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Abstract 
A multi-objective optimization problem has two or more objectives to be mi-
nimized or maximized simultaneously. It is usually difficult to arrive at a so-
lution that optimizes every objective. Therefore, the best way of dealing with 
the problem is to obtain a set of good solutions for the decision maker to se-
lect the one that best serves his/her interest. In this paper, a ratio min-max 
strategy is incorporated (after Pareto optimal solutions are obtained) under a 
weighted sum scalarization of the objectives to aid the process of identifying a 
best compromise solution. The bi-objective discrete optimization problem 
which has distance and social cost (in rail construction, say) as the criteria 
was solved by an improved Ant Colony System algorithm developed by the 
authors. The model and methodology were applied to hypothetical networks 
of fourteen nodes and twenty edges, and another with twenty nodes and ni-
nety-seven edges as test cases. Pareto optimal solutions and their maximum 
margins of error were obtained for the problems to assist in decision making. 
The proposed model and method is user-friendly and provides the decision 
maker with information on the quality of each of the Pareto optimal solutions 
obtained, thus facilitating decision making. 
 

Keywords 
Optimization, Discrete, Bi-Objective, Ratio Min-Max, Network, Pareto  
Optimal 

 

1. Introduction 

Optimization is defined as a process for finding the best solution to a problem, 
referred to as the global optimal solution from a given set of possible (feasible) 
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solutions [1]. Applications of optimization are found in Engineering, Science, Eco-
nomics, Finance, Medicine and Mathematics [1].  

In today’s business environment, where cost of production is high coupled 
with a lot of competitions due to globalization, single-objective optimization 
problems have become less popular. Much attention has now been shifted to 
multi-objective optimization problems. A multi-objective optimization problem 
has a set of objectives that are usually in competition or conflict; the apprecia-
tion of one objective results in the depreciation of the other [2]. It is very diffi-
cult or impossible to obtain a solution that is optimal for each of the objectives. 
The best way is to find a solution that will be adjudged the best compromise one. 

The aim of this paper is to develop a model and methodology that will gener-
ate a set of Pareto solutions and also a way to assist the decision maker to choose 
the best compromise solution. The next section outlines the multi-objective op-
timization model and solution methods, with specific focus on the normed and 
weighted sum; solution algorithms are also given some general attention with a 
special one for the Ant Colony System algorithm, which the authors have made 
some improvements to [3]. A weighted sum ratio min-max strategy is proposed 
in the next section followed by the consideration of some test cases to generate 
numerical results in the subsequent section. The results are discussed in the suc-
ceeding section, while the last concludes the paper. 

2. Methodology 
2.1. Multi-Objective Optimization 

Multi-objective optimization is concerned with minimizing or maximizing more 
than one objective function at the same time, subject to some constraints [4]. A 
general mathematical model of multi-objective optimization is given as: 

( ) ( ) ( ){ }1 2min , , , nf x f x f x  

subject to ( ) ,, 1, 2,i ig x b i m≤ =                  (1) 

where x X∈  is a vector of decision variables, jf  is the jth objective function 
( )1,2, ,j n=  , ig  is the constraint function ( )1,2, ,i m=  , and ib  is the 
limit on the ith constraint. The expression (1) is nonlinear if at least one objec-
tive function or constraint is nonlinear, otherwise it is linear. It is continuous if 
the decision variables can assume continuous values. It is discrete if the decision 
variables can only assume discrete values, and mixed if both continuous and 
discrete values are admissible; in the last two cases, additional notation to those 
effects are included in (1). 

2.2. Concept of Optimality 

The problem defined in (1) belongs to the class of constrained multi-objective 
optimization problems, within this class of problems there are the linear types, 
the nonlinear types, the continuous types, the discrete and the mixed integer 
types [5]. Generally, there is no unique minimum, but rather a set of equally 

https://doi.org/10.4236/ajor.2019.94010


D. Y. Kparib et al. 
 

 

DOI: 10.4236/ajor.2019.94010 163 American Journal of Operations Research 
 

good solutions [6]. Notable notions of optimality are: Pareto, min-max, and lex-
icographic, with the most fundamental of these being Pareto optimality which is 
derived from the concept of dominance. Therefore, Pareto optimality can also be 
called Pareto dominance. 

