGATCC	1	-	-	-	-	-	-	-	-	-	-	-	-	1	10 (2.5%)	
	GITTCA/TGAAAC	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	TTCCAT/ATGGAA	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	TTTATT/AATAAA	1	-	-	-	-	-	-	-	-	-	-	-	-	1		
	TTTCTC/GAGAAA	3	-	-	-	-	-	-	-	-	-	-	-	-	3		
		10															
			Т	'ota'												395	

Table 2. Categorization of SSRs by repeat units and repeat motif.

Figure 2. Distribution of SSRs into various classes.

Table	3.	Abundance	e of S	SRs of	various	types.
I GOIC		ioundance	/ UI D		ranoub	c, peo.

Repeat Types	No. of SSRs	Abundance (%)
Mononucleotide	214	54
Dinucleotide	106	27
Trinucleotide	45	11
Tetranucleotide	9	2
Pentanucleotide	11	3
Hexanucleotide	10	3

 Table 4. Most abundant motifs and their relative abundance in each of the SSR types.

Repeat Types	Most Abundant Motifs	Relative Abundance (%)
Mononucleotide	A/T	98
Dinucleotide	AG/CT	33
Trinucleotide	AGA/TCT	27
Tetranucleotide	AAGA/TCTT	22
	AAGAA/TTCTT	10 1
Pentanucleotide	TATTT/AAATA	18 each
Hexanucleotide	TTTCTC/GAGAAA	30

26.6% and rest of them ranging from 2% - 13% of the total microsatellites in this class. The CCG/CGG motif is reported to be the rarest motif in dicots [23] [25] and was observed to be absent in this study. In the tetranucleo-tide repeats, most of the motifs were AT rich. The most common motif was AAGA/TCTT (22%) and the rest of them were each ~11% of the total microsatellites in this class. In the pentanucleotide class of motifs the most common one was AAGAA/TTCTT and TATTT/AAATA (18% each) and others were each 9%. The hexanucleotide class TTTCTC/GAGAAA (30%) formed the most abundant subclass and the rest of them were 10% each. In general, the motifs were observed to be AT rich and less of GC rich motifs, similar to that observed for dicots

[25].

The analysis of repeat units under each motif class revealed a varying range of repeat units in each of the classes of repeat motifs. It was observed that, in dinucleotide motif, repeat units ranged from 10 - 45; in trinucleotide motif, from 7 - 13; in tetranucleotide, from 5 - 6 units; in pentanucleotide, from 4 - 6; and hexanucleotide motif was represented by a single class of 6 repeat units only. Further analysis of the number of repeat units in every class of the SSRs, especially tri-, tetra- penta- and hexa-nucleotides, showed that the number of the microsatellites decreased with increasing repeat unit length with little variation, e.g. for trinucleotide motif, SSRs with 7 repeats were represented by 42.2% while 2.2% by 13 repeat units. Amongst the pentanucleotide SSRs, the category with 4 repeat units shared as much as 45.5% of the total class in comparison to 9% for repeat unit of seven (Figure 3). Therefore, it can be said that as the class of the SSR motif size increases, like tetra-, pentaand hexa-nucleotide, higher number, rather 100% of microsatellites were found in the category of <10 repeat units (Table 2) which is similar to that observed by Varshney and co-workers [43]. These results clearly indicate the effect of increased stringency of parameters which were maintained during this study to retain the polymorphism level and utility of the SSRs as markers because the probability of polymorphism increases with increasing length of SSRs [47]-[49] and, a higher number of repeat followed by shorter stretches would be beneficial for marker development [48]. The polymorphism reported in *Jatropha* in earlier studies was very low, therefore, the parameters for mining the SSRs were kept more stringent in this study, which lead to lower frequency of SSRs but with a longer repeat length; as in the case of trinucleotide repeats, keeping the minimum repeat length of 7 resulted in it not being the most abundant class, as reported in other similar studies.

3.4. Designing of Primers towards Marker Development

For the use of SSRs as markers, it is necessary to design the primers. The SSRs commonly used for marker development are those belonging to di-, tri- and tetra-nucleotides [25]. The mononucleotides are useful for population genetic analyses of chloroplast genomes [50] and can also be useful in filling gaps in linkage maps created by di-, tri-, and tetra-nucleotide repeats [25] but, at the same time they cause difficulties in accurate sizing of polymorphisms [18]. Therefore, to design the primers for potential SSR markers, the mononucleotide repeats were not included. Thus, out of 395 EST-SSRs generated from 377 SSR-ESTs, the primers were designed for only 181 SSRs.

For each of the SSRs, a pair of reverse and forward primer was designed from the flanking regions of their respective SSR-ESTs by the software. 181 SSRs generated from 172 SSR-ESTs were used for primer designing and yielded 79 SSR mediated primer pairs (data not shown). These 79 primer pairs were designed from 76 SSR-ESTs as some of these contained more than one SSR e.g. JES 56 and 57 (**Supplementary Table A**). Thus, 76 SSR-ESTs having credit in primer designing have been termed as ESTs-PD and were further annotated. The primers could not be designed for some of the EST-SSRs from their respective SSR-ESTs. As reported by Varshney and coworkers [42], this could be due to any or all of the following reasons, (a) SSR-ESTs are too short, (b) EST-SSRs are too close to the cloning site of the SSR-ESTs, or (c) the flanking sequences are not unique, as was also observed for some of the SSRs in this study.

