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Abstract 
In the Covering Salesman Problem (CSP), a distribution of nodes is provided, 
and the objective is to identify the shortest-length tour of a subset of all given 
nodes such that each node is not on the tour which is within a radius r of any 
node on the tour. In this paper, we define a new covering problem called the 
CSP with Nodes and Segments (CSPNS). The main difference between the 
CSP and the CSPNS is that in the CSPNS, not only the nodes on the tour but 
also the segments on the tour can cover the nodes not on the tour. We formu-
lated the CSPNS via integer programming and found an optimal solution by 
using a general-purpose mixed-integer program solver. Benchmark instances 
of the CSPNS were generated by DIMACS, which is one of the benchmark 
problems of the Traveling Salesman Problem. Optimal solutions could not be 
obtained in a reasonable time frame for a large size of instances. Thus, in this 
study, we developed a simple heuristic method to find good near-optimal so-
lutions to the CSPNS. The proposed heuristic method quickly finds good so-
lutions. 
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1. Introduction 

The Traveling Salesman Problem (TSP) is one of the most famous combinatorial 
optimization problems [1]. In the TSP, a set of nodes { }1,2, ,V n=   is pro-
vided. Let dij be the distance from node i to node j. A salesman starts from a 
node, visits each node exactly once, and returns to the starting node. The objec-
tive of the TSP is to find the shortest-length tour. The TSP has several practical 
applications, such as drilling, computer wiring, routing, very-large-scale integra-
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tion design, and job sequencing. To reduce the cost of solving such problems, 
the development of an algorithm for finding an optimal solution or a near-   
optimal solution to the TSP has been actively pursued [2]-[7]. Figure 1(a) shows 
a graphical example of the TSP. 

In recent years, several mobile-service cars, for example, mobile libraries, mo-
bile shops, and waste-recovery vehicles, have traveled in our town. In the service 
systems, the vehicle does not visit all the users to provide the service. A service 
provider selects stopping places, and the vehicle visits these places to provide the 
service; the users visit the nearest stopping place to receive the service. If the ser-
vice provider selects many stopping places, the distances between a user and a 
stopping place are short. However, the tour of the vehicle is long. Therefore, in 
the service system, it is important to determine optimal stopping places and an 
optimal tour. To solve this problem, the Covering Salesman Problem (CSP) has 
been formulated [8]. In the CSP, a set of nodes { }1,2, ,V n=   is provided, 
along with the distance dij between nodes i and j for all nodes. In addition, the 
covering distance r is given. The salesman visits a node. The node visited by the 
salesman can cover other nodes within a radius r. The objective of the CSP is to 
identify the shortest tour of a subset of all given nodes, such that each node that 
is not on the tour is within a radius r of a node on the tour [8]. Figure 1(b) 
shows a graphical example of the CSP. 

In this study, we define a new covering problem called the CSP with Nodes 
and Segments (CSPNS). To illustrate the CSPNS, we consider advertising, which 
is one of inevitable activities in modern business. It requires a medium for 
sending promotional messages to targeted people, for example, an advertising 
truck (AD-truck) that drives on town streets while displaying and broadcasting 
information about a new product or a local event. The aim of the AD-truck is to 
promote new products or local events to people on the street. Even though the 
truck is moving, announcements from the truck can be heard by people on the 
street. Therefore, the AD-truck does not have to stop for people to see and hear 
the advertising. This is the most important difference between the CSP and the 
CSPNS. In the CSP, the nodes on the tour can only cover the nodes not on the 
tour. However, in the CSPNS, not only the nodes but also the segments on the  
 

 
Figure 1. Graphical interpretation of (a) Traveling Salesman Problem; (b) Covering Sa-
lesman Problem; and (c) Covering Salesman Problem with Nodes and Segments. In these 
figures, red lines indicate the optimal tours. Red circles represent the visited nodes. The 
covering area is shown in gray. 
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tour can cover the nodes not on the tour. Figure 1(c) shows a graphical example 
of the CSPNS. 

The rest of this paper is organized as follows. In Section 2, we formally define 
the Covering Salesman Problem with Nodes and Segments. We also present the 
simulation results by using a general purpose mixed integer program solver. Sec-
tion 3 describes a local search method for solving the CSPNS. Section 4 discusses 
computational results of the proposed method. Section 5 provides concluding 
remarks and discusses possible extensions of the proposed method. 