A decision vector *x X∈  is said to dominate a decision vector x X∈  or is 
Pareto optimal, if ( ) ( )*

i if x f x≤  for all 1,2, ,i n=   and if ( ) ( )j jf x f x≤  
for some { }1,2, ,j n∈  . For a fuller discussion of the subject the reader is re-
ferred to [6] [7]. This definition indicates that there is more than just one solu-
tion that is Pareto optimal. There could be many or even infinite solutions, de-
pending on the type and nature of the problem [8] [9]. The question of which is 
the most acceptable solution is subjective, and the final solution of the decision 
maker is always based on a trade-off between objectives. Even so, obtaining a 
Pareto optimal solution set is preferable to having just a single solution, due to 
its practicability to real-life problems. 

2.3. Solution Methods 

There are a number of methods designed to assist the decision maker to arrive at 
the best compromise solution. The most classical of the methods use a number 
of schemes to convert the multiple objectives into a scalar one [10] [11] (these 
would be the focus of our discussions in this paper) and apply standard scalar 
optimization algorithms which generate one Pareto optimal solution with each 
run of the algorithm [12]. The unique optimum which results as solution is con-
sidered Pareto optimal under certain conditions required by the particular me-
thod. There are algorithms today, such as the meta-heuristic ones however, that 
can generate portions or the entire Pareto optimal solutions in a single run of the 
algorithm due to their global search approach to finding solutions. One of such 
algorithms is the Ant Colony algorithm, which is the choice algorithm in this 
work due to its suitability as observed in the next section. Obtaining a Pareto op-
timal solution set is preferable to a single solution, since it provides a basis upon 
which to make value judgment’s in order to settle on a final solution.  

An important attribute of the methods under the classical class is that of using 
them interactively by incorporating user preferences directly into the algorithm 
at specified stages of the solution process, such as before, during, or after the run 
of the algorithm [13] [14] in order to find the user’s best compromise solution. 
This means that it may not be necessary to produce the entire Pareto optimal 
solution set where the user’s preference is available. There is the risk, however, of 
obtaining a solution that is not Pareto optimal with this approach [15]. In this 
section attention is devoted to two of the methods in view of the fact that they 
are related to this work; these are the Global Criterion (or the Normed) and 
weighted sum methods. 

The normed method, also called compromise programming, global criterion, 
or utopian point method [14] [16] minimizes the aggregate relative distance 
from a prospective solution to the actual optimal solution of the objective [17]. 
The method is defined as:  
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1
*

*
1

min , ,1
p pn

j j

j j

f f
x X p

f=

−
∈ ≤ ≤ ∞∑                  (2) 

where * 1, 2, , ,jf j n=   is the unique value of the jth objective function, and the 
utopian solutions are given by the vector ( )T* * *

1 2, , , nf f f  [18]. A utopia solu-
tion is a vector of the unique solutions of the individual objectives and is gener-
ally infeasible. The power p offers the various ways of calculating the relative 
distance. The most often used values of p are 1, 2 and ∞. When ∞ is assigned, 
the resulting scalar problem is called min-max optimization as defined by [16]. 
Pareto optimal solutions are obtained by incorporating weights in (2) and the 
weighted sum approach used to find the Pareto optimal solutions. 