Number of repeat units

Figure 3. Distribution of SSRs as per repeat unit size in different types.

3.5. Functional Annotation of the ESTs-PD

The GC level of the genome of *J. curcas* is typical of core dicots, therefore, it should be easy to annotate by sequence comparison with *Arabidopsis* [41], hence, ESTs-PD were searched for their gene annotations using BLASTX at TAIR. The Gene Ontology (GO) Annotations and functional categorization of ESTs-PD obtained using locus identifiers are given in **Supplementary Table A**.

The data showed that most of the ESTs-PD are expressing functional proteins and still there are some for which the protein is not yet predicted. On the basis of the functions related to the predicted protein, the ESTs-PD were classified into three major classes viz. Cellular Component, Biological Process and Molecular Function (**Figure 4**). In the limits of the available data in the public database for the ESTs of *J. curcas*, it was found that one of the ESTs-PD (Contig1345) containing SSR (JES35) expresses gene of oil biosynthesis pathway (AT1G48750).

Figure 4. Functional categorization of ESTs-PD by loci A: Cellular component, B: Biological process, C: Molecular function.

4. Conclusion

The *in silico* mining of EST-SSRs of *Jatropha* was carried out in this study taking advantage of the availability of enormous EST data in the public database, the importance of ESTs in SSR mining and, the potential of modern bioinformatics tools combined with their speed and ease. The stringency of the preset parameters was kept high so as not to compromise on the level of polymorphism in potential EST-SSRs, thus, their utility as markers, more so in this study, as low levels of polymorphisms have been reported in *Jatropha*. The functional annotation of the SSR-ESTs showed that most of them are associated with expressed proteins and therefore, trait linked genes. Thus, in this study, the genes of *Jatropha* carrying SSRs were identified. The EST-SSRs generated would be useful for developing trait linked markers. As the expressed sequences are highly conserved, the SSRs developed from the ESTs are characterized by transferability across species. Owing to this characteristic, these SSRs could also be useful as markers across closely related species like *Ricinus*, thus, saving time and resources in reiteration of SSR mining or; for related species with limited or no sequence information. EST-SSRs like JES35 generated from EST expressing gene of fatty acid biosynthesis pathway (AT1G48750) would be of utmost importance towards marker development in *Jatropha*. With more data being submitted at a rapid pace to the public database, more such SSRs can be looked for in comparative genomic studies and, the knowledge generated in this study is a step towards development of markers in this plant and also related species.

Acknowledgements

The authors are thankful to the Department of Biotechnology, Government of India, for financial support for research and fellowships of two authors Dr. Poonam Bhargava and Mr. Ganesh B. Patil and, Puri foundation for Education in India, for providing infrastructure facilities.

References

- Ginwal, H.S., Rawat, P.S. and Srivastava, R.L. (2004) Seed Source Variation in Growth Performance and Oil Yield of Jatropha curcas Linn. in Central India. Silvae Genetics, 53, 186-192.
- [2] Ikbal, K., Boora, S. and Dhillon, R.S. (2010) Evaluation of Genetic Diversity in *Jatropha curcas* L. Using RAPD Markers. *Indian Journal of Biotechnology*, 9, 50-57.
- [3] Tatikonda, L., Wani, S.P., Kannan, S., Beerelli, N., Sreedevi, T.K., Hoisington, D.A., Devi P. and Varshney, R.K. (2009) AFLP-Based Molecular Characterization of an Elite Germplasm Collection of *Jatropha curcas* L., a Biofuel Plant. *Plant Science*, **176**, 505-513. <u>http://dx.doi.org/10.1016/j.plantsci.2009.01.006</u>
- [4] Jubera, M.A., Janagoudar, B.S., Biradar, D.P., Ravikumar, R.L., Koti, R.V. and Patil, S.J. (2009) Genetic Diversity Analysis of Elite *Jatropha curcas* (L.) Genotypes Using Randomly Amplified Polymorphic DNA Markers. Karnataka. *Journal of Agricultural Sciences*, 22, 293-295.
- [5] Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers. *Nucleic Acids Research*, 18, 6531-6535. <u>http://dx.doi.org/10.1093/nar/18.22.6531</u>
- [6] Alhani, M.C. and Wilkinson, M.J. (1998) Inter Simple Sequence Repeat Polymerase Chain Reaction for the Detection of Somaclonal Variation. *Plant Breeding*, **117**, 573-575. <u>http://dx.doi.org/10.1111/j.1439-0523.1998.tb02210.x</u>
- [7] Blair, M.W., Panaud, O. and McCouch, S.R. (1999) Inter-Simple Sequence Repeat (ISSR) Amplification for Analysis of Microsatellite Motif Frequency and Fingerprinting in Rice (*Oryza sativa* L.). *Theoretical and Applied Genetics*, 98, 780-792. <u>http://dx.doi.org/10.1007/s001220051135</u>
- [8] Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Zabeau, M. and Kuiper, M. (1995) AFLP: A New Technique for DNA Fingerprinting. *Nucleic Acids Research*, 23, 4407-4414. <u>http://dx.doi.org/10.1093/nar/23.21.4407</u>
- [9] Zhu, J., Gale, M.D., Quarrie, S., Jackson, M.T. and Bryan, G.J. (1998) AFLP Markers for the Study of Rice Biodiversity. *Theoretical and Applied Genetics*, 96, 602-611. <u>http://dx.doi.org/10.1007/s001220050778</u>
- [10] Basha, S.D., Francis, G., Makkar, H.P.S., Becker, K. and Sujatha, M. (2009) A Comparative Study of Biochemical Traits and Molecular Markers for Assessment of Genetic Relationships between *Jatropha curcas* L. Germplasm from Different Countries. *Plant Science*, **176**, 812-823. <u>http://dx.doi.org/10.1016/j.plantsci.2009.03.008</u>
- [11] Basha, S.D. and Sujatha, M. (2007) Inter and Intra-Population Variability of *Jatropha curcas* L. Characterized by RAPD and ISSR Markers and Development of Population-Specific SCAR Markers. *Euphytica*, **156**, 375-386. <u>http://dx.doi.org/10.1007/s10681-007-9387-5</u>

