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Abstract 
The purpose of this paper is to propose a computational technique for eva-
luating the reliability of networks subject to stochastic failures. In this com-
putation, a mathematical model is provided using a technique which incor-
porates the effect of the factoring decomposition theorem using polygon- 
to-chain and series-parallel reductions. The algorithm proceeds by identifying 
iteratively one of seven polygons and when it is discovered, the polygon is 
immediately removed and replaced by a simple chain after having changed the 
individual values of the reliability of each edge and each node of the polygon. 
Theoretically, the mathematical development follows the results presented by 
Satyanarayana & Wood and Theologou & Carlier. The computation process is 
recursively performed and less constrained in term of execution time and 
memory space, and generates an exact value of the reliability. 
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1. Introduction 

Over the last decades, the reliability evaluation of systems and networks has be-
come a priority for all manufacturers, particularly in areas when human life is at 
stake. These areas are especial; aeronautics and telecommunication, nuclear and 
chemical industries, emissions of greenhouse gases, and many others where high 
level of service is needed. System reliability is supported very early of the design 
process. In fact, designers are always trying to develop the best possible product 
that takes into account its impact on the environment; that must be sustainable 
and safe, and competitive in term of robustness and evidently that generates 
earning. Several technical solutions are well-known by designers and engineers; 
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they are included gradually during the life-cycle of products.  
In the literature, dozens of applied methods and techniques have been pro-

posed for determining the reliability of networks [1]. Several of them are called 
enumeration algorithms [2]-[12], summation of disjoint products [5] [8] [13], 
transformations of star-delta and delta-star structures [14], factoring & Reduc-
tion techniques [11] [14]-[22], binary decision diagrams methods [6] [7] [18] 
[23] [24], Bayesian models [25], etc. Simulation and approximating procedures 
have been used when the problem is tedious or when the exact value of the relia-
bility is not necessary required [12] [26]. However, most of these solutions are 
very effective but unfortunately do not allow taking into account the complexity 
of systems and networks’ architecture. The problem is that, in practice, there is 
no general and unified mathematical expression that can represent the reliability 
from which an exact value can be determined, except for some specific architec-
ture, such as parallel, series, series-parallel, standby, k-from-n, and others as 
discussed in the literature (see [27]). 

The problem of evaluating the reliability of networks has been verified to be 
NP-hard [28] and more specifically to be a counting problem or #-P-complete 
(number P-complete) problem ([28] [29] [30]). To avoid such complexity, sev-
eral methods and techniques have been proposed, such as factoring and reduc-
tions algorithms. Some advised researchers like Wood reported in [31] some 
advantageous provided by factoring algorithms which require exponential time 
in the worst case and are at most quadratic in the size of the network because at 
most |𝐸𝐸| (the cardinal of E) modified copies of the network need ever be main-
tained in a stack at any time. He also noted that only a narrow range of reliability 
measures can be analysed and directed networks are problematic; they can only 
be handled in a limited way, and this, is considered as a disadvantage.  

Moskowitz in 1958 introduced a clever technique based on the well-known 
Moore & Shannon theorem [15] [18] [32] [33]. Almost in the same time other 
researchers proposed a new category of methods which combines the factoring 
theorem and reduction operations using an efficient procedure that transforms a 
polygon structure into a simple chain and from which it becomes very easy to 
determine the reliability [2] [15] [16] [21] [23] [30] [33] [34] [35]. Satyanarana 
and Chang in [35], Satyanarana and Wood in [21] and Wood in [31] for exam-
ple, proposed a unified framework based on the factoring theorem to evaluate 
the reliability of networks whose only nodes are fully reliable, and where any 
edge is considered as the centerpiece that can be factored, it is called pivot or 
bridge. A little time later, Theologou and Carlier [22] proposed an original idea 
which provides a simple mathematical transformation to factoring either on 
nodes of on edges, but avoids the dependency problem between nodes and edges 
failures which consider the problem as the well-known common cause problem.  

The purpose of this paper is to introduce a general framework for determining 
the reliability of complex networks whose nodes and edges may fail randomly. It 
consists of an extension of the work of Satyanarana et al. [20] [21] and those of 
Theologou and Carlier [22]. The central principle of this algorithm turns around 
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the idea of decomposing the network structure into a well-distinctive compo-
nent’s structure and then simplify these components directly into chains of 
type-1, type-2 until type-7 (see more closely [14] [18] to understand the type’s 
concept) by direct application of the factoring theorem as presented in Equation 
(3). Type-1 and type-2 are applicable to networks with a source node and a ter-
minal node.  