The Weighted-Sum method: Since the development of the concept of Pareto 
optimality in Economics by Vilfredo Pareto in 1906 and the application of it in 
Engineering and Science by Stadler in the 1970s [19], the weighted sum method 
has been the most commonly used in solving a multi-objective optimization 
problem. The objective functions are weighted and aggregate in a single objec-
tive function as in (3): 

( ) ( )
1

min
n

j j
i

F x w f x
=

= ∑  

subject to 1, 1, 0,n
i jjx X w w j

=
∈ = ≥ ∀∑                (3) 

where jw  is the weight of the jth objective function [20]. The weights are as-
signed to the objectives by the decision maker or analyst. The weights indicate 
the relative importance of the objective functions to the user. Each set of weights 
used results in a single optimal solution [21]. For fuller and more detailed dis-
cussion of the existing methods of solution of the problem in (1) the reader is 
referred to [14]. 

Since in general the objective functions in a given problem may be dimensio-
nally unequal, and to avoid ambiguity in the weights that are assigned to the ob-
jective functions, the objective functions may be normalized (i.e., the value of 
each of objective function is mapped onto the interval [0 1]). For specific exam-
ples the reader is referred to [22] [23]. 

3. Bi-Objective Problem 

Let ( ),G V E  be an undirected graph consisting of an indexed set of nodes V 
with n V=  and a spanning set of edges (arcs) E with m E= , where n and m 
are the number of nodes and edges (arcs) respectively. Each arc is represented as 
a pair of nodes, thus from node i to node j, and denoted by ( ),i j . Let each arc 
be associated with two numbers: the distance ijd  and social cost ijA  in con-
structing rail lines to link nodes (towns) and let the arcs represent the streets. 

The bi-objective optimization problem is thus: 

( )
( )

1
,

min ij ij
i j E

f p d x
∈

= ∑  
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( )
( )

2
,

min ij ij
i j E

f p A x
∈

= ∑  

subject to { } ( )0,1 , , , 1, 2, , 1ijx i j E i n∈ ∀ ∈ = −  and 1,2, ,j n=     (4) 

where ijx  is the decision variables for selecting or otherwise, nodes ( ),i j , p is 
the path from the source to the destination, 1f  and 2f  respectively the dis-
tance function and social cost function with ( ) ( )1 2,f p f f= . The problem (4) 
belongs to the class of discrete multi-objective optimization. The techniques for 
solving continuous multi-objective optimization problems are also application to 
this type of problem as given in (4), however, there are some limitations on the 
ability of the methods to find the entire Pareo optimal solutions [24]. The com-
putational challenges for such problems are also similar to those encountered in 
continuous problems in the application of any scalar methods. 

It must be observed that in this problem (4), the objectives are not inherently 
in conflict and that the conflict could only arise in the data which may be used. 
For example, the possibility of both the distance and social cost decreasing at the 
same time and vice versa is real. Therefore there is the possibility of obtaining a 
unique optimal solution. 

Solution Technique 

The weighted sum is applied as the solution method to obtain Pareto optimal 
solutions, following which a post-optimality ratio min-max strategy is employed 
as an aid in the process of identifying a best compromise solution for the deci-
sion maker. Suppose K is the set of Pareto optimal solutions, such that ∈p K  
is a Pareto optimal path, then the proposed ratio min-max strategy is given by: 

( ){ } ( )
( )

*

*

 ,
min , min max 1 , :

  = − ∀ ∈ 
  

j

j

F p w
F p w j p K

f p
 

where ( )*
jf p  is the unique optimal solution value of jth objective function,

( )* ,jF p w  is the value of the jth objective function at a Pareto optimal solution 
after the weighted sum optimization, ( ),F p w  is therefore a measure of the 
maximum margin of error of the jth objective function at the Pareto optimal so-
lutions. 

The following steps depict the process towards finding the best compromise 
solution: 

Step 1: Compute ( )*
jf p , the unique optimal value of the jth objective func-

tion for all  ∈p K ;  
Step 2: Perform the weighted sum optimization with a set of generated 

weights; 
Step 3: Compute ( )* ,jF p w , the value of the jth objective function for all
∈p K ; 
Step 4: Compute the absolute values of the ratios ( )* ,jF p w  to ( )*

jf p  less 
than one ∀j  and ∈p K ;  

Step 5: Select the maximum values of the result in Step 4 ∀j  and ∈p K ; 
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Step 6: Choose the minimum value in step 5. 
The proposed strategy finds the margin of errors of the Pareto optimal of the 

objective functions values relative to their utopian ones to assists the decision 
maker to choose the result which best suits his/her interest. 