- [12] Sujatha, M., Reddy, T.P. and Mahasi, M.J. (2008) Role of Biotechnological Interventions in the Improvement of Castor (*Ricinus communis* L.) and *Jatropha curcas* L. *Biotechnology Advances*, 26, 424-435. http://dx.doi.org/10.1016/i.biotechady.2008.05.004
- [13] Vieux, E.F., Kwok, P.Y. and Miller, R.D. (2002) Primer Design for PCR and Sequencing in High-Throughput Analysis of SNPs. *BioTechniques*, 32, S28-S32.
- [14] Levinson, G. and Gutman, G.A. (1987) Slipped-Strand Mispairing: A Major Mechanism for DNA Sequence Evolution. *Molecular Biology and Evolution*, 4, 203-221.
- [15] Chakravarthi, B.K. and Naravaneni, R. (2006) SSR Marker Based DNA Fingerprinting and Diversity Study in Rice (*Oryza sativa*. L.). African Journal of Biotechnology, 5, 684-688.
- [16] Tripathi, K.P., Roy, S., Khan, F., Shasany, A.K., Sharma, A. and Khanuja, S.P.S. (2008) Identification of SSR-ESTs Corresponding to Alkaloid, Phenylpropanoid and Terpenoid Biosynthesis in MAPs. *Online Journal of Bioinformatics*, 9, 78-91.
- [17] Varshney, R.K., Graner, A. and Sorrells, M.E. (2005) Genic Microsatellite Markers in Plants: Features and Applications. *Trends in Biotechnology*, 23, 48-55. <u>http://dx.doi.org/10.1016/j.tibtech.2004.11.005</u>
- [18] Raji, A.A.J., Anderson, J.V., Kolade, O.A., Ugwu, C.D., Dixon, A.G.O. and Ingelbrecht, I.L. (2009) Gene-Based Microsatellites for Cassava (*Manihot esculenta* Crantz): Prevalence, Polymorphisms, and Cross-Taxa Utility. *BMC Plant Biology*, 9, 1471-1429. <u>http://www.biomedcentral.com/1471-2229/9/118</u>
- [19] Wang, Y.H., Liu, S.J., Ji, S.L., Zhang, W.W., Wang, C.M., Jiang, L. and Wan, J.M. (2005) Fine Mapping and Marker-Assisted Selection (MAS) of a Low Glutelin Content Gene in Rice. *Cell Research*, 15, 622-630. http://dx.doi.org/10.1038/sj.cr.7290332
- [20] Carneiro, F.F., Santos, J.B. and Leite, M.E. (2010) Marker-Assisted Backcrossing Using Microsatellites and Validation of SCAR *Phs* Marker for Resistance to White Mold in Common Bean. *Electronic Journal of Biotechnology*, 13, Online Version. <u>http://ejb.ucv.cl/content/vol13/issue6/full/13/index.html</u>
- [21] Gupta, S. and Prasad, M. (2009) Development and Characterization of Genic SSR Markers in *Medicago truncatula* and Their Transferability in Leguminous and Non-Leguminous Species. *Genome*, 52, 761-771. http://dx.doi.org/10.1139/G09-051
- [22] Wen, M., Wang, H., Xia, Z., Zou, M., Lu, C. and Wang, W. (2010) Development of EST-SSR and Genomic-SSR Markers to Assess Genetic Diversity in *Jatropha curcas* L. *BMC Resarch Notes*, 3, 42. http://www.biomedcentral.com/1756-0500/3/42
- [23] Morgante, M., Hanafey, M. and Powell, W. (2002) Microsatellites Are Preferentially Associated with Nonrepetitive DNA in Plant Genomes. *Nature Genetics*, **30**, 194-200. <u>http://dx.doi.org/10.1038/ng822</u>
- [24] Riju, A, Chandrasekar, A. and Arunachalam, V. (2007) Mining for Single Nucleotide Polymorphisms and Insertions / Deletions in Expressed Sequence Tag Libraries of Oil Palm. *Bioinformation*, 2, 128-131. http://dx.doi.org/10.6026/97320630002128
- [25] Kumpatla, S.P. and Mukhopadhyay, S. (2005) Mining and Survey of Simple Sequence Repeats in Expressed Sequence Tags of Dicotyledonous Species. *Genome*, 48, 985-998. <u>http://dx.doi.org/10.1139/g05-060</u>
- [26] Garcia, R.A.V., Rangel, P.N., Brondani, C., Martins, W.S., Melo, L.C., Carneiro, M.S., Borba, T.C. and Brondani, R.P. (2011) The Characterization of a New Set of EST-Derived Simple Sequence Repeat (SSR) Markers as a Resource for the Genetic Analysis of *Phaseolus vulgaris*. *BMC Genetic*, **12**, 41-54. <u>http://dx.doi.org/10.1186/1471-2156-12-41</u> <u>http://www.biomedcentral.com/1471-2156/12/41</u>
- [27] Ceresini, P.C., Silva, C.L.S.P., Missio, R.F., Souza, E.C., Fischer, C.N., Guillherme, I.R., Gregorio, I., Da Silva, E.H.T., Cicarelli, R.M.B., Silva, M.T.A., Garcia, J.F., Avelar, G.A., Porto Neto, L.R., Marcon, A.R., Bacci Jr., M. and Marini, D.C. (2005) Satellyptus: Analysis and Database of Microsatellites from ESTs of *Eucalyptus. Genetics and Molecular Biology*, 28, 589-600.
- [28] Pinto, L.R., Oliveira, K.M., Ulian, E.C., Garcia, A.A.F. and De Souza, A.P. (2004) Survey in the Sugarcane Expressed Sequence Tag Database (SUCEST) for Simple Sequence Repeats. *Genome*, 47, 795-804. <u>http://dx.doi.org/10.1139/g04-055</u>
- [29] Eujayl, I., Sledge, M.K., Wang, L., May, G.D., Chekhovskiy, K., Zwonitzer, J.C. and Mian, M.A.R. (2004) *Medicago truncatula* EST-SSRs Reveal Cross-Species Genetic Markers for *Medicago* spp. *Theoretical and Applied Genetics*, 108, 414-422. <u>http://dx.doi.org/10.1007/s00122-003-1450-6</u>
- [30] Fraser, L.G., Harvey, C.F., Crowhurst, R.N. and Silva, H.N. (2003) EST-Derived Microsatellites from Actinidia Species and Their Potential for Mapping. *Theoretical and Applied Genetics*, **108**, 1010-1016. http://dx.doi.org/10.1007/s00122-003-1517-4
- [31] Ellis, J.R. and Burke, J.M. (2007) EST-SSRs as a Resource for Population Genetic Analyses. *Heredity*, 99, 125-132. http://dx.doi.org/10.1038/sj.hdy.6801001

