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Abstract 
This paper investigates the effect of launching multiple weapons against an 
area target of normally distributed elements. We provide an analytical form of 
the average damage fraction and then apply it to obtain optimal aimpoints. To 
facilitate the computational efforts in practice, we also consider optimizations 
over given constrained patterns of aimpoints. Finally, we derive scaling laws 
for optimal aimpoints and optimal damage fraction with respect to the radius 
of the area target. 
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1. Introduction 

The theory of firing, which mainly concerns aiming, kill probability and 
allocation of munitions, was inspired by World War II and has been progressed 
significantly in the past decades [1]. A brief history of firing theory can be found 
in Washburn and Kress’s book [2] where the authors also presented a detailed 
discussion on shooting without feedback or with feedback. Another good 
reference on weaponeering is given by Driels [3]. 

In this paper we are interested in studying the effect of precision-guided 
munitions such as Excaliburs. These coordinate-seeking munitions are usually 
guided by radio, radar, or laser and launched by a cannon. They are intended to 
hit a target accurately and cause minimal collateral damage to civilians, friendly 
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forces and infrastructure, especially hospitals, schools, churches, and residential 
homes. The precision-guided weapons are in general subject to target-location 
errors and ballistic dispersion errors. The target-location errors, or aiming errors, 
result from inaccuracies associated with identifying a target’s location. In 
contrast, the ballistic dispersion errors are caused by random weapons effects, 
which may vary from one weapon to another and are assumed to be independent 
from shot to shot. When a single weapon is fired, it is natural to aim it at the 
expected center of the target. However, when multiple weapons are launched 
against a unitary target, the probability of damaging the target can be improved 
significantly by spreading the aimpoints around the target and the optimal 
distribution of aimpoints has been investigated in [4] and [5]. Our goal here is to 
extend our previous studies to estimate the probability of destroying an area 
target of normally distributed elements with multiple weapons. We will seek 
optimal aimpoints for various number of weapons. 

The plan of this paper is to first review our previous analytical results for the 
case of multiple weapons against a single target in Section 2. Section 3 introduces 
the mathematical problem of multiple weapons being released against an area 
target consisting of normally distributed elements. Exact solution for the average 
damage fraction is then derived. Section 4 calculates the optimal aiming points 
and examines the relation among the radius of area target, the number of 
weapons and the optimal (maximum) damage fraction. In addition to the 
unconstrained overall optimization of the damage fraction, we also study 
empirical, fast and robust constrained optimization over several prescribed 
patterns. The goal is to reduce the computational complexity of optimization 
and to compute a set of nearly optimal aimpoints efficiently. Section 5 provides 
scaling laws for optimal aimpoints and optimal damage fraction with respect to 
the radius of area target. Section 6 highlights conclusions. 

2. Review of Our Previous Analytical Results for the Case of  
Multiple Weapons against a Single Target 

Even though the world is three-dimensional, most targets are known to be on 
the surface of the Earth and therefore the targets are assumed to be in a 
two-dimensional ground space. Conventionally, we use two coordinates to 
define this ground plane: the range direction and the deflection direction. The 
range direction is defined by the direction of the weapon’s velocity vector, 
whereas the deflection direction is perpendicular to the range direction. 

Previously [5] we have studied the case of multiple weapons with both 
dependent and independent errors against a single target positioned at target =x
( )0,0 . For reader’s convenience, we review briefly the mathematical formulation 
of the problem. Let  
• jr  = the aiming point of weapon j for 1,2, ,j M=  .  
• Y  = the dependent error of M weapons, affecting the impact points of all M 

weapons uniformly. For example, Y  is the part of error associated with 
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identifying the target location incorrectly/inaccurately. We assume Y  is a 
normal random variable. 

• jX  = independent error of weapon j, affecting only the impact point of 
weapon j individually. For example, jX  is the part of error associated with 
aiming and firing weapon j. We assume that { }, 1, 2, ,j j M=X   are 
normal random variables, independent of each other and independent of 
normal random variable Y .  