4. Solution Algorithm 

The Ant Colony algorithm is in the class of meta-heuristic algorithms and was 
primarily designed to handle network problems. It has demonstrated its ability 
to obtain the best solution for large and combinatorial optimization problems 
[25] [26] and it is also flexible. The development of the Ant Colony Optimiza-
tion (ACO) meta-heuristic algorithm was inspired by the socialist lifestyle exhi-
bited by ants in search of food and other provisions [27] [28]. Individual ants are 
considered un-intelligent and are practically blind and crappy in sight. But with 
their social structure, they are able to determine the shortest path to a food 
source after discovering it [29].  

Ants, in the course of looking for food and other provisions, drop a chemical 
called pheromone in their trail anytime they come across food to attract other 
ants to the place [30]. So the ants that move along the shortest path accommo-
date more amounts of pheromones per unit length. The amount of pheromone 
that an ant deposit is inversely proportional to the distance travelled. That is the 
higher the density of pheromone the shorter the path [30] [31]. 

The Ant Colony algorithm uses the decision of the artificial ants to move from 
node to node by a stochastic process which is dictated by the magnitude of the 
pheromone on the route.  

There are three main kinds of Ant Colony Optimization algorithms: 1) the 
Ant System (AS) by [32], 2) the Max-Min Ant System (MMAS) by [33] and 3) 
the Ant Colony System (ACS) by [34] as cited in [35]. The contributions of the 
authors are with respect to the third. The specific improvements made to the al-
gorithm are discussed next. 

An Improved Ant Colony System Algorithm 

The ACS algorithm involves seven main steps, which are: 1) setting parameters, 
2) initializing pheromone trails, 3) calculating the heuristic Information, 4) 
building the ant solution by using the stochastic state transition rule, 5) updating 
the local pheromone, 6) applying local search to improve solution constructed 
by an ant, and 7) updating the global pheromone information. The contribu-
tions of the Authors [3] are in (2), (3) and (4). The modifications mode in these 
three specific areas of the ACS—a detailed discussion of which are presented in 
[3], results in improvement of the ACS algorithm, in terms of the number of 
iterations required for convergence. The proposed modifications are presented 
here as follows: 

The initial pheromone ( )0τ ij  that is deposited along ( ),i j  at the beginning 
of the search, which is usually a small positive constant, is proposed: 
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( ) ( )
10
1ij

ijn L
τ =

−
 

where n is the number of nodes (i.e., the problem size), ijL  is the ratio of the 
weighted sum of the distance and social cost linking node i to node j to the total 
from the source node to the current node.  

The heuristic information in literature is calculated from the current node, i 
where the ant is to the next node j. This approach, however, fails to provide the 
ant with information on the nature of the path from source node to the current 
node i. This shortcoming is addressed in the reformulation. The heuristic infor-
mation is calculated from the source node to the present node i and from node i 
to the next node j as: 

1 2
1 0 2 0ij j jw wη η η= +  

( ) ( )
1 2
0 0

0 0

1 1andj j
i ij i ijd d A A

η η= =
+ +

 

1 2, ∈w w w  and 0 1≤ ≤w , 

where 0id  is the total distance from the source node to the present node i, 0iA  
is the total social cost from the source node to the present node i. 

