
American Journal of Operations Research, 2017, 7, 249-262
http://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2017.74017 July 20, 2017

Covering Salesman Problem with Nodes and
Segments

Takafumi Matsuura1, Takayuki Kimura2

1Department of Computer & Information Engineering, Nippon Institute of Technology, Saitama, Japan
2Department of Electrical and Electronic Engineering, Nippon Institute of Technology, Saitama, Japan

Abstract
In the Covering Salesman Problem (CSP), a distribution of nodes is provided,
and the objective is to identify the shortest-length tour of a subset of all given
nodes such that each node is not on the tour which is within a radius r of any
node on the tour. In this paper, we define a new covering problem called the
CSP with Nodes and Segments (CSPNS). The main difference between the
CSP and the CSPNS is that in the CSPNS, not only the nodes on the tour but
also the segments on the tour can cover the nodes not on the tour. We formu-
lated the CSPNS via integer programming and found an optimal solution by
using a general-purpose mixed-integer program solver. Benchmark instances
of the CSPNS were generated by DIMACS, which is one of the benchmark
problems of the Traveling Salesman Problem. Optimal solutions could not be
obtained in a reasonable time frame for a large size of instances. Thus, in this
study, we developed a simple heuristic method to find good near-optimal so-
lutions to the CSPNS. The proposed heuristic method quickly finds good so-
lutions.

Keywords
Covering Salesman Problem, Covering Salesman Problem with Nodes and
Segments, Combinatorial Optimization Problem, Local Search Method

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most famous combinatorial
optimization problems [1]. In the TSP, a set of nodes { }1,2, ,V n=  is pro-
vided. Let dij be the distance from node i to node j. A salesman starts from a
node, visits each node exactly once, and returns to the starting node. The objec-
tive of the TSP is to find the shortest-length tour. The TSP has several practical
applications, such as drilling, computer wiring, routing, very-large-scale integra-

How to cite this paper: Matsuura, T. and
Kimura, T. (2017) Covering Salesman
Problem with Nodes and Segments. Amer-
ican Journal of Operations Research, 7,
249-262.
https://doi.org/10.4236/ajor.2017.74017

Received: April 28, 2017
Accepted: July 17, 2017
Published: July 20, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2017.74017
http://www.scirp.org
https://doi.org/10.4236/ajor.2017.74017
http://creativecommons.org/licenses/by/4.0/

T. Matsuura, T. Kimura

250

tion design, and job sequencing. To reduce the cost of solving such problems,
the development of an algorithm for finding an optimal solution or a near-
optimal solution to the TSP has been actively pursued [2]-[7]. Figure 1(a) shows
a graphical example of the TSP.

In recent years, several mobile-service cars, for example, mobile libraries, mo-
bile shops, and waste-recovery vehicles, have traveled in our town. In the service
systems, the vehicle does not visit all the users to provide the service. A service
provider selects stopping places, and the vehicle visits these places to provide the
service; the users visit the nearest stopping place to receive the service. If the ser-
vice provider selects many stopping places, the distances between a user and a
stopping place are short. However, the tour of the vehicle is long. Therefore, in
the service system, it is important to determine optimal stopping places and an
optimal tour. To solve this problem, the Covering Salesman Problem (CSP) has
been formulated [8]. In the CSP, a set of nodes { }1,2, ,V n=  is provided,
along with the distance dij between nodes i and j for all nodes. In addition, the
covering distance r is given. The salesman visits a node. The node visited by the
salesman can cover other nodes within a radius r. The objective of the CSP is to
identify the shortest tour of a subset of all given nodes, such that each node that
is not on the tour is within a radius r of a node on the tour [8]. Figure 1(b)
shows a graphical example of the CSP.

In this study, we define a new covering problem called the CSP with Nodes
and Segments (CSPNS). To illustrate the CSPNS, we consider advertising, which
is one of inevitable activities in modern business. It requires a medium for
sending promotional messages to targeted people, for example, an advertising
truck (AD-truck) that drives on town streets while displaying and broadcasting
information about a new product or a local event. The aim of the AD-truck is to
promote new products or local events to people on the street. Even though the
truck is moving, announcements from the truck can be heard by people on the
street. Therefore, the AD-truck does not have to stop for people to see and hear
the advertising. This is the most important difference between the CSP and the
CSPNS. In the CSP, the nodes on the tour can only cover the nodes not on the
tour. However, in the CSPNS, not only the nodes but also the segments on the

Figure 1. Graphical interpretation of (a) Traveling Salesman Problem; (b) Covering Sa-
lesman Problem; and (c) Covering Salesman Problem with Nodes and Segments. In these
figures, red lines indicate the optimal tours. Red circles represent the visited nodes. The
covering area is shown in gray.