We model the dependent error Y  as a normal random variable with zero 
mean:  

2
1

2
2

0 0
~ ,

0 0
N

σ
σ

   
        

Y  

where 1σ  and 2σ  are standard deviations, respectively, in the range and the 
deflection directions, which give an indication of the spread of the dependent 
error in these two directions. We model each independent error jX  as a 
normal random variable with zero mean:  
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The impact point of weapon j is given by  

j j j= + +w r Y X  

We use the Carleton damage function described below to model the probability 
of killing by an individual weapon. Let ( ) ( )( )1 , 2w w=w  be the impact point of 
a weapon where ( )1w  and ( )2w  denote respectively the range component 
and the deflection component of the impact point from the target. In Carleton 
damage function, the probability of the target being killed by a weapon at impact 
point w  is mathematically modeled as  

( )
( ) ( )2 2

2 2
1 2

Pr target being killed by one weapon at impact point

1 2
exp exp

2 2
w w

b b

   − −
   =
   
   

w

       (1) 

This is the well-known Carleton damage function or the diffuse Gaussian 
damage function [2]. The two parameters 1b  and 2b  in the Carleton damage 
function (1) represent the effective weapon radii in the range and deflection 
directions, respectively. 

The probability of a target being killed by the M weapons, averaged over all 
random errors (i.e., dependent and independent errors), is called the kill 
probability and is mathematically denoted by ( )kill target, weaponsp M . Note 
that in the notation for the kill probability, the target identity is explicitly 
included. This will be very convenient later in the discussion of an area target 
with multiple target elements, in which we can study the kill probability for each 
individual element. 

With the impact points of the M weapons given by the random variable 
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{ }, 1, 2, ,j j j j M= + + =w r Y X  , we derived an analytical expression for the kill 
probability (averaged over the distribution of impact points) as a function of 
quantities  

{ }( )1 2 1 2 1 2, , , , , , , 1, 2, ,jd d b b j Mσ σ =r  .  

( ) { }( )kill 1 2 1 2 1 2target, weapons , , , , , , , 1, 2, ,jp M G d d b b j Mσ σ= =r     (2) 

where function G is defined as  
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 (5) 

Mathematically, ( )1 1, , kF j j  is the product, over k weapons { }1, , kj j , of 
all factors involving only components in the range direction (i.e., 1σ , 1d , 1b , 
( )1r ) while ( )2 1, , kF j j  is the product, over k weapons { }1, , kj j , of all 

factors involving only components in the deflection direction (i.e., 2σ , 2d , 2b , 
( )2r ). Together, Equations (2), (3), (4) and (5) form an explicit analytical 

expression for the kill probability of a point target, ( )kill target, weaponsp M . 
This analytical solution will be used in next section to calculate the damage 
fraction of an area target consisting of normally distributed target elements. 

3. Mathematical Formulation: Multiple Weapons against an  
Area Target of Normally Distributed Elements 

Now let us examine the situation where M weapons are used against an area 
target centered at ( )target 0,0=x , consisting of N discrete elements, normally 
distributed around the center. Let  
• kZ  = the location of element k of the area target, for 1,2, ,k N=  .  
• jr , jX , and Y  are the same as defined in Section 2. They are respectively, 

the aiming point, the independent error, and the dependent error of weapon 
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j.  
In this situation, kZ , the location of element k of the area target, is modeled 

as a normal random variable with zero mean:  
2
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0 0
~ ,

0 0k
s

N
s

   
        

Z                     (6) 

We assume that { }, 1, 2, ,k k N=Z   are independent of each other, and are 
independent of jX  and Y . 

Figure 1 shows a sample distribution for an area target of 20 elements 
normally distributed with 1 2 4s s= = . 

To study the damage fraction caused by the M weapons on the area target, we 
examine the kill probability of element k caused by the M weapons. The impact 
point of weapon j relative to element k of the area target is given by  

( ) ( ),effk k
j j j k j j= + + − ≡ + +w r Y X Z r Y X  (7) 

where the effective dependent error of the M weapons relative to element k is 
defined as  

( ),effk
k≡ −Y Y Z  

Note that ( ),effkY  is a normal random variable with zero mean  
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The kill probability of element k caused by the M weapons (averaged over 
random independent errors { }, 1, 2, ,j j M=X  , over the random dependent 
error Y , and over the random element location kZ ) is given by  
 

 
Figure 1. A sample distribution for an area target consisting of 
20 random elements normally distributed with 1 2 4s s= = , as 
described by (6). 
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( )
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       (8) 

where function G is defined in Equations (3), (4) and (5). Notice that in the case 
of an area target of normally distributed elements, the kill probability of element 
k has exactly the same form as in the case of a single target at ( )0,0  with the 
exception that all instances of 2