The aim of local pheromone update is to reduce the content of the pheromone 
along the routes to encourage other ants to generate new paths. The practice has 
been to deduct a constant amount along all routes. Even so, care needs to be 
taken to ensure that paths far from optimal are not created. To address this, the 
local pheromone update model is reformulated to ensure that reduction in the 
pheromone levels during the construction of paths is done in such a way that 
smaller amounts are taken from the shorter routes compared to the longer ones. 
The proposed ratio approach is: 

( ) ( ) ( ) ( )1 1 0 ,ij
ij ij

ij

t
t

L
τ

τ ρ ρτ+ = − +  

where ( )τ= ∑ij ijL t  and ρ  is the rate of evaporation of the pheromone. 
Also, to speed up the process of arriving at the optimal solution, a new ap-

proach is proposed to calculate the pheromone increment. This is the global 
pheromone update, which is modeled as: 

( ) ( ) ( )
1

11 1
m

k
ij ij ij

k
t tτ ρ τ τ

ρ =

+ = − + ∆∑  

( )1 , if , or

0, otherwise

k
ij

k i ik
ij

L L
i j U I

L Lτ
 −
 ⋅ ∈∆ = 



 

where ijL  is the weighted sum of distance and social cost ( )1 2ij ijw d w A+  of 
the edge ( ),i j , kL  is weighted sum of distance and social cost of the kth solu-
tion generated by ant k, L  is the ratio of the weighted sum of the two criteria 
of the solutions. 
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In constructing the feasible solutions, the decision by the ants to move from 
one node to the next is based on a stochastic probability rule. The proposed ini-
tial pheromone trail, heuristic information, local pheromone update and global 
pheromone trail update are embedded in the expression below, as in [36]: 

( ) ( )( ) ( )( )
( )( ) ( )( )

*
0

*
0

1 if and

0 if and

otherwise
k
i

k
ij

ij ij

ir irr N

q q j j

q q j j
P t

t t

t t

α β

α β

τ η

τ η
∈

 ≤ =


≤ ≠= 


∑

  

( )( ) ( )( )( )* : yields arg max k
i

ij ijr N
j t t

α β
τ η

∈
 and it is used to identify the unvisited 

node in iN  that maximizes ( )k
ijP t . 

∈k
i iN N  is the set of nodes which are the neighbors of node i and are not yet 

visited by ant k (nodes in k
iN  are obtained from those in iN  by the use of ant 

k’s private memory k
iH  (which stores nodes already visited by the ant)). iN  is 

the set of nodes which are directly linked to node i by an edge (i.e. the neigh-
bours of node i). ( )τ ij t  is the quantity of pheromone trail laid along the edge 
linking node i and node j. ( )ηij t  is the heuristic information for the ant visibil-
ity measure. α  is the parameter to control the influence of τ ij . β  is the pa-
rameter to control the influence of 0ηijq  is the pre-defined parameter 
( 00 1≤ ≤q ). q is the uniformly distributed random number to determine the 
relative importance of exploitation versus exploration, [ ]0,1∈q . 

5. Numerical Test Cases 

Two example networks are presented and their results discussed in this section.  

5.1. Test Case 1 

The first network has fourteen (14) nodes and twenty-eight (28) edges with the 
node labeled 1 being the source and the one labeled 14 being the destination (see 
Figure 1). The aim is to find a path from 1 to 14 which minimizes the distance 
and the social cost simultaneously. 
 

 
Figure 1. A network of 14 nodes and 28 edges with distances and social costs values. 
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In Table 1, the first and second columns are the names of the paths and their 
composites (path sets). The third column gives the values of the weights. The 
fourth column gives the Pareto optimal objective function values and the fifth 
gives the min-max ratio values. The sixth column gives the margin of error (ME) 
and the seventh the maximum margin of error (MME) values. The eighth and 
the ninth columns give the number of iterations that the existing ACS (E) and 
the Improved ACS algorithms (I) each takes to converge to the optimal solution 
[3]. The last row gives the utopia solution of each of the objective functions.  

The first row of Table 1 shows that the path 1-4-8-10-13-14 yields a mini-
mum distance of 14 km and a minimum social cost of 11 units; the min-max 
ratios for the distance and social cost values are approximated to 1.17 and 1.47 
respectively, leading to a margin of error 0.17 and 0.47 respectively and hence 
a maximum margin of error of approximately 0.47. The margin of error and 
the maximum margin of error (MME) figures show that whereas the minimum 
distance was 17% short of the ideal solution for distance, the minimum social 
cost value was 47% short of the ideal solution. The new algorithm has less 
number of iterations compared to the existing one, which is an improvement 
over the existing one. Similar interpretations apply to the rest of the rows of 
the table. 
 