T. Matsuura, T. Kimura

251

tour can cover the nodes not on the tour. Figure 1(c) shows a graphical example
of the CSPNS.

The rest of this paper is organized as follows. In Section 2, we formally define
the Covering Salesman Problem with Nodes and Segments. We also present the
simulation results by using a general purpose mixed integer program solver. Sec-
tion 3 describes a local search method for solving the CSPNS. Section 4 discusses
computational results of the proposed method. Section 5 provides concluding
remarks and discusses possible extensions of the proposed method.

2. CSPNS
2.1. Problem Definition

In the CSPNS, a set of nodes { }1,2, ,V n=  , the distance dij between nodes i
and j, and the perpendicular distance pijk between node i and edge (j, k) are giv-
en, along with the covering distance of the node, rn ≥ 0, and that of the edge, re ≥
0. From the data provided, we have two constant values:

()1: if node is covered by node ,

0 : otherwise
ij n

ij

i j d r
a

 ≤= 


 (1)

and

() ()1: if node is covered by edge , ,

0 : otherwise.
ijk e

ijk

i j k p r
b

 ≤= 


 (2)

In the CSPNS, node 1 must be visited by the salesman, because node 1 is a
depot. The salesman visits some nodes such that all nodes that are not on the
tour are within the covering distance rn of the visited nodes or the covering dis-
tance re of the edges on the tour. When rn and re are set to zero, this is the TSP,
because the salesman must visit all nodes. In the case of rn ≥ 1 and re = 0, the
CSPNS becomes the CSP, because the edges on the tour cannot cover the unvi-
sited nodes. We introduce two decision variables:

1: if the salesman visits node ,
0 : otherwisei

i
y


= 


 (3)

and

()1: if the salesman moves directly from node to node ,
0 : otherwise.ij

i j i
x

 ≠
= 


 (4)

If the salesman moves directly from node i to node j (xij = 1), node i is the vi-
sited node (yi = 1). In addition, we introduce a counting value fij to eliminate a
sub-tour. If the salesman does not move from node i to node j, fij is set as 0. The
value of fij is increased by 1 whenever the salesman visits a node. Using this no-
tation, the CSPNS is formulated as follows:

{ }\
Minimize ij ij

i V j V i
d x

∈ ∈
∑ ∑ (5)

1Subject to 1 y = (6)

T. Matsuura, T. Kimura

252

{ }\
hi i

h V i
x y i V

∈

= ∀ ∈∑ (7)

{ }\
ij i

j V i
x y i V

∈

= ∀ ∈∑ (8)

{ }\
1ij i ijk jk

j V j V k V j
a y b x i V

∈ ∈ ∈

+ ≥ ∀ ∈∑ ∑ ∑ (9)

{ } { }\ \
ij i hi i i

j V i h V i
f y f y y i V

∈ ∈

− = ∀ ∈∑ ∑ (10)

() { }1 , \ij ijf n x i V j V i≤ − ∀ ∈ ∀ ∈ (11)

{ }
1

\ 1
0j

j V
f

∈

=∑ (12)

{ }
1

\ 1
1h k

h V k V
f y

∈ ∈

= −∑ ∑ (13)

{ }0 , \ijf i V j V i≥ ∀ ∈ ∀ ∈ (14)

{ }0,1iy i V∈ ∀ ∈ (15)

{ } { }0,1 , \ijx i V j V i∈ ∀ ∈ ∀ ∈ (16)

In this formulation, Equation (5) is the objective function that minimizes the
length of the tour. Equations (6)-(16) are constraints of the CSPNS. Equation (6)
specifies that the salesman must visit node 1, because node 1 is the depot. Equa-
tions (7) and (8) ensure that if the salesman directly moves from node i to node
j, nodes i and j become visited nodes. In addition, each visited node should be
visited exactly once. Equation (9) enforces the condition that every node is cov-
ered by the visited nodes or the edges on the tour. Equations (10)-(14) eliminate
sub-tours by using flow formulation. Finally, constraints (15) and (16) define the
variables as binary value.