2. CSPNS 
2.1. Problem Definition 

In the CSPNS, a set of nodes { }1,2, ,V n=  , the distance dij between nodes i 
and j, and the perpendicular distance pijk between node i and edge (j, k) are giv-
en, along with the covering distance of the node, rn ≥ 0, and that of the edge, re ≥ 
0. From the data provided, we have two constant values: 

( )1: if node  is covered by node ,

0 : otherwise                                              
ij n

ij

i j d r
a

 ≤= 


           (1) 

and 

( ) ( )1: if node  is covered by edge , ,

0 : otherwise.                                                      
ijk e

ijk

i j k p r
b

 ≤= 


        (2) 

In the CSPNS, node 1 must be visited by the salesman, because node 1 is a 
depot. The salesman visits some nodes such that all nodes that are not on the 
tour are within the covering distance rn of the visited nodes or the covering dis-
tance re of the edges on the tour. When rn and re are set to zero, this is the TSP, 
because the salesman must visit all nodes. In the case of rn ≥ 1 and re = 0, the 
CSPNS becomes the CSP, because the edges on the tour cannot cover the unvi-
sited nodes. We introduce two decision variables: 

1: if the salesman visits node ,
0 : otherwisei

i
y


= 


              (3) 

and 

( )1: if the salesman moves directly from node to node ,
0 : otherwise.ij

i j i
x

 ≠
= 


  (4) 

If the salesman moves directly from node i to node j (xij = 1), node i is the vi-
sited node (yi = 1). In addition, we introduce a counting value fij to eliminate a 
sub-tour. If the salesman does not move from node i to node j, fij is set as 0. The 
value of fij is increased by 1 whenever the salesman visits a node. Using this no-
tation, the CSPNS is formulated as follows: 

{ }\
Minimize  ij ij

i V j V i
d x

∈ ∈
∑ ∑                   (5) 

1Subject to 1 y =                        (6) 
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{ }0 , \ijf i V j V i≥ ∀ ∈ ∀ ∈                      (14) 

{ }0,1iy i V∈ ∀ ∈                             (15) 

{ } { }0,1 , \ijx i V j V i∈ ∀ ∈ ∀ ∈                   (16) 

In this formulation, Equation (5) is the objective function that minimizes the 
length of the tour. Equations (6)-(16) are constraints of the CSPNS. Equation (6) 
specifies that the salesman must visit node 1, because node 1 is the depot. Equa-
tions (7) and (8) ensure that if the salesman directly moves from node i to node 
j, nodes i and j become visited nodes. In addition, each visited node should be 
visited exactly once. Equation (9) enforces the condition that every node is cov-
ered by the visited nodes or the edges on the tour. Equations (10)-(14) eliminate 
sub-tours by using flow formulation. Finally, constraints (15) and (16) define the 
variables as binary value. 

2.2. Computational Simulations Using Mixed-Integer 
Programming Solver 

In this section, we present optimal solutions of the CSPNS obtained using the 
formulation of the CSPNS and a mixed-integer programming solver. In this si-
mulation, we used a Gurobi Optimizer 6.5.0 on a Mac Pro (3.0-GHz 8-core Intel 
Xeon E5) with 64 GB of memory running Mac OS X 10.11.5.Gurobi Optimizer is 
one of the powerful solvers and showed good performances for MIP benchmarks 
[9]. All simulations were performed using 16 threads, and the solver time limit 
was set to 12 h. The optimality tolerance of the solver was left as the Gurobi de-
fault of 0.0001. 

For the benchmark instances, DIMACS [10], which is a benchmark problem 
of the TSP, was used. The number of nodes n was set to 50, 60, 70, 80, 90, and 
100. In the simulation, 10 instances were created for each number of nodes (the 
values of the seed of DIMACS were 1 - 10). The covering distances rn and re were 
set to the same value: 0, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 
and 80,000. In the case of rn = re = 0, the problem was the TSP. 

Table 1 presents the number of instances that could be solved within the 12 h 
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time limit. As indicated by the table, we obtained feasible solutions for a small 
size of instances. However, for a large size of instances (n = 90, 100), when the 
covering area was large, optimal solutions could not be found. In such cases, 
even though time limit was set to five days, the optimal solution could not be 
found by the Gurobi optimizer. 