1σ  be replaced by ( )2 2
1 1sσ +  and 2

2σ  be 
replaced by ( )2 2

2 2sσ + . 
Let kχ  be the Bernoulli random variable indicating whether or not element 

k is killed (“1” corresponding to “killed”). The damage fraction (random variable) 
of the area target is the number of elements killed normalized by the total 
number of elements.  
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The average damage fraction has the expression  
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       (9) 

Expression (9) gives the exact solution for the case of an area target of 
normally distributed elements. 

When both the independent error ( , 1, 2, ,j j M=X  ) and the dependent 
error (Y ) of the M weapons are absent, random variables { }, 1, 2, ,k k Nχ =   
are independent of each other. In this situation, we can calculate analytically the 
standard deviation of damage fraction (random variable). The variance of 
damage fraction has the expression  

( )

[ ] ( )

damage

2
1 1

var area target, weapons

1 1 1var var 1
N N

k k
k k

q M

G G
N NN

χ χ
= =

  
 = = = −  
∑ ∑

           (10) 

where shorthand notation G is defined as  

{ }( )2 2 2 2
1 1 2 2 1 2 1 2, , , , , , , 1, 2, ,jG G s s d d b b j Mσ σ≡ + + =r       (11) 

The standard deviation of damage fraction is  

( ) ( )damage
1std area target, weapons 1q M G G
N

  = −         (12) 

While the average damage fraction tells us the average number of target 
elements killed out of total N target elements, the standard deviation of damage 
fraction describes the fluctuations/uncertainty in the actual number of target 
elements killed in individual realizations. Large standard deviation means large 
swing in the actual number of target elements killed from one realization to another. 
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Note that this expression for the standard deviation is valid only in the 
absence of dependent and independent errors, for which we have  
( ) ( )1 2 1 2, , , 0,0,0,0d dσ σ = . When either the independent errors or dependent 
error or both are present, the standard deviation of damage fraction is larger 
than the value predicted by applying Equations (11) and (12) with non-zero 
( )1 2 1 2, , ,d dσ σ . We demonstrate this behavior numerically in Figure 2 and 
Figure 3. We consider the model problem in which a single shot is fired against 
an area target of 20N =  normally distributed elements. Monte Carlo simulations 
are carried out with 106 runs for each set of parameter values and in each of the 
two situations below (i.e. without or with firing error), yielding accurate numerical 
results to compare with theoretical predictions. 

In Figure 2, there is no firing error; the damage fraction is affected by the 
radius of area target (the standard deviation of target elements distribution). In 
this case, both the predicted mean and the predicted standard deviation of 
damage fraction are valid. As a result, the accurate Monte Carlo simulations 
agree with the theoretical predictions. 

In Figure 3, the radius of area target is fixed at 1 2 10s s= = ; the damage 
fraction is affected by the firing error (the total effect of dependent and 
independent errors; for a single shot, there is no need to distinguish dependent 
and independent errors). In this case, only the predicted mean of damage fraction 
is valid. The predicted standard deviation calculated by applying Equations (11) 
and (12) with non-zero ( )1 2 1 2, , ,d dσ σ  is invalid since Equations (11) and (12) 
are derived based on the assumption of zero firing error. The right panel of  
 

 
Figure 2. Statistics of the damage fraction for the case of a single shot against 20N =  normally distributed target elements with 
no firing error ( ) ( )1 2 1 2, , , 0, 0, 0, 0d dσ σ =  and ( ) ( )1 2, 15, 25b b = . The radius of area target is defined as 1 2s s=  (the standard 

deviation of the elements distribution). Left panel: mean of damage fraction vs radius of area target. The analytical expression for 
the mean is valid regardless of the presence or absence of firing error. Right panel: standard deviation of damage fraction vs. 
radius of area target. The analytical expression for the standard deviation (Equations (11) and (12)) is valid only in the absence of 
firing error, which is true for the simulations in this figure. 
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Figure 3. Statistics of the damage fraction for the case of a single shot against 20N =  normally distributed target elements with 

1 2 10s s= = , 1 2 0d d= =  and ( ) ( )1 2, 15, 25b b = . The firing error is defined as 1 2σ σ= . Left panel: mean of damage fraction vs 

firing error. The analytical expression for the mean is valid regardless of the presence or absence of firing error. Right panel: 
standard deviation of damage fraction vs firing error. The analytical expression for the standard deviation (Equations (11) and 
(12)) is valid only in the absence of firing error, which is false for the simulations in this figure. The results of Monte Carlo 
simulations show that in the presence of firing error, the actual standard deviation of the damage fraction is significantly larger 
than the value predicted by Equations (11) and (12) (which are not expected to be valid in the presence of firing error). 