- [32] Sato, K., Nankaku, N. and Takeda, K. (2009) A high-Density Transcript Linkage Map of Barley Derived from a Single Population. *Heredity*, **103**, 110-117. <u>http://dx.doi.org/10.1038/hdy.2009.57</u>
- [33] Shirasawa, K., Oyama, M., Hirakawa, H., Sato, S., Tabata, S., Fujioka, T., et al. (2011) An EST-SSR Linkage Map of Raphanus sativus and Comparative Genomics of the Brassicaceae. DNA Research, 18, 221-232. http://dx.doi.org/10.1093/dnares/dsr013
- [34] Varshney, R.K., Mahendar, T., Aggarwal, R.K. and Börner, A. (2007) Genetic Molecular Markers in Plants: Development and Applications. In: Varshney, R.K. and Tuberosa, R., Eds., *Genomics-Assisted Crop Improvement*: 1: *Genomics Approaches and Platforms*, Springer, Berlin, 13-29.
- [35] Wang, C.M., Liu, P., Yi, C., Gu, K., Sun, F., Li, L., Lo, L.C., Liu, X., Feng, F., Lin, G., Cao, S., Hong, Y., Yi, Z. and Yue, G.H. (2011) A First Generation Microsatellite and SNP-based Linkage Map of *Jatropha. PLoS ONE*, 6, e23632. http://dx.doi.org/10.1371/journal.pone.0023632
- [36] NCBI's dbEST Database. http://www.ncbi.nlm.nih.gov/
- [37] EGassembler. http://egassembler.hgc.jp/
- [38] SSRlocator Version 1. [Standalone software] http://www.ufpel.tche.br/faem/fitotecnia/fitomelhoramento/faleconosco.html
- [39] TAIR. [online] http://www.arabidopsis.org/index.jsp
- [40] Locus Identifiers at Bulk Data Retrieval System of TAIR. http://www.arabidopsis.org/tools/bulk/go/index.jsp
- [41] Carvalho, C.R., Clarindo, W.R., Praca, M.M., Araújo, F.S. and Carels, N. (2008) Genome Size, Base Composition and Karyotype of *Jatropha curcas* L., an Important Biofuel Plant. *Plant Science*, **174**, 613-617.
- [42] Raju, N.L., Gnanesh, B.N., Lekha, P., Jayashree, B., Pande, S., Hiremath, P.J., Byregowda, M., Singh, N.K. and Varshney, R.K. (2010) The First Set of EST Resource for Gene Discovery and Marker Development in Pigeon Pea (*Cajanus cajan* L.). *BMC Plant Biology*, **10**, 45. <u>http://www.biomedcentral.com/1471-2229/10/45</u>
- [43] Varshney, R.K., Thiel, T., Stein, N., Langridge, P. and Graner, A. (2002) In Silico Analysis on Frequency and Distribution of Microsatellites in ESTs of Some Cereal Species. Cell and Molecular Biology Letters, 7, 537-546.
- [44] Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D. and Waug, R. (2000) Computational and Experimental Characterization of Physically Clustered Simple Sequence Repeats in Plants. *Genetics*, 156, 847-854.
- [45] Metzgar, D., Bytof, J. and Wills, C. (2000) Selection against Frameshift Mutations Limits Microsatellite Expansion in Coding DNA. *Genome Research*, 10, 72-80.
- [46] Morgante, M. and Olivieri, A.M. (1993) PCR-Amplified Microsatellites as Markers in Plant Genetics. *The Plant Journal*, **3**, 175-182.
- [47] Cho, Y.G., Ishii, T., Temnykh, S., Chen, X., Lipovich, L., McCouch, S.R., Park, W.D., Ayres, N. and Cartinhour, S. (2000) Diversity of Microsatellites Derived from Genomic Libraries and GenBank Sequences in Rice (*Oryza sativa* L.). *Theoretical Applied Genetics*, 100, 713-722. <u>http://dx.doi.org/10.1007/s001220051343</u>
- [48] La Rota, M., Kantety, R.V., Yu, J.K. and Sorrells, M.E. (2005) Nonrandom Distribution and Frequencies of Genomic and EST-Derived Microsatellite Markers in Rice, Wheat, and Barley. *BMC Genomics*, 6, 23. <u>http://www.biomedcentral.com/1471-2164/6/23</u>
- [49] Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and McCouch, S. (2001) Computational and Experimental Analysis of Microsatellites in Rice (*Oryza sativa* L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker Potential. *Genome Research*, **11**, 1441-1452. <u>http://dx.doi.org/10.1101/gr.184001</u>
- [50] Powell, W., Morgante, M., McDevitt, R., Vendramin, G.G. and Rafalski, J.A. (1995) Polymorphic Simple Sequence Repeat Regions in Chloroplast Genomes: Applications to the Population Genetics of Pines. *Proceedings of National Academy of Sciences of the United States of America*, **92**, 7759-7763. http://dx.doi.org/10.1073/pnas.92.17.7759