Table 1. Results of test Case 1. 

Path’s Name Path’s Set ( )w w1 2,  ( )jF p w,∗  ( )jF p∗  ME MME E I 

P1 1-4-8-10-13-14 (0.05, 0.95) (14, 11) 1.1667 1.5714 0.1667 0.5714 0.5714 178 170 

P2 1-4-7-11-14 (0.10, 0.90) (13, 8) 1.0833 1.1429 0.0833 0.1429 0.1429 193 191 

P3 1-4-7-11-12-14 (0.15, 0.85) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 268 265 

P4 1-4-7-11-12-14 (0.20, 0.80) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 212 209 

P5 1-4-7-11-12-14 (0.25, 0.75) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 468 459 

P6 1-4-7-11-12-14 (0.30, 0.70) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 230 217 

P7 1-4-7-11-12-14 (0.35, 0.65) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 190 186 

P8 1-4-7-11-14 (0.40, 0.60) (13, 8) 1.0833 1.1429 0.0833 0.1429 0.1429 351 342 

P9 1-4-7-11-12-14 (0.45, 0.55) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 225 221 

P10 1-4-7-11-12-14 (0.50, 0.50) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 251 247 

P11 1-4-7-11-12-14 (0.55, 0.45) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 252 248 

P12 1-4-7-11-12-14 (0.60, 0.40) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 274 266 

P13 1-4-7-11-12-14 (0.65, 0.35) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.000 160 158 

P14 1-4-7-11-12-14 (0.70, 0.30) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 343 336 

P15 1-4-7-11-13-14 (0.75, 0.25) (12, 10) 1.0000 1.4286 0.0000 0.4286 0.4286 265 260 

P16 1-4-7-11-14 (0.80, 0.20) (13, 8) 1.0833 1.1429 0.0833 0.1429 0.1429 160 157 

P17 1-4-7-11-12-14 (0.85, 0.15) (12, 7) 1.0000 1.0000 0.0000 0.0000 0.0000 435 430 

P18 1-2-5-6-12-14 (0.90, 0.10) (12, 10) 1.0000 1.4286 0.0000 0.4286 0.4286 204 200 

P19 1-4-7-11-13-14 (0.95, 0.05) (12, 10) 1.0000 1.4286 0.0000 0.4286 0.4286 155 150 

The utopian distance and utopian social cost are ( )1 12∗ =f p  and ( )2 7∗ =f p  respectively. 
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The results support the view expressed above that, the multi-objective opti-
mization model is such that the objectives are not inherently in conflict and 
that the conflict could only arise in the data itself. This is evidenced by the ob-
jective function values of (12, 7) obtained. The values are clearly the same as the 
utopian ones (see last row of the table). This indicates that the objectives are 
not in conflict for most of the data used in this network. The objective function 
values of (12, 7) dominate all the others in the table, except (12, 10) which it 
weakly dominates. This observation explains the optimal objective function 
values, margin of error and maximum margin of error values obtained in Table 
1. The unique solution therefore is (12, 7) with the shortest path being 
(1-4-7-11-12-14).  

The other solutions which are dominated by the unique solution (as seen in 
Table 1) may be worth considering, however, by a decision maker if the problem 
was with a time window constraint (the need for alternative routes to cater for 
traffic during the day and other unforeseen problems), for instance, or with oth-
er similar conditions. The time window constraint may arise when the distance 
and the social cost values are worse than the optimal but they offer a better time 
window.  

5.2. Test Case 2 

This consists of a larger network of twenty (20) nodes (from 1 as source to 20 as 
destination) as shown in Figure 2. Interpretations of this figure are similar to 
that of Test Case 1. 