2.2. Computational Simulations Using Mixed-Integer
Programming Solver

In this section, we present optimal solutions of the CSPNS obtained using the
formulation of the CSPNS and a mixed-integer programming solver. In this si-
mulation, we used a Gurobi Optimizer 6.5.0 on a Mac Pro (3.0-GHz 8-core Intel
Xeon E5) with 64 GB of memory running Mac OS X 10.11.5.Gurobi Optimizer is
one of the powerful solvers and showed good performances for MIP benchmarks
[9]. All simulations were performed using 16 threads, and the solver time limit
was set to 12 h. The optimality tolerance of the solver was left as the Gurobi de-
fault of 0.0001.

For the benchmark instances, DIMACS [10], which is a benchmark problem
of the TSP, was used. The number of nodes n was set to 50, 60, 70, 80, 90, and
100. In the simulation, 10 instances were created for each number of nodes (the
values of the seed of DIMACS were 1 - 10). The covering distances rn and re were
set to the same value: 0, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000,
and 80,000. In the case of rn = re = 0, the problem was the TSP.

Table 1 presents the number of instances that could be solved within the 12 h

T. Matsuura, T. Kimura

253

time limit. As indicated by the table, we obtained feasible solutions for a small
size of instances. However, for a large size of instances (n = 90, 100), when the
covering area was large, optimal solutions could not be found. In such cases,
even though time limit was set to five days, the optimal solution could not be
found by the Gurobi optimizer.

Figure 2 shows the average computational times required for an optimal solu-
tion to be found by the Gurobi optimizer. From Figure 2, the calculation times
for the CSPNS were longer than those for the TSP (rn = re = 0). Although the
number of nodes increased slightly, the computational time increased exponen-
tially. The results indicate that there is a need to develop a heuristic method for
finding solutions in a reasonable time frame for cases of a large size of instances.

Table 1. The number of instances that could be solved within the 12 h time limit.

Number of nodes (n)

50 60 70 80 90 100

rn = re = 0

0 10 10 10 10 10 10

10,000 10 10 10 10 10 10

20,000 10 10 10 10 10 10

30,000 10 10 10 10 10 9

40,000 10 10 10 10 10 10

50,000 10 10 10 10 10 8

60,000 10 10 10 10 9 8

70,000 10 10 10 10 9 8

80,000 10 10 10 10 9 8

Figure 2. Average calculation times for finding an optimal solution by a Gurobi optimiz-
er.

T. Matsuura, T. Kimura

254

3. Local Search Method

In this section, we develop a heuristic method for determining the optimal or
near-optimal tour in the CSPNS. Figure 3 shows an optimal tour of the TSP and
the CSPNS. From these optimal tours, the shape of the optimal tour of the TSP
(Figure 3(a)) and that of the CSPNS (Figure 3(b) and Figure 3(c)) are very
similar. In the proposed method, this similarity is used to devise a short tour for
the CSNPS.

Figure 3. Optimal tours for the TSP and CSPNS. The red lines indicate the optimal tours.
The red and blue circles represent the visited and unvisited nodes, respectively. The cov-
ering area is shown in gray.

T. Matsuura, T. Kimura

255

In the proposed method, first, an initial tour passing through all the given
nodes is constructed; that is, the TSP is solved. Second, the length of the initial
tour is improved via local search methods for the TSP, such as the 2-opt, Or-opt
[11], and Lin-Kernighan algorithms [12] [13] [14]. Finally, the tour is improved
via local search methods, i.e., eliminating a node, exchanging two nodes, ex-
changing two edges, and inserting a node. Figure 4 shows graphical explanation
of the local search methods used.

Figure 4. Graphical explanation of the local search methods used in the proposed me-
thod.

T. Matsuura, T. Kimura

256

In the CSPNS, the distance from node i to node j is the same as that from
node j to node i, and the distances are Euclidean distances in a two-dimensional
space, rounded to the nearest integer. Therefore, if a visited node is eliminated
from the current tour, the length of a new tour is inevitably shorter than that of
the current tour. Eliminating a node involves removing one node from the cur-
rent tour if a new tour is the feasible: all given nodes can be covered by the vi-
sited nodes or the segments on the new tour. Now, nodes i, j, and k are the (i −
1)th, ith, and (i + 1)th visited nodes in the current tour, respectively. Node j is
eliminated from the current tour, and nodes i and k are connected, if the new
tour is feasible (Figure 4(a)). Exchanging two nodes involves switching a visited
node i V ′∈ and an unvisited node \i V V ′∈ (Figure 4(b)). Here, V ′ is the
set of visited nodes. Exchanging two edges involves switching an edge (i, j)
(,i j V ′∈) and another edge (k, l) (, \k l V V ′∈) (Figure 4(c)). Finally, inserting
a node involves adding a visited node i V ′∈ to an edge (j, k) (,j k V ′∈)
(Figure 4(d)). Figure 5 shows a flowchart of the proposed method.