Figure 2 shows the average computational times required for an optimal solu-
tion to be found by the Gurobi optimizer. From Figure 2, the calculation times 
for the CSPNS were longer than those for the TSP (rn = re = 0). Although the 
number of nodes increased slightly, the computational time increased exponen-
tially. The results indicate that there is a need to develop a heuristic method for 
finding solutions in a reasonable time frame for cases of a large size of instances. 

 
Table 1. The number of instances that could be solved within the 12 h time limit. 

 
Number of nodes (n) 

50 60 70 80 90 100 

rn = re = 0 

0 10 10 10 10 10 10 

10,000 10 10 10 10 10 10 

20,000 10 10 10 10 10 10 

30,000 10 10 10 10 10 9 

40,000 10 10 10 10 10 10 

50,000 10 10 10 10 10 8 

60,000 10 10 10 10 9 8 

70,000 10 10 10 10 9 8 

80,000 10 10 10 10 9 8 

 

 
Figure 2. Average calculation times for finding an optimal solution by a Gurobi optimiz-
er. 



T. Matsuura, T. Kimura 
 

254 

3. Local Search Method 

In this section, we develop a heuristic method for determining the optimal or 
near-optimal tour in the CSPNS. Figure 3 shows an optimal tour of the TSP and 
the CSPNS. From these optimal tours, the shape of the optimal tour of the TSP 
(Figure 3(a)) and that of the CSPNS (Figure 3(b) and Figure 3(c)) are very 
similar. In the proposed method, this similarity is used to devise a short tour for 
the CSNPS. 
 

 
Figure 3. Optimal tours for the TSP and CSPNS. The red lines indicate the optimal tours. 
The red and blue circles represent the visited and unvisited nodes, respectively. The cov-
ering area is shown in gray. 
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In the proposed method, first, an initial tour passing through all the given 
nodes is constructed; that is, the TSP is solved. Second, the length of the initial 
tour is improved via local search methods for the TSP, such as the 2-opt, Or-opt 
[11], and Lin-Kernighan algorithms [12] [13] [14]. Finally, the tour is improved 
via local search methods, i.e., eliminating a node, exchanging two nodes, ex-
changing two edges, and inserting a node. Figure 4 shows graphical explanation 
of the local search methods used. 

 

 
Figure 4. Graphical explanation of the local search methods used in the proposed me-
thod. 



T. Matsuura, T. Kimura 
 

256 

In the CSPNS, the distance from node i to node j is the same as that from 
node j to node i, and the distances are Euclidean distances in a two-dimensional 
space, rounded to the nearest integer. Therefore, if a visited node is eliminated 
from the current tour, the length of a new tour is inevitably shorter than that of 
the current tour. Eliminating a node involves removing one node from the cur-
rent tour if a new tour is the feasible: all given nodes can be covered by the vi-
sited nodes or the segments on the new tour. Now, nodes i, j, and k are the (i − 
1)th, ith, and (i + 1)th visited nodes in the current tour, respectively. Node j is 
eliminated from the current tour, and nodes i and k are connected, if the new 
tour is feasible (Figure 4(a)). Exchanging two nodes involves switching a visited 
node i V ′∈  and an unvisited node \i V V ′∈  (Figure 4(b)). Here, V ′  is the 
set of visited nodes. Exchanging two edges involves switching an edge (i, j) 
( ,i j V ′∈ ) and another edge (k, l) ( , \k l V V ′∈ ) (Figure 4(c)). Finally, inserting 
a node involves adding a visited node i V ′∈  to an edge (j, k) ( ,j k V ′∈ ) 
(Figure 4(d)). Figure 5 shows a flowchart of the proposed method. 

4. Results 

The proposed method was coded in C and run on a Mac Pro with a 3.0-GHz 
8-Core Intel Xeon E5 processor and 64 GB of RAM using the Mac OS X 10.11.5 
operating system. To investigate the performance of the method, we solved the 
benchmark instances used in Section 2.2. The number of nodes n was set as 50, 
60, 70, 80, 90, and 100. The cities were uniformly distributed in the 106 × 106 
square, and the seed for generating the instances was set as 1 - 3. The covering 
distances (rn and re) were set as 20,000, 40,000, 60,000, and 80,000. 
 