 
Figure 3 clearly demonstrates the deviation of the accurate Monte Carlo 
simulations from the invalid theoretical prediction. 

4. Optimal Aiming Points for an Area Target 

Next we investigate the optimal aiming points for the case of multiple weapons 
against an area target of normally distributed elements. We apply MATLAB 
built-in function “fminsearch” [6] on Formula (9) to find aiming points which 
produce the largest damage fraction. Technically MATLAB “fminsearch” yields 
only a local optimum. To find the global optimum, in each optimization we start 
MATLAB “fminsearch” with 5 random initial vectors. In all cases of our 
simulations, all 5 random initial vectors lead to the same optimum, indicating 
that the optimum found is very likely the global optimum. 

In this study, in addition to finding the unconstrained overall optimal aiming 
positions, we also consider optimizations over a set of given constrained patterns 
of aiming points. The goal is to find simple and efficient “empirical” methods for 
calculating nearly optimal aiming positions. This approach greatly simplifies the 
numerical complexity of finding the optimal aiming points at the price of 
obtaining an approximate optimum. Based on our observations in simulations, 
computationally the overall optimization is at least two orders of magnitude (100 
times) more expensive than the “empirical” optimization over a constrained 
pattern even when the significant additional cost of starting with multiple 
random vectors is excluded. In a sequential computing environment, starting the 
overall optimization with 5 random initial vectors makes the computation 5 
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times expensive. 
We consider 6 constrained patterns of aiming positions as listed below. These 

constrained patterns are motivated by the results of overall unconstrained 
optimization, some of which are shown in Figure 6, Figure 7 and Figure 10.  
• Pattern A1: M points on an ellipse, uniform in parameter angle. 

Specifically, the M aiming points are mathematically described by  

( )
1

1
2π, 1,2, ,j

j
j M

M
θ θ

−
= + =                  (13) 

( ) 1, cos , sinj j j jx y R η θ θ
η

 
=   

 
                (14) 

This constrained pattern has three parameters: 1θ , R  and η , over which 
we are going to optimize the average damage fraction. Here 1θ  is the parameter 
angle for weapon 1. R  is the effective radius of the ellipse, satisfying  

area of ellipse
π

R =  

whereas η  is the aspect ratio of the ellipse, satisfying  

major axis
minor axis

η =  

• Pattern A2: 1 point at center and ( )1M −  points on an ellipse, uniform in 
parameter angle.  

One aiming point is placed at the center. The rest ( )1M −  aiming points are 
distributed along an ellipse, uniformly in parameter angle θ , as described by 
Equations (13) and (14) where M is replaced by ( )1M − . This constrained 
pattern has three parameters: 1θ , R  and η . 
• Pattern A3: 2 points on the x-axis and ( )2M −  points on an ellipse, 

uniform in parameter angle.  
Two aiming points are placed, respectively, at ( ),0ax  and ( ),0ax− . The rest 

( )2M −  aiming points are distributed along an ellipse, uniformly in parameter 
angle θ , as described by Equations (13) and (14) where M is replaced by 
( )2M − . This constrained pattern has 4 parameters: 1θ , R , η , and ax . 
• Pattern B1: M points on an ellipse, uniform in polar angle.  