Supplementary Table

Table A. GO annotatio	ons of ESTs-PD ^a
-----------------------	-----------------------------

Table	A. GO ann	notations of	of ESTs-PD ^a .			
Sr. No.	. Gene	SSR ID	Protein Annotation	GO ID	GO Term	Category
					zinc ion binding	func ^b
					pollen development	proc ^c
				AT4G33240	endosome	comp^{d}
1	Contin20		1-phosphatidylinosit		vacuole organization	proc ^c
1	Conng39	JES 2	5- kinases; zinc ion binding		phosphatidylinositol phosphorylation	proc ^c
					1-phosphatidylinositol-3- phosphate 5-kinase activity	func ^b
					endomembrane system organization	proc ^c
2	Contig93	JES 5	Protein of unknown function	AT1G50630		proc ^c
					response to high light intensity	proc ^c
3	Contig332	JES 12	heat shock protein 2	AT4G27670	response to hydrogen peroxide	proc ^c
					response to heat	proc ^c
					chloroplast	comp^{d}
4	Contig570	IFS 16	Stress induced protein	AT3G51810	embryo development ending in seed dormancy	proc ^c
·	Configure	525 10	Siless indiced protein	1112031010	response to abscisic acid stimulus	proc ^c
5	Contig635	JES 19	unknown protein	AT1G44608		proc ^c
					proteolysis	proc ^c
6	Contig872	JES 26	Papain family cysteine protease	AT4G16190	cysteine-type peptidase activity	func ^b (hydrolas e)
					vacuole	comp^{d}
					chloroplast	comp^{d}
7	Contig896	JES 27	superfamily protein	ATCG00360	photosystem I assembly	proc ^c
					unfolded protein binding	func ^b
8	Contig911	JES 28	Thiazole biosynthetic	AT5G54770	oxazole or thiazole biosynthetic process	proc ^c
					chloroplast	comp^{d}
					thiamine biosynthetic process	proc ^c
					thylakoid	comp^{d}
					response to cold	proc ^c
			enzyme		stromule	comp^d
					mitochondrion	comp^{d}
					protein homodimerization activity	func ^b
					response to DNA damage stimulus	proc ^c
					zinc ion binding	func ^b