4. Results

The proposed method was coded in C and run on a Mac Pro with a 3.0-GHz
8-Core Intel Xeon E5 processor and 64 GB of RAM using the Mac OS X 10.11.5
operating system. To investigate the performance of the method, we solved the
benchmark instances used in Section 2.2. The number of nodes n was set as 50,
60, 70, 80, 90, and 100. The cities were uniformly distributed in the 106 × 106
square, and the seed for generating the instances was set as 1 - 3. The covering
distances (rn and re) were set as 20,000, 40,000, 60,000, and 80,000.

Figure 5. Flowchart of the proposed method.

T. Matsuura, T. Kimura

257

In the proposed method, each instance was tested 50 times, and each run
stopped when the local optimal solution was found. Initial random tours were
constructed 50 times for each instance, and the initial tours were improved via
the local search method for the TSP. In these experiments, we used three algo-
rithms: the Lin-Kernighan, 2-opt, and Or-opt algorithms. Among these, the
Lin-Kernighan algorithm exhibited the best performance for the TSP. The per-
formance of the proposed method was indicated by the percentage of the gaps
between the obtained solutions and the optimal solution obtained using the Gu-
robi optimizer.

Figure 6 shows calculation costs of the proposed method. According to the
results, the proposed method can quickly obtain solutions to the CSPNS. We
observe that as the covering area increased, the calculation time increased. This
is because eliminating the visited nodes from the tour required considerable
time.

Tables 2-7 report on the results of the proposed method for the different
number of nodes. The first column is seed of the instance; the second column
shows the covering distances rn and re. The third to the 11th columns show the
results of the proposed method. Avg, Best, and Worst denote the average, best,
and worst gaps, respectively.

From Tables 2-7, for the TSP (rn = re = 0), the Lin-Kernighan algorithm ob-
tained better solutions than the other methods because it is the most powerful
local search method. For the CSPNS, when the initial random tours were im-
proved by the Lin-Kernighan algorithm, we obtained the best tour. The method
employing the Lin-Kernighan algorithm found an optimal solution for some in

Figure 6. Average calculation times of the proposed method.

T. Matsuura, T. Kimura

258

Table 2. Performances of the proposed methods for n = 50.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 1.28 0.00 3.65 2.93 0.00 8.83 4.50 0.88 9.82

 20,000 1.32 0.00 3.92 3.01 0.00 8.83 4.96 0.89 9.83

 40,000 1.69 0.00 5.11 3.39 0.00 10.35 4.79 0.00 11.17

 60,000 1.72 0.50 3.89 2.81 0.50 8.32 4.22 0.78 9.54

 80,000 5.65 2.71 9.72 7.30 2.71 13.31 7.65 2.11 16.86

2 0 0.20 0.00 1.75 3.95 0.00 7.75 3.59 0.00 12.76

 20,000 0.35 0.00 1.71 3.99 0.00 7.73 3.58 0.00 12.97

 40,000 1.46 1.06 2.92 5.13 1.30 9.10 4.78 0.72 13.01

 60,000 3.27 2.49 3.97 7.47 1.99 12.62 6.75 1.99 18.57

 80,000 3.27 1.79 3.48 10.37 0.00 17.38 6.86 0.00 23.55

3 0 0.04 0.00 0.52 4.35 0.00 11.33 5.15 0.00 14.68

 20,000 0.03 0.00 0.47 4.27 0.00 11.25 5.29 0.00 14.67

 40,000 0.13 0.00 1.36 5.46 0.00 12.81 5.86 0.00 15.77

 60,000 3.33 3.24 4.84 8.35 3.24 19.25 8.96 3.24 20.13

 80,000 0.00 0.00 0.00 5.79 0.00 16.25 6.00 0.00 15.96

Table 3. Performances of the proposed methods for n = 60.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 1.69 0.00 4.16 3.58 0.37 6.52 4.25 0.59 9.31