The M aiming points are mathematically described as follows. Their polar 
angles jφ  are given by  

( )
1

1
2π, 1, 2, ,j

j
j M

M
φ φ

−
= + =                  (15) 

Their parameter angles jθ  are determined by the condition that the two 
vectors  

( )1cos , sin and cos , sin point in the same directionj j j jη θ θ φ φ
η

 
  
 

  (16) 

Consequently, the aiming points on the ellipse can be described as  
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( ) 1, cos , sinj j j jx y R η θ θ
η

 
=   

 
                (17) 

This constrained pattern contains three parameters: 1φ , R  and η . 
• Pattern B2: 1 point at center and ( )1M −  points on an ellipse, uniform in 

polar angle.  
One aiming point is placed at the center. The rest ( )1M −  aiming points are 

distributed along an ellipse, uniformly in polar angle φ , as described by 
Equations (15), (16) and (17) where M is replaced by ( )1M − . This constrained 
pattern has three parameters: 1φ , R  and η . 
• Pattern B3: 2 points on the x-axis and ( )2M −  points on an ellipse, 

uniform in polar angle.  
Two aiming points are placed, respectively, at ( ),0ax  and ( ),0ax− . The rest 

( )2M −  aiming points are distributed along an ellipse, uniformly in polar angle 
φ , as described by Equations (15), (16) and (17) where M is replaced by 
( )2M − . This constrained pattern includes four parameters: 1φ , R , η , and 

ax . 
An example of Pattern B3 (2 points on the x-axis and rest of points on an 

ellipse, uniform in polar angle) is shown in the left panel of Figure 6. Pattern B1 
(all points on an ellipse, uniform in polar angle) and Pattern B2 (1 point at 
center and rest of points on an ellipse, uniform in polar angle) are illustrated 
respectively in the left panel and in the right panel of Figure 7. 

In numerical simulations below, we choose the parameter values as follows:  
1 to12M = , number of weapons; 

( ) ( )1 2, 60,100b b = , parameters in Carleton damage function; 
( ) ( )1 2, 5,5σ σ = , standard deviation (s.d.) of dependent error in firing errors; 
( ) ( )1 2, 5,5d d = , s.d. of independent errors in firing errors; 

1 2 15 to 300s s s= = = , radius of area target (s.d. of elements distribution). 
We compare the results of optimization over constrained patterns with those 

of the overall optimization. Figure 4 plots the difference in optimal (maximum) 
damage fraction ( optp ) between constrained and unconstrained optimizations as 
a function of area target radius (s) for various numbers of weapons (M). For 
small s, the difference in damage fraction is small among various constraints. 
This is intuitive and reasonable since for small s, the fatal area of each weapon is 
capable of covering the whole area target. For moderate to large s, the difference 
in damage fraction compares the performance of optimization constrained over 
each given pattern. For 6M ≤  (Figure 4(a)), the best approximate optimal 
damage fraction is achieved by distribute aiming points over an ellipse, 
uniformly in polar angle (Pattern B1 described above). At 7M =  (Figure 4(b)), 
the best approximate optimal damage fraction is achieved by placing an aiming 
point at center and placing the rest six aiming points over an ellipse, uniformly 
in polar angle (Pattern B2). This is also true for 8M =  and 9M = . As the 
number of weapons increases, at 10M =  (Figure 4(c)), the best approximate 
optimal damage fraction is achieved by placing two aiming points on the x-axis  
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Figure 4. Difference in optimal damage fraction ( optp ) between constrained and unconstrained optimizations as a function of area 

target radius (s) for various numbers of weapons (M). (a) 6M = ; (b) 7M = ; (c) 10M = ; (d) 12M = . 
 
and the rest eight aiming points over an ellipse, uniformly in polar angle 
(Pattern B3). The constrained optimum over Pattern B3 remains very accurate at 

12M =  weapons (Figure 4(d)). 
In summary, as M increases, the best pattern of aiming points for obtaining 

approximately the highest damage fraction goes from Patterns B1 to B2 to B3. 
This transition is clearly demonstrated in Figure 5 where the difference in optimal 
damage fraction ( optp ) between constrained and unconstrained optimizations is 
shown as a function of M at 150s =  (radius of area target). 

Figure 6 compares the unconstrained optimal aiming points and the optimal 
aiming points constrained to Pattern B3, respectively for 10M =  and 12M =  
at 150s = . At 10M = , the optimal aiming points of Pattern B3 match almost 
exactly the unconstrained aiming points. At 12M = , the optimal aiming points 
of Pattern B3 deviate from the unconstrained aiming points. Despite the apparent  

https://doi.org/10.4236/ajor.2017.75022


H. Y. Wang et al. 
 

 

DOI: 10.4236/ajor.2017.75022 300 American Journal of Operations Research 
 

 
Figure 5. Difference in optimal damage fraction ( optp ) between constrained 

and unconstrained optimizations as a function of M at 150s =  (radius of 
area target). In the horizontal direction, all points should have integer 
values. To visually display points that are on top of each other, they are 
shifted slightly in the horizontal direction in the plot. 