Continued					
				negative regulation of endopeptidase activity	func ^b
9 Contig1179	JES 31	Cystatin/monellin family protein	AT5G05110	cysteine-type endopeptidase inhibitor activity	func ^b
				endomembrane system	comp^d
				membrane	comp^d
				GTP binding	func ^b
				plasma membrane	comp ^d
10Contig1259	JES 32	RAB GTPase homolog 1C	AT4G17530	small GTPase mediated signal transduction	proc ^c
				GTP binding	func ^b
				vacuole	proc ^c
				cytosol	proc ^c
				protein transport	proc ^c
		Bifunctional inhibitor/linid transfer		endomembrane system	comp ^d
11 Contig1345	JES35	protein/seed storage 2S albumin	AT1G48750	lipid transport	proc ^c
		superfamily protein		lipid binding	func ^b
				oxazole or thiazole biosynthetic process	proc ^c
				chloroplast	comp ^d
				thiamine biosynthetic process	proc ^c
12Contig1364	JES36	Thiazole biosynthetic enzyme, chloroplast (ARA6) (THI1) (THI4)	AT5G54770	thylakoid	comp^d
		chioropiasi (AKAO) (11111) (1114)		response to cold	proc ^c
				stromule	comp ^d
				mitochondrion	comp^d
				protein homodimerization	func ^b
				activity	
				response to DNA damage stimulus	proc ^c
				zinc ion binding	func ^b
				DNA-directed RNA polymerase IV complex	comp ^d
				transcription, DNA- dependent	proc ^c
13FM895253.1	JES37	RNA polymerases	AT4G16265	regulation of transcription, DNA-dependent	proc ^c
				DNA binding	func ^b
				nucleic acid binding	func ^b
				zinc ion binding	func ^b
14 FM891378.1	JES40	unknown protein	AT1G48330		
15 FM800064-1	IE\$43	FRIGIDA interacting protein	AT7C06005	biological_process_unkno wn	proc ^c
1.5 1 1910 70 70 704.1	12040	r Kionza mieracung protein	A12000003	protein binding	func ^b

Co	ontinued					
					production of ta-siRNAs involved in RNA interference	proc ^c
					ribonuclease III activity	func ^b
					ATP-dependent helicase activity	func ^b
					maintenance of DNA methylation	proc ^c
					ATP catabolic process	proc ^c
					double-stranded RNA binding	func ^b
16	FR 1 00 c0 10 1	150.45	11 III A		ATP catabolic process	proc ^c
16	FM896040.1	JES45	dicer-like 2	A13G03300	protein binding	func ^b
					nucleic acid binding	func ^b
					metabolic process	proc ^c
					intracellular	comp^d
					ATP binding	func ^b
					RNA binding	func ^b
					defense response to virus	proc ^c
17	FM895395.1	JES52	unknown protein	AT1G33860		
					protein binding	func ^b
					ubiquitin-protein ligase	func ^b
18	FM895019.1	JES55	RNI-like superfamily protein	AT2G39940	stomatal movement	proc ^c
					response to far red light	proc ^c
					jasmonic acid mediated	proc ^c
					signaling pathway	
					defense response	proc ^c
					ubiquitin-dependent	proc ^c
					regulation of flower	proc ^c
					development shade avoidance	proc ^c
19	FM894820-1	IFS56	unknown protein	AT3G57450		
20	FM804820.1	JES50	unknown protein	AT3C57450	mitochondrial respiratory	comp ^d
20	EM200627.1	JES57	unknown protein	AT2C09610	chain complex I	comp
21	FM890627.1	JE228	unknown protein	A13G08610	response to hydrogen	
			HSP20-like		peroxide response to high light	proc
22	FM893757.1	JES62	chaperones superfamily protein	AT1G52560	intensity	proc ^c
					response to heat	proc ^c
23	FM893708.1	JES64	RNA-binding	AT4G27000	RNA binding	func ^b
			railiny protein		cytosol	comp ^d
			mitochondrion-		molecular_function_unknown	func ^b
24	FM893961.1	JES66	localized small heat shock protein	AT4G25200	response to cadmium ion	proc ^c
					response to heat	proc ^c

Continued

					aspartic-type endopeptidase activity	func ^b
25	FM896491.1	JES67	Eukaryotic aspartyl protease family protein	AT3G20015	proteolysis	proc ^c
					endomembrane system	comp^{d}
26	FM896553.1	JES69	hydroxyproline-	AT4G05220		
27	FM896533.1	JES71	unknown protein	AT2G36470		
28	FM894501.1	JES72	unknown protein	AT2G15860	cytosol	$comp^d$
			- 		regulation of transcription, DNA-dependent	proc ^c
29	FM892805.1	JES74	Homeodomain- like superfamily protein	AT5G47660	sequence-specific DNA binding transcription factor activity	func ^b
30	FM894390.1	JES75	No hits found			
31	FM894371.1	JES76	indole-3-acetic acid inducible 9	AT5G65670	regulation of transcription, DNA-dependent auxin mediated signaling pathway	proc ^c
					response to auxin stimulus	proc ^c
					regulation of transcription, DNA-dependent	proc ^c
					response to cyclopentenone	proc ^c
					nucleus	comp^d
					sequence-specific DNA binding transcription factor activity	func ^b
32	FM894336.1	JES78	No hits found			
33	FM894239.1	JES81	Uncharacterised protein family	AT4G19390	chloroplast	comp^d
34	FM894182.1	JES82	unknown protein	AT5G65250	chloroplast	comp^d
35	FM891673.1	JES86	No hits found			
					actin binding	func ^b
36	FM889541.1	JES91	Actin-binding FH2 family protein	AT5G48360	cellular component organization	proc ^c
					actin cytoskeleton organization	proc ^c
37	FM889451.1	JES93	No hits found			
38	FM889323.1	JES95	unknown protein	AT3G03570	cytosol	comp^d
39	FM890156.1	JES98	No hits found			
40	FM890148.1	JES99	elicitor peptide 6 precursor	AT2G22000		
					protein phosphorylation	proc ^c
					N-terminal protein myristoylation	proc ^c
41	FM889890.1	JES102	Protein kinase	AT5G02290	ATP binding	func ^b
		102	superfamily protein		phosphorylation	proc ^c
					plasma membrane	comp^d
					protein kinase activity	func ^b