 20,000 1.77 0.00 4.19 3.74 0.37 6.91 4.62 0.63 10.36

 40,000 2.54 0.78 6.21 4.68 0.88 9.54 5.39 0.94 11.08

 60,000 4.52 2.03 8.74 5.35 2.64 10.25 6.39 2.22 11.58

 80,000 7.08 2.96 11.94 8.26 1.58 15.14 8.56 2.41 16.14

2 0 1.29 0.00 4.41 3.11 0.00 9.60 4.46 0.00 9.03

 20,000 1.30 0.01 4.29 3.12 0.01 9.47 4.23 0.01 8.41

 40,000 3.18 0.88 7.64 4.77 0.88 11.13 5.76 1.38 10.89

 60,000 5.22 1.99 10.23 7.04 1.99 14.47 6.73 1.56 12.60

 80,000 3.81 0.89 9.50 6.11 0.45 18.40 5.71 0.40 12.31

3 0 0.26 0.00 1.42 3.84 0.00 9.23 5.02 0.35 12.52

 20,000 0.44 0.21 1.52 3.96 0.21 9.34 5.58 0.58 12.66

 40,000 0.50 0.00 2.65 5.15 0.00 11.77 5.45 0.00 15.27

 60,000 4.12 3.33 5.89 8.76 3.33 16.61 8.77 3.33 19.12

 80,000 2.40 1.18 6.44 8.00 1.99 14.90 7.37 1.18 15.16

T. Matsuura, T. Kimura

259

Table 4. Performances of the proposed methods for n = 70.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 0.69 0.00 3.49 3.20 0.00 8.24 5.59 0.09 11.33

 20,000 0.80 0.00 3.72 3.37 0.00 7.60 5.76 0.15 11.43

 40,000 2.16 1.27 6.44 5.08 1.06 10.27 7.68 1.27 13.75

 60,000 2.36 0.58 7.18 4.09 1.16 9.62 6.76 0.58 18.59

 80,000 5.23 1.69 10.11 6.73 2.97 12.00 7.64 1.26 14.02

2 0 1.18 0.00 5.94 4.80 0.75 9.18 5.21 0.13 11.30

 20,000 1.17 0.09 5.94 4.74 0.87 9.09 5.08 0.29 10.80

 40,000 3.21 2.29 7.46 7.12 2.86 12.33 6.68 2.36 14.63

 60,000 4.66 3.06 11.41 8.95 1.54 15.89 7.73 1.54 19.40

 80,000 2.74 0.55 8.67 7.03 0.39 14.12 5.61 0.60 14.45

3 0 0.72 0.00 4.85 3.77 0.01 7.46 5.23 1.47 10.34

 20,000 0.94 0.19 5.18 4.09 0.19 7.61 5.56 1.51 9.69

 40,000 1.17 0.00 6.86 5.32 0.00 9.90 6.27 1.34 12.18

 60,000 2.61 1.48 8.71 6.21 1.48 12.51 6.30 1.48 11.27

 80,000 3.99 1.96 9.74 8.39 1.96 16.97 9.59 4.57 17.42

Table 5. Performances of the proposed methods for n = 80.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 0.97 0.00 2.72 2.88 0.32 6.53 5.58 1.52 10.50

 20,000 1.46 0.44 3.43 3.39 0.74 7.09 6.04 1.96 10.94

 40,000 2.91 1.17 5.22 4.61 1.17 9.64 7.04 0.20 12.60

 60,000 3.56 1.05 6.13 4.98 0.97 10.88 6.62 2.20 13.47

 80,000 4.40 0.63 9.24 5.74 0.99 12.66 6.92 1.28 12.63

2 0 1.28 0.13 3.31 3.95 0.82 8.28 5.47 1.14 9.24

 20,000 1.43 0.23 3.52 4.06 1.02 8.33 5.42 0.87 8.68

 40,000 2.60 0.94 6.22 6.04 1.54 11.39 6.52 1.54 12.09

 60,000 3.82 1.54 8.21 7.27 1.54 13.21 7.38 3.11 12.60

 80,000 4.45 1.29 11.01 8.40 1.14 18.27 7.89 1.29 14.57

3 0 0.63 0.00 2.39 3.70 0.09 8.81 6.14 0.64 11.40

 20,000 0.99 0.24 3.09 4.14 0.34 9.69 6.77 1.03 12.44

 40,000 0.72 0.00 3.00 4.08 0.12 10.16 6.15 0.00 13.28

 60,000 4.91 3.55 7.48 8.23 4.38 14.41 9.48 3.89 17.12

 80,000 3.87 1.54 6.25 7.91 0.98 16.98 9.04 1.74 15.49

T. Matsuura, T. Kimura

260

Table 6. Performances of the proposed methods for n = 90.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 0.92 0.21 5.69 3.36 0.50 8.04 6.67 0.63 14.39