 

 
Figure 6. Comparison of unconstrained optimal aiming points and optimal aiming points constrained to Pattern B3. Left panel: 
two sets of optimal aiming points for 10M = , yielding { }opt ,unconstrained 0.772604p =  and { }opt ,Pattern B3 0.772398p = , respectively. 

Right panel: two sets of optimal aiming points for 12M = , yielding { }opt ,unconstrained 0.814997p =  and { }opt ,Pattern B3 0.813372p = , 

respectively. 
 
discrepancy between these two sets of optimal aiming points, the corresponding 
damage fractions are still very close to each other: the optimal damage fraction 
for Pattern B3 is { }opt,Pattern B3 0.813372p =  while the overall optimal damage 
fraction is { }opt,unconstrained 0.814997p = . The difference between these two damage 
fraction values is less than 0.2%. It is important to point out the difference in 
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computational complexity between these two optimizations. While the constrained 
optimization over Pattern B3 has 4 variables, the unconstrained optimization for 

12M =  weapons has 24 variables, which converges much slower than the 
constrained optimization. 

The optimal aiming points constrained to Pattern B1 for 6M = , the optimal 
aiming points constrained to Pattern B2 for 7M =  and the corresponding 
unconstrained optimal aiming points are displayed in Figure 7. 

Figure 8 plots the optimal damage fraction, respectively, as a function of M 
for several values of s (left panel), and as a function of s for several values of M 
(right panel). For a fixed value of s, the optimal damage fraction increases with  

 

 
Figure 7. Left panel: unconstrained optimal aiming points and optimal aiming points constrained to Pattern B1 for 6M =  
weapons. Right panel: unconstrained optimal aiming points and optimal aiming points constrained to Pattern B2 for 7M =  
weapons. 

 

 
Figure 8. Damage fraction corresponding to the optimal aiming points. Left panel: damage fraction as a function of M. Right 
panel: damage fraction as a function of s. 
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the number of weapons, M; for a fixed value of M, the optimal damage fraction 
decreases as the radius (s) of area target is increased (i.e., damage fraction is 
lower for a larger area target). Both of these results are reasonable and consistent 
with our intuition. 

A practical question regarding resource allocation is the following: Given the 
radius of area target (s), what is the minimum number of weapons needed to 
achieve a given threshold of damage fraction? This question is answered in 
Figure 9. Figure 9 shows that for any given threshold of damage fraction, the 
minimum number of weapons needed is an increasing function of the area target 
radius (i.e., larger area target requires larger number of weapons), which again is 
reasonable and consistent with our intuition. 

5. Scaling Laws for Optimal Aiming Points and Optimal  
Damage Fraction with Respect to Area Target Radius 

Finally, we study how the optimal aiming points change with s, the radius of area 
target, and explore if there is a scaling law relating sets of optimal aiming points 
at different values of s. We start by examining the optimal aiming points for 4 
different values of area target radius. The 4 panels in Figure 10 show the optimal 
aiming points for M = 10 weapons, respectively, for 100s = , 200s = , 300s =  
and 400s = . The spreading size of optimal aiming points increases as the radius 
of area target (s) is increased. However, the increase does not follow a simple 
proportional linear relationship. Figure 10 indicates that the increase in the 
spread size of optimal aiming points is less than linear with respect to the area 
target radius. This can be explained intuitively as follows. When the radius  

 

 
Figure 9. Minimum number of weapons needed for achieving a given 
threshold of damage fraction vs. radius of area target. In the vertical 
direction, all flat steps should have integer values. To visually display 
steps from different curves that are overlap with each other, they are 
shifted slightly in the vertical direction in the plot. 
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Figure 10. Sets of optimal aiming points for 10M =  weapons for several values of area target radius (s). (a) 100s = ; (b) 

200s = ; (c) 300s = ; (d) 400s = . 
 
of area target is increased, the set of aiming points needs to cover a larger region. 
On the other hand, to maximize the damage fraction, the killing areas associated 
with individual weapons also need to maintain a certain degree of overlapping 
with each other. These two needs contradict each other and cannot be both 
accommodated simultaneously with a fixed number of weapons (M) as the area 
target radius is increased. Thus, it is expected that as the radius of area target is 
increased, the spread size of optimal aiming points will increase less than linearly. 
Here we avoid using the term “radius of optimal aiming points” because the 
distribution of aiming points is not circularly symmetric. 