Continued					
				acetate fermentation	proc ^c
				Chloroplast	comp ^d
				carbon-carbon lyase activity	func ^b
42 FM889794.1	JES104	Phosphoenolpyruv ate carboxylase family protein	AT4G10750	cellular aromatic compound metabolic process	proc ^c
				reductive pentose-phosphate cycle	proc ^c
				gluconeogenesis	proc ^c
				mitochondrion	comp ^d
				catalytic activity	func ^b
				glucose catabolic process to butanediol	proc ^c
				glycolysis	proc ^c
				formaldehyde assimilation via xylulose monophosphate cycle	proc ^c
43 FM889738.1	JES106	No hits found			
44 EN10000261	156110	ADM report superfemily protein	AT4C20000	binding	func ^b
44 FN1888030.1	JESIIU	AKM repeat superfamily protein	A14030990	Golgi apparatus	comp ^d
45 FM887831.1	JES111	unknown protein	AT1G71900		
				glucosinolate biosynthetic process	proc ^c
46 FM887718.1	JES113	Methylthioalkylma late synthase 1	AT5G23010	2-(2'-methylthio)ethylmalate synthase activity	func ^b
				chloroplast	comp ^d
				cytosol	comp ^d
47 FM887648.1	JES114	oxysterol binding protein	AT5G59420	oxysterol binding	func ^b
				steroid metabolic process	proc ^c
				cytosol	comp ^d
48 FM887648.1	JES115	oxysterol binding protein	AT5G59420	oxysterol binding	func ^b
				steroid metabolic process	proc ^c
40 FM880075 1	IE\$110	zing finger family protain	AT1G51200	DNA binding	func ^b
49 1101009075.1	JL/3117	zhe miger family protein	A11051200	zinc ion binding	func ^b
				cytosol	comp ^d
				protein folding	proc ^c
				tubulin complex assembly	proc ^c
50 FM888913.1	JES122	ARM repeat superfamily protein	AT3G60740	embryo development ending in seed dormancy	proc ^c
				tubulin binding	func ^b
				cytokinesis	proc ^c
				microtubule-based process	proc ^c
51 FM888879.1	JES125	Galactose oxidase/kelch repeat superfamily protein	AT2G21680		proc ^c

CO	nunuea					
					translation	proc ^c
					cytosolic ribosome	comp^d
52	FM888681.1	JES128	Ribosomal L28e protein family	AT2G19730	chloroplast	comp^d
			1 2		translation	proc ^c
					plasma membrane	comp^d
					cytosolic ribosome	comp^d
					cell wall	comp^d
					chloroplast	comp^d
					structural constituent of ribosome	func ^b
					ribosome biogenesis	proc ^c
			RING/II-box		ubiquitin-protein ligase activity	func ^b
53	FM888604.1	JES129	superfamily protein	AT3G06330	zinc ion binding	func ^b
					protein ubiquitination	proc ^c
54	EM888513-1	IES130	Terpenoid	AT1G78050	metabolic process	proc ^c
54	1111000515.1	JE3150	cyclases family protein	A11078950	beta-amyrin synthase activity	func ^b
					regulation of phosphorylation	func ^b
					nucleus	comp^d
					response to sucrose stimulus	proc ^c
					response to cytokinin stimulus	proc ^c
					response to cyclopentenone	proc ^c
55	FM888472.1	JES131	CYCLIN	AT4G34160	response to brassinosteroid stimulus	proc ^c
					regulation of cell cycle	proc ^c
					response to cytokinin stimulus	proc ^c
					regulation of catalytic activity	proc ^c
					protein binding	func ^b
					regulation of cell proliferation	proc ^c
56	FM887318.1	JES136	Mannose-binding lectin superfamily protein	AT1G19715		
					regulation of translation	proc ^c
					cytoplasmic mRNA processing body	comp^d
					nucleic acid binding	func ^b
57	FM887287.1	JES137	polypyrimidine tract-binding protein-1	AT3G01150	regulation of RNA splicing	proc ^c
					pollen germination	proc ^c
					nucleus	comp^d
					cytoplasm	comp ^d
58	FM892621.1	JES139	unknown protein	AT3G19680	plasma membrane	comp^{d}