 20,000 1.24 0.42 6.31 3.73 0.87 8.47 6.93 1.43 15.06

 40,000 3.36 1.77 7.03 5.08 1.66 11.45 7.19 2.46 17.32

 60,000 4.81 1.96 9.36 6.11 1.53 11.66 7.78 1.96 16.62

 80,000 3.81 0.80 8.64 6.36 2.34 12.55 6.79 2.38 12.52

2 0 1.38 0.14 4.16 4.01 0.14 10.61 5.53 1.07 9.93

 20,000 1.26 0.05 3.78 3.92 0.08 10.52 5.07 0.32 9.72

 40,000 3.23 1.17 5.91 6.21 1.70 15.06 7.38 1.53 13.03

 60,000 4.22 0.78 7.39 6.48 1.00 15.14 6.91 0.78 14.25

 80,000 6.10 0.37 10.59 8.97 0.00 19.63 9.26 0.37 20.18

3 0 0.80 0.00 4.01 4.34 0.38 9.45 5.72 1.39 11.72

 20,000 1.10 0.33 4.27 4.86 0.68 9.84 6.26 1.52 12.36

 40,000 1.76 0.28 6.39 5.50 0.56 10.07 6.23 0.91 13.42

 60,000 5.81 3.70 9.78 8.34 3.70 15.15 8.85 3.70 14.69

 80,000 3.99 0.54 11.08 8.16 0.54 13.93 8.48 0.10 21.81

Table 7. Performances of the proposed methods for n = 100.

 Lin-Kernighan 2-opt + Or-opt 2-opt

seed rn, re Avg. Best Worst Avg. Best Worst Avg. Best Worst

1 0 1.53 0.00 4.25 3.89 0.98 8.29 6.41 1.63 12.26

 20,000 1.84 0.23 4.85 4.31 1.31 8.77 6.48 2.09 12.99

 40,000 4.35 1.79 6.99 6.87 2.99 12.49 8.73 3.11 13.23

 60,000 4.08 2.10 8.91 6.32 2.25 14.44 7.04 3.10 14.03

 80,000 7.73 3.20 13.03 9.29 0.66 16.04 9.03 3.91 16.35

2 0 1.35 0.15 3.28 4.11 0.42 9.83 4.95 0.42 9.39

 20,000 1.66 0.21 3.51 4.45 0.63 10.86 5.15 0.49 9.78

 40,000 2.77 0.92 5.49 5.98 1.04 14.09 5.79 1.54 13.38

 60,000 3.18 0.30 7.48 5.51 0.47 12.37 5.59 0.21 12.98

 80,000 6.40 0.96 12.90 8.87 1.85 20.30 8.84 1.64 19.80

3 0 1.03 0.00 5.87 4.92 0.50 9.72 6.10 1.22 11.70

 20,000 1.12 0.13 5.66 5.13 0.83 10.14 6.22 1.41 12.10

 40,000 2.39 0.55 10.02 6.87 1.46 12.28 6.89 0.92 11.28

 60,000 6.27 3.59 9.69 10.28 0.29 17.13 10.35 4.53 17.35

 80,000 4.24 1.87 8.95 8.19 1.87 17.77 7.43 2.31 14.54

T. Matsuura, T. Kimura

261

stances. In the proposed method, first, the tour of the TSP was constructed; then,
the nodes on the tour were deleted. These results indicate that if a good tour of
the TSP can be constructed, a good tour of the CSPNS can also be constructed.
However, as the covering area increases, the quality of the solution for the
CSPNS becomes worse. The proposed method is quickly trapped by local mini-
ma because it employs the local search algorithm. Several methods for avoiding
local minima have been proposed, such as Tabu Search [5] [6], simulated an-
nealing [2], and genetic algorithms [3]. We expect that applying such algorithms
to the proposed method can yield better solutions and an improved perfor-
mance.