 
Figure 5. Flowchart of the proposed method. 
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In the proposed method, each instance was tested 50 times, and each run 
stopped when the local optimal solution was found. Initial random tours were 
constructed 50 times for each instance, and the initial tours were improved via 
the local search method for the TSP. In these experiments, we used three algo-
rithms: the Lin-Kernighan, 2-opt, and Or-opt algorithms. Among these, the 
Lin-Kernighan algorithm exhibited the best performance for the TSP. The per-
formance of the proposed method was indicated by the percentage of the gaps 
between the obtained solutions and the optimal solution obtained using the Gu-
robi optimizer. 

Figure 6 shows calculation costs of the proposed method. According to the 
results, the proposed method can quickly obtain solutions to the CSPNS. We 
observe that as the covering area increased, the calculation time increased. This 
is because eliminating the visited nodes from the tour required considerable 
time. 

Tables 2-7 report on the results of the proposed method for the different 
number of nodes. The first column is seed of the instance; the second column 
shows the covering distances rn and re. The third to the 11th columns show the 
results of the proposed method. Avg, Best, and Worst denote the average, best, 
and worst gaps, respectively. 

From Tables 2-7, for the TSP (rn = re = 0), the Lin-Kernighan algorithm ob-
tained better solutions than the other methods because it is the most powerful 
local search method. For the CSPNS, when the initial random tours were im-
proved by the Lin-Kernighan algorithm, we obtained the best tour. The method 
employing the Lin-Kernighan algorithm found an optimal solution for some in 

 

 
Figure 6. Average calculation times of the proposed method. 
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Table 2. Performances of the proposed methods for n = 50. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 1.28 0.00 3.65  2.93 0.00 8.83  4.50 0.88 9.82 

 20,000 1.32 0.00 3.92  3.01 0.00 8.83  4.96 0.89 9.83 

 40,000 1.69 0.00 5.11  3.39 0.00 10.35  4.79 0.00 11.17 

 60,000 1.72 0.50 3.89  2.81 0.50 8.32  4.22 0.78 9.54 

 80,000 5.65 2.71 9.72  7.30 2.71 13.31  7.65 2.11 16.86 

2 0 0.20 0.00 1.75  3.95 0.00 7.75  3.59 0.00 12.76 

 20,000 0.35 0.00 1.71  3.99 0.00 7.73  3.58 0.00 12.97 

 40,000 1.46 1.06 2.92  5.13 1.30 9.10  4.78 0.72 13.01 

 60,000 3.27 2.49 3.97  7.47 1.99 12.62  6.75 1.99 18.57 

 80,000 3.27 1.79 3.48  10.37 0.00 17.38  6.86 0.00 23.55 

3 0 0.04 0.00 0.52  4.35 0.00 11.33  5.15 0.00 14.68 

 20,000 0.03 0.00 0.47  4.27 0.00 11.25  5.29 0.00 14.67 

 40,000 0.13 0.00 1.36  5.46 0.00 12.81  5.86 0.00 15.77 

 60,000 3.33 3.24 4.84  8.35 3.24 19.25  8.96 3.24 20.13 

 80,000 0.00 0.00 0.00  5.79 0.00 16.25  6.00 0.00 15.96 

 
Table 3. Performances of the proposed methods for n = 60. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 1.69 0.00 4.16  3.58 0.37 6.52  4.25 0.59 9.31 

 20,000 1.77 0.00 4.19  3.74 0.37 6.91  4.62 0.63 10.36 

 40,000 2.54 0.78 6.21  4.68 0.88 9.54  5.39 0.94 11.08 

 60,000 4.52 2.03 8.74  5.35 2.64 10.25  6.39 2.22 11.58 

 80,000 7.08 2.96 11.94  8.26 1.58 15.14  8.56 2.41 16.14 

2 0 1.29 0.00 4.41  3.11 0.00 9.60  4.46 0.00 9.03 

 20,000 1.30 0.01 4.29  3.12 0.01 9.47  4.23 0.01 8.41 

 40,000 3.18 0.88 7.64  4.77 0.88 11.13  5.76 1.38 10.89 

 60,000 5.22 1.99 10.23  7.04 1.99 14.47  6.73 1.56 12.60 

 80,000 3.81 0.89 9.50  6.11 0.45 18.40  5.71 0.40 12.31 

3 0 0.26 0.00 1.42  3.84 0.00 9.23  5.02 0.35 12.52 

 20,000 0.44 0.21 1.52  3.96 0.21 9.34  5.58 0.58 12.66 

 40,000 0.50 0.00 2.65  5.15 0.00 11.77  5.45 0.00 15.27 

 60,000 4.12 3.33 5.89  8.76 3.33 16.61  8.77 3.33 19.12 

 80,000 2.40 1.18 6.44  8.00 1.99 14.90  7.37 1.18 15.16 
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Table 4. Performances of the proposed methods for n = 70. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 0.69 0.00 3.49  3.20 0.00 8.24  5.59 0.09 11.33 