The first row of Table 2 shows that the path 1-2-8-16-20 yields a minimum 
distance of 16 units and a minimum social cost of 11 units; the min-max  
 

 

Figure 2. A network of 20 nodes showing the associated distances and social costs. 
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Table 2. Results of test Case 2. 

Path’s Name Path’s Set ( )w w1 2,  ( )jF p w,∗  ( )jF p∗  ME MME E I 

P1 1-2-8-16-20 (0.05, 0.95) (16, 11) 1.3333 1.2222 0.3333 0.2222 0.3333 180 173 

P2 1-3-8-16-20 (0.10, 0.90) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 200 195 

P3 1-3-8-16-20 (0.15, 0.85) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 276 270 

P4 1-3-8-16-20 (0.20, 0.80) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 278 273 

P5 1-3-8-16-20 (0.25, 0.75) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 486 475 

P6 1-3-8-16-20 (0.30, 0.70) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 463 452 

P7 1-3-8-16-20 (0.35, 0.65) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 254 249 

P8 1-3-8-9-15-20 (0.40, 0.60) (17, 10) 1.4167 1.1111 0.4167 0.1111 0.4167 271 262 

P9 1-3-8-16-20 (0.45, 0.65) (17, 9) 1.4167 1.0000 0.4167 0.0000 0.4167 227 225 

P10 1-4-7-17-18-20 (0.50, 0.50) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 350 335 

P11 1-4-7-17-18-20 (0.55, 0.45) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 285 279 

P12 1-4-7-17-18-20 (0.60, 0.40) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 390 381 

P13 1-4-7-17-18-20 (0.65, 0.35) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 240 233 

P14 1-4-7-17-18-20 (0.70, 0.30) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.444 414 400 

P15 1-4-7-17-18-20 (0.75, 0.25) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 332 325 

P16 1-4-7-17-18-20 (0.80, 0.20) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 330 320 

P17 1-4-7-17-18-20 (0.85, 0.15) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 463 450 

P18 1-4-7-17-18-20 (0.90, 0.10) (12, 13 ) 1.0000 1.4444 0.0000 0.4444 0.4444 360 352 

P19 1-4-7-17-18-20 (0.95, 0.05) (12, 13) 1.0000 1.4444 0.0000 0.4444 0.4444 170 163 

The utopian distance and utopian social cost are ( )1 12∗ =f p  and ( )2 9∗ =f p  respectively. 

 
ratio values for the distance and cost are approximated to 1.33 and 1.22 respec-
tively leading to a margin of error of 0.33 and 0.22 respectively and hence a 
maximum margin of error of approximately 0.33. The margin of error and the 
maximum margin of error (MME) figures show that whereas the minimum dis-
tance was 33% short of the ideal solution for distance, the minimum social cost 
value was 22% short of the ideal solution. Similar interpretations are applied to 
rest of the table. 

The results confirm the notion in literature that in the weighted sum method, 
variation of weights does not necessarily result in different solutions. Also, the 
size of the Pareto optimal solution set does not depend on the size of the net-
work. Moreover, the problem associated with the new method is that, different 
paths (solutions) may have the same maximum margin of error but may not 
have the same objective function values (as in path 7p  and path 8p  in Table 
2). Finally, the zero maximum margin of error obtained in Case 1 signifies that, 
the solution obtained is the best for the two objectives. 
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6. Conclusion 

A ratio min-max strategy to help a decision maker identify a best compromise 
solution in a bi-objective discrete optimization function and solved by the 
weighted sum method has been proposed. The problem was illustrated in the 
context of finding the shortest distance and least social cost in hypothetical rail 
construction to link a source and destination. An improved ant colony system 
algorithm was used to find solutions for two hypothetical network problems. 
The proposed method is user-friendly and also provides the decision maker with 
the quality of each of the Pareto optimal solutions obtained, making it easy to 
identify the best compromise solution. A future direction would be to apply the 
model and methodology to a real network. 
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