5. Conclusions

This paper defines and formulates a new CSP called the CSPNS. We presented
mixed-integer linear programming formulations of the CSPNS, and by using the
formulations and a mixed-integer programming solver, optimal solutions of the
CSPNS were obtained. However, if the number of nodes was large, a long time
was needed to find the optimal solution.

To find near-optimal solutions quickly, we proposed a heuristic method em-
ploying simple local search methods. Experimental results for a set of bench-
mark instances show that the proposed method quickly obtained good solutions.
For some instances, the optimal solution was found in a few seconds. However,
the tour obtained by the proposed method is not a global optimum but a local
optimum. In future work, powerful meta-strategies, such as genetic algorithms,
Tabu Search, and simulated annealing can be employed to improve the search
capability of the proposed method.

References
[1] Danzig, G., Fulkerson, R. and Johnson, S. (1954) Solution of a Large Scale Traveling

Salesman Problem. Operations Research, 2, 393-410.

[2] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by Simulated
Annealing. Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671

[3] Grefenstette, J.J., Gopal, R., Rosmaita, B.J. and Gucht, D.V. (1985) Genetic Algo-
rithms for the Traveling Salesman Problem. Proceedings of the 1st International
Conference on Genetic Algorithms, Erlbaum Associates Inc., Hillsdale, 160-168.

[4] Dorigo, M. and Gambardellab, L.M. (1997) Ant Colonies for the Traveling Sales-
man Problem. Biosystems, 43, 73-81.
https://doi.org/10.1016/S0303-2647(97)01708-5

[5] Glover, F. (1989) Tabu Search I. ORSA Journal on Computing, 1, 190-206.
https://doi.org/10.1287/ijoc.1.3.190

[6] Glover, F. (1990) Tabu Search II. ORSA Journal on Computing, 2, 4-32.
https://doi.org/10.1287/ijoc.2.1.4

[7] Hasegawa, M., Ikeguchi, T. and Aihara, K. (1997) Combination of Chaotic Neuro-
dynamics with the 2-Opt Algorithm to Solve Traveling Salesman Problems. Physical
Review Letters, 79, 2344-2347. https://doi.org/10.1103/PhysRevLett.79.2344

[8] Current, J.R. and Schilling, D.A. (1989) The Covering Salesman Problem. Trans-

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1103/PhysRevLett.79.2344

T. Matsuura, T. Kimura

262

portation Science, 23, 208-213. https://doi.org/10.1287/trsc.23.3.208

[9] Gurobi Optimizer. http://www.gurobi.com/index

[10] Johnson, D.S., McGeoch, L.A., Glover, F. and Rego, C. (2000) 8th DIMACS Imple-
mentation Challenge: The Traveling Salesman Problem.
http://dimacs.rutgers.edu/Challenges/TSP/index.html

[11] Or., I. (1967) Traveling Salesman-Type Combinatorial Problems and Their Relation
to the Logistics of Regional Blood Banking. Ph.D. Thesis, Northwestern University,
Illinois.

[12] Lin, S. and Kernighan, B.W. (1973) An Effective Heuristic Algorithm for the Trav-
eling-Salesman Problem. Operations Research, 21, 498-516.
https://doi.org/10.1287/opre.21.2.498

[13] Held, M. and Karp, R.M. (1970) The Traveling-Salesman Problem and Minimum
Spanning Trees. Operations Research, 18, 1138-1162.
https://doi.org/10.1287/opre.18.6.1138

[14] Held, M. and Karp, R.M. (1971) The Traveling-Salesman Problem and Minimum
Spanning Trees: Part II. Mathematical Programming, 1, 6-25.
https://doi.org/10.1007/BF01584070

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ajor@scirp.org

https://doi.org/10.1287/trsc.23.3.208
http://www.gurobi.com/index
http://dimacs.rutgers.edu/Challenges/TSP/index.html
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1287/opre.18.6.1138
https://doi.org/10.1007/BF01584070
http://papersubmission.scirp.org/
mailto:ajor@scirp.org

	Covering Salesman Problem with Nodes and Segments
	Abstract
	Keywords
	1. Introduction
	2. CSPNS
	2.1. Problem Definition
	2.2. Computational Simulations Using Mixed-Integer Programming Solver

	3. Local Search Method
	4. Results
	5. Conclusions
	References