Continued

Co	ntinued					
59	FM887106.1	JES142	NAC domain containing protein	AT4G29230	regulation of transcription, DNA-dependent	proc ^c
					sequence-specific DNA binding transcription factor activity	func ^b
					multicellular organismal development	proc ^c
60	FM889664.1	JES144	unknown protein	AT2G25800		
					embryo development ending in seed dormancy	proc ^c
					CUL4 RING ubiquitin ligase complex	comp^d
61	GR716987.1	JES145	cellulose synthase	AT5G13480	mRNA processing	proc ^c
					regulation of flower development	proc ^c
					protein binding	func ^b
					membrane	comp^d
	GO247057.1				transferase activity, transferring glycosyl groups	func ^b
					metabolic process	proc ^c
					Golgi apparatus	comp^d
					cellulose synthase activity	func ^b
					plasma membrane	comp^d
62					cellulose biosynthetic process	proc ^c
					plant-type cell wall biogenesis	proc ^c
					plasma membrane	comp^d
					cell growth	proc ^c
					primary cell wall biogenesis	proc ^c
					cortical microtubule organization	proc ^c
					response to cyclopentenone	proc ^c
63	GO247026.1	JES147	No hits found			
64	GO246782.1	JES149	early nodulin-related	AT5G25940	mitochondrion	comp^d
					response to cadmium ion	proc ^c
65	000165051	100160	Drwonk contractor	1 10 10 10 100	inorganic diphosphatase activity	func ^b
65	GO246705.1	JES150	Pyrophosphorylas e	A13G53620	membrane	comp^d
					cytosol	comp^d
					peptidase inhibitor activity	func ^b
66	GO246573.1	JES152	low-molecular- weight cysteine-rich	AT2G02100	defense response	proc ^c
					negative regulation of	proc ^c
					peptidase activity	
					plant-type cell wall	comp^d
					plasma membrane	comp^d
67	GO247549.1	JES154	glutamine dumper	AT4G25760	regulation of amino acid export	proc ^c

	nunuea					
					CUL4 RING ubiquitin ligase complex	comp^{d}
68	GT228727.1	JES159	Transducin like superfamily protein	AT5G56130	production of ta-siRNAs involved in RNA interference	proc ^c
					gene silencing by RNA	proc ^c
					nucleotide binding	func ^b
					unfolded protein binding	func ^b
					response to salt stress	proc ^c
					response to water deprivation	proc ^c
					vacuole	comp^d
					response to cadmium ion	proc ^c
					chloroplast	comp^d
					response to cold	proc ^c
					vacuolar membrane	comp^d
					nucleus	comp^d
9	GT228640.1	JES160	Chaperone protein	AT4G24190	protein folding	proc ^c
-					unfolded protein binding	func ^b
					endoplasmic reticulum	comp ^d
					ATP binding	comp^d
					vacuolar membrane	comp^d
					plasma membrane	comp^{d}
					protein secretion	proc ^c
					chloroplast	comp ^d
					mitochondrion	comp ^d
					regulation of meristem structural organization	proc ^c
)	GT228466.1	JES161	RNI-like superfamily protein	AT1G47920		
	GT228457.1	JES162	related protein	AT5G58375		
2	GT228457.1	JES163	Methyltransferase- related protein	AT5G58375		
	GT229336.1	JES164	No hits found			
					mRNA cleavage involved in gene silencing by miRNA	proc ^c
					RNA methyltransferase activity	func ^b
					regulation of flower development	proc ^c
					RNA methylation	proc ^c
					nucleus	comp^d
1	GT229302.1	JES165	double-stranded RNA binding protein	AT4G20910	specification of floral organ identity	proc ^c
+					virus induced gene silencing	proc ^c
					production of miRNAs involved in gene silencing by miRNA	proc ^c
					RNA methyltransferase activity	func ^b
					cytoplasm	comp^{d}
					production of siRNA	nroc ^c
74	GT229302.1	JES165	double-stranded RNA binding protein	AT4G20910	RNA methyltransferase activity regulation of flower development RNA methylation nucleus specification of floral organ identity virus induced gene silencing production of miRNAs involved in gene silencing by miRNA RNA methyltransferase activity cytoplasm production of siRNA involved in RNA interference	1 1 1 1 1 1 1 1 1

Continued

Continued						
					regulation of transcription, DNA-dependent	proc ^c
					auxin mediated signaling pathway	proc ^c
75	GT229079.1	JES167 JES168 JES169	indole-3-acetic acid inducible 9 NADH-dependent glutamate synthase 1 RING-H2 finger A2A	AT5G65670 AT5G53460 AT1G15100	response to auxin stimulus	proc ^c
10					response to cyclopentenone	proc ^c
					nucleus	comp^d
					sequence-specific DNA binding transcription factor activity	func ^b
					nitrate assimilation	proc ^c
					glutamate biosynthetic process	proc ^c
					glutamate synthase (NADH) activity	func ^b
					response to cadmium ion	proc ^c
76	GT229050.1				plastid	comp^d
					chloroplast	comp^d
					ammonia assimilation cycle	proc ^c
					oxidation-reduction process	proc ^c
					developmental growth	proc ^c
					protein ubiquitination	proc ^c
	CT228042 1				zinc ion binding	func ^b
//	G1228943.1				protein binding	func ^b
					response to salt stress	proc ^c
					ubiquitin-protein ligase activity	func ^b
					positive regulation of abscisic acid mediated signaling pathway	proc ^c
					regulation of response to osmotic stress	proc ^c
					endomembrane system	comp^d
78	JCST109	JES171	IBR domain- containing protein	AT2G31510	zinc ion binding	func ^b
					nucleic acid binding	func ^b
					membrane	comp^d
79	JCST328	JES172	Expressed protein	AT3G01345	carbohydrate metabolic process	proc ^c
					hydrolase activity, hydrolyzing O-glycosyl compounds	func ^b

^aESTs of *Jatropha curcas* in the present study, which contained SSRs and also yielded primers through the online software; ^bESTs-PD categorized under "Molecular Function" when analyzed through TAIR; ^cESTs-PD categorized under "Biological Process" when analyzed through TAIR; ^dESTs-PD categorized under "Cellular Component" when analyzed through TAIR.