 20,000 0.80 0.00 3.72  3.37 0.00 7.60  5.76 0.15 11.43 

 40,000 2.16 1.27 6.44  5.08 1.06 10.27  7.68 1.27 13.75 

 60,000 2.36 0.58 7.18  4.09 1.16 9.62  6.76 0.58 18.59 

 80,000 5.23 1.69 10.11  6.73 2.97 12.00  7.64 1.26 14.02 

2 0 1.18 0.00 5.94  4.80 0.75 9.18  5.21 0.13 11.30 

 20,000 1.17 0.09 5.94  4.74 0.87 9.09  5.08 0.29 10.80 

 40,000 3.21 2.29 7.46  7.12 2.86 12.33  6.68 2.36 14.63 

 60,000 4.66 3.06 11.41  8.95 1.54 15.89  7.73 1.54 19.40 

 80,000 2.74 0.55 8.67  7.03 0.39 14.12  5.61 0.60 14.45 

3 0 0.72 0.00 4.85  3.77 0.01 7.46  5.23 1.47 10.34 

 20,000 0.94 0.19 5.18  4.09 0.19 7.61  5.56 1.51 9.69 

 40,000 1.17 0.00 6.86  5.32 0.00 9.90  6.27 1.34 12.18 

 60,000 2.61 1.48 8.71  6.21 1.48 12.51  6.30 1.48 11.27 

 80,000 3.99 1.96 9.74  8.39 1.96 16.97  9.59 4.57 17.42 

 
Table 5. Performances of the proposed methods for n = 80. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 0.97 0.00 2.72  2.88 0.32 6.53  5.58 1.52 10.50 

 20,000 1.46 0.44 3.43  3.39 0.74 7.09  6.04 1.96 10.94 

 40,000 2.91 1.17 5.22  4.61 1.17 9.64  7.04 0.20 12.60 

 60,000 3.56 1.05 6.13  4.98 0.97 10.88  6.62 2.20 13.47 

 80,000 4.40 0.63 9.24  5.74 0.99 12.66  6.92 1.28 12.63 

2 0 1.28 0.13 3.31  3.95 0.82 8.28  5.47 1.14 9.24 

 20,000 1.43 0.23 3.52  4.06 1.02 8.33  5.42 0.87 8.68 

 40,000 2.60 0.94 6.22  6.04 1.54 11.39  6.52 1.54 12.09 

 60,000 3.82 1.54 8.21  7.27 1.54 13.21  7.38 3.11 12.60 

 80,000 4.45 1.29 11.01  8.40 1.14 18.27  7.89 1.29 14.57 

3 0 0.63 0.00 2.39  3.70 0.09 8.81  6.14 0.64 11.40 

 20,000 0.99 0.24 3.09  4.14 0.34 9.69  6.77 1.03 12.44 

 40,000 0.72 0.00 3.00  4.08 0.12 10.16  6.15 0.00 13.28 

 60,000 4.91 3.55 7.48  8.23 4.38 14.41  9.48 3.89 17.12 

 80,000 3.87 1.54 6.25  7.91 0.98 16.98  9.04 1.74 15.49 
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Table 6. Performances of the proposed methods for n = 90. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 0.92 0.21 5.69  3.36 0.50 8.04  6.67 0.63 14.39 