For the purpose of investigating the spread size of aiming points quantitatively, 
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we define the size of a set of M aiming points { }, 1, 2, ,j j M=r   mathematically 
as  

2
AP

1

1 M

j
j

L
M =

≡ ∑ r                          (18) 

To explore how the size of optimal aiming points scales with the area target 
radius, we plot these two quantities against each other in a log-log plot in the left 
panel of Figure 11, which also includes a fitting function of the form APL s∝ . 
The log-log plot along the fitting function indicates that the size of optimal 
aiming points ( APL ) approximately is proportional to the square root of area 
target radius ( s ). These simulation results lead us to the empirical conclusion 
that the size of optimal aiming point distribution scales as the square root of area 
target radius. Based on this key observation, we introduce the scaled aiming 
points as  

( ) ( ) ( )scaled 1
j js s

s
≡r r                        (19) 

The right panel of Figure 11 compares four sets of scaled optimal aiming 
points of Pattern B3 for 100s = , 200s = , 300s =  and 400s = , respectively. 
The comparison demonstrates that not only the spread size of optimal aiming 
points scales as s , the distribution of optimal aiming points after scaling is 
approximately invariant with respect to the area target radius. Mathematically, 
we have observed that approximately  

( ) ( )scaled is invariant with respect toj s sr               (20) 

This scaling property gives us an even more efficient way of calculating 
optimal aiming points. We only need to calculate the optimal aiming points for  

 

 
Figure 11. Comparison of optimal aiming points for different values of area target radius. Left panel: spread size of optimal 
aiming points vs. radius of area target in a log-log plot. Right panel: sets of scaled optimal aiming points of Pattern B3 for 100s = , 

200s = , 300s =  and 400s = . 
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an area target of typical/representative radius: ( ){ }0 , 1, 2, ,j s j M=r  . We use 

0 150s =  in our study. For an area target of radius s, we simply calculate/predict 
a set of nearly optimal aiming points from ( ){ }0j sr  using the scaling law.  

( ) ( )0
0

j j
ss s
s

=r r                        (21) 

We evaluate the performance of this efficient method by examining the 
damage fraction values achieved by these sets of nearly optimal aiming points. 
Specifically, for each area target, we calculate the damage fraction values 
corresponding respectively to three sets of aiming points:  
• aiming points calculated in the unconstrained optimization;  
• aiming points calculated using scaling law (21);  
• all aiming points = ( )0,0 . 

Figure 12 compares the damage fraction values caused by the 3 sets of aiming 
points described above for M = 6 weapons (left panel) and for M = 10 weapons 
(right panel). The damage fraction achieved by the set of nearly optimal aiming 
points calculated using scaling is indistinguishable from that achieved in the 
unconstrained optimization (true optimum) while the damage fraction 
corresponding to all weapons aiming at ( )0,0  is much lower. Therefore, we 
conclude that scaling law (21) is an efficient and accurate method for calculating 
a set of nearly optimal aiming points. 

6. Concluding Remarks 

We have studied the average damage fraction of an area target caused by 
multiple weapons. The area target was assumed to consist of normally distributed 
elements. Using the analytical expression of the average damage fraction, we 
compared various distribution patterns of the aimpoints and gave optimal  

 

 
Figure 12. Comparison in damage fraction performance of 3 sets of aiming points: 1) aiming points calculated in the 
unconstrained optimization; 2) aiming points calculated using scaling; and 3) all aiming points = ( )0, 0 . Left panel: 6M =  

weapons. Right panel: 12M =  weapons. 
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patterns for different number of weapons. Scaling laws for optimal aimpoints 
and optimal damage fraction with respect to the radius of the area target were 
derived. One prospective future research is to extend our current work to an 
area target of uniformly distributed elements. Another avenue for future 
research is to consider an area target where the elements are assigned different 
values and seek optimal aimpoints in order to minimize the total average 
surviving value. 
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