 20,000 1.24 0.42 6.31  3.73 0.87 8.47  6.93 1.43 15.06 

 40,000 3.36 1.77 7.03  5.08 1.66 11.45  7.19 2.46 17.32 

 60,000 4.81 1.96 9.36  6.11 1.53 11.66  7.78 1.96 16.62 

 80,000 3.81 0.80 8.64  6.36 2.34 12.55  6.79 2.38 12.52 

2 0 1.38 0.14 4.16  4.01 0.14 10.61  5.53 1.07 9.93 

 20,000 1.26 0.05 3.78  3.92 0.08 10.52  5.07 0.32 9.72 

 40,000 3.23 1.17 5.91  6.21 1.70 15.06  7.38 1.53 13.03 

 60,000 4.22 0.78 7.39  6.48 1.00 15.14  6.91 0.78 14.25 

 80,000 6.10 0.37 10.59  8.97 0.00 19.63  9.26 0.37 20.18 

3 0 0.80 0.00 4.01  4.34 0.38 9.45  5.72 1.39 11.72 

 20,000 1.10 0.33 4.27  4.86 0.68 9.84  6.26 1.52 12.36 

 40,000 1.76 0.28 6.39  5.50 0.56 10.07  6.23 0.91 13.42 

 60,000 5.81 3.70 9.78  8.34 3.70 15.15  8.85 3.70 14.69 

 80,000 3.99 0.54 11.08  8.16 0.54 13.93  8.48 0.10 21.81 

 
Table 7. Performances of the proposed methods for n = 100. 

  Lin-Kernighan  2-opt + Or-opt  2-opt 

seed rn, re Avg. Best Worst  Avg. Best Worst  Avg. Best Worst 

1 0 1.53 0.00 4.25  3.89 0.98 8.29  6.41 1.63 12.26 

 20,000 1.84 0.23 4.85  4.31 1.31 8.77  6.48 2.09 12.99 

 40,000 4.35 1.79 6.99  6.87 2.99 12.49  8.73 3.11 13.23 

 60,000 4.08 2.10 8.91  6.32 2.25 14.44  7.04 3.10 14.03 

 80,000 7.73 3.20 13.03  9.29 0.66 16.04  9.03 3.91 16.35 

2 0 1.35 0.15 3.28  4.11 0.42 9.83  4.95 0.42 9.39 

 20,000 1.66 0.21 3.51  4.45 0.63 10.86  5.15 0.49 9.78 

 40,000 2.77 0.92 5.49  5.98 1.04 14.09  5.79 1.54 13.38 

 60,000 3.18 0.30 7.48  5.51 0.47 12.37  5.59 0.21 12.98 

 80,000 6.40 0.96 12.90  8.87 1.85 20.30  8.84 1.64 19.80 

3 0 1.03 0.00 5.87  4.92 0.50 9.72  6.10 1.22 11.70 

 20,000 1.12 0.13 5.66  5.13 0.83 10.14  6.22 1.41 12.10 

 40,000 2.39 0.55 10.02  6.87 1.46 12.28  6.89 0.92 11.28 

 60,000 6.27 3.59 9.69  10.28 0.29 17.13  10.35 4.53 17.35 

 80,000 4.24 1.87 8.95  8.19 1.87 17.77  7.43 2.31 14.54 
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stances. In the proposed method, first, the tour of the TSP was constructed; then, 
the nodes on the tour were deleted. These results indicate that if a good tour of 
the TSP can be constructed, a good tour of the CSPNS can also be constructed. 
However, as the covering area increases, the quality of the solution for the 
CSPNS becomes worse. The proposed method is quickly trapped by local mini-
ma because it employs the local search algorithm. Several methods for avoiding 
local minima have been proposed, such as Tabu Search [5] [6], simulated an-
nealing [2], and genetic algorithms [3]. We expect that applying such algorithms 
to the proposed method can yield better solutions and an improved perfor-
mance. 

5. Conclusions 

This paper defines and formulates a new CSP called the CSPNS. We presented 
mixed-integer linear programming formulations of the CSPNS, and by using the 
formulations and a mixed-integer programming solver, optimal solutions of the 
CSPNS were obtained. However, if the number of nodes was large, a long time 
was needed to find the optimal solution. 

To find near-optimal solutions quickly, we proposed a heuristic method em-
ploying simple local search methods. Experimental results for a set of bench-
mark instances show that the proposed method quickly obtained good solutions. 
For some instances, the optimal solution was found in a few seconds. However, 
the tour obtained by the proposed method is not a global optimum but a local 
optimum. In future work, powerful meta-strategies, such as genetic algorithms, 
Tabu Search, and simulated annealing can be employed to improve the search 
capability of the proposed method. 
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