To explain the ideas developed in this article about the principle of transfor-
mation, we state two theorems that establish some mathematical concepts of 
transformation. Naturally, it would have been wiser to detail all the transforma-
tions of “polygon-to-chain” of any type, but due to the distinctive similarities of 
the generated mathematical formulas it is quite sufficient to present just type-1 
and type-7 reductions, the rest is left as an application exercise to the readers. By 
against, a summary table reports the results of all these transformations, it is 
given at the end of this article.  

The paper is organized as follows: Section 2 reviews some theoretical back-
ground and introduces the factoring theorem. Section 3 presents the operations 
of reduction polygons-to-chains for imperfect edges and nodes. In Section 4 a 
practical example is treated for determining the reliability of the proposed net-
work, and Section 5 concludes the paper. 

2. Backgrounds 
2.1. Basic Knowledge 

Consider an undirected stochastic network (graph) ( ), ,G V E=   where V is a 
finite set of nodes, E is a finite set of edges, and   represents the probability 
domain such that each edge/node takes its value from  . In other words, it is 
associated to each edge and/or to each node a real value ip  (i: represents the 
name given to any arc/node). Mathematically speaking, “ i ip q ” corresponds to 
the magnitude given to the probability of functioning/failing of the component i. 
In this paper, we consider that when a component fails, this does not necessary 
leads other components to fail, which means that all the components are inde-
pendent and the notion of common cause of failure is prohibited. We consider 
the alphabetic characters s and t for representing the source and the sink nodes 
of the network. We denote the reliability of the network by ( )KR G , where K is 
a specified subset of V with 2K ≥ . If cardinality of K is equal to 2, the problem 
is called 2-terminal reliability. A success set, is a minimal set of edges of G such 
that all the vertices in K are connected. The set is minimal if the deletion of any 
edge causes the vertices in K to be disconnected and thus the reliability of the 
network cannot be determined. Two nodes 1v  and 2v  of the network are 
connected if there exists a sequence of nodes and edges of the form  

( ) ( ) ( )1 1 1 1 1 2 2 2, , , , , , , , ,iv v e e e e e v v  (s.t. ie E∈ ). Such a sequence is called a path 
if the edges are direct. A set of nodes K V⊆  is connected if there exists a path 
between all pair of nodes in K. A chain is an alternating sequence of distinct 
nodes and edges, ( ) ( ) ( )1 1 2 2 2 3 3 1, , , , , , , , , ,i i iv v v v v v v e e e−  such as the internal 
nodes are of degree 2. Two distinct chains with common end-nodes, their union 
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constitutes a polygon. Note that a chain or a path can be interpreted mathemat-
ically as a set of elements (nodes and edges). Topologically, a success set is a mi-
nimal tree of G covering all vertices in K. Also, we define parallel edges as edges 
with the same extremities and two adjacent edges are in series if their common 
nodes are of degree 2 and not in K. We note that replacing a pair of series (pa-
rallel) edges by a single edge is called series (parallel) reduction. So, If e is an 
edge of end-nodes u and v, then [ ]G e−  (Figure 1: right) is a subgraph of G 
obtained by deleting e from G and [ ]G e∗  represents a subgraph of G obtained 
by contracting edge e from G (Figure 1: right). Edge e is considered as a keys-
tone edge or the pivot. The edge pivot cannot be chosen arbitrarily [2]. For that, 
several techniques have been proposed in the literature [3] [12]. For some net-
works, the K-nodes are represented by solid circles because they are perfect 
which means that their reliability value is equal to 1. The rest of the nodes are 
represented by empty circles and their reliability takes its value in ] [0,1 ; they 
are imperfect. When K E= , the problem is treated as: all-terminal reliability, 
which mean that all nodes are perfect and the reliability calculus must considers 
all the relations (paths) between any two nodes of the networks.  

In practice, to reduce the size of the network structure, several reduction rules 
have been proposed from which series and parallel are the well-known. They are 
applied only if the network is reducible. In the opposite case, the graph must 
support any other transformations such as polygon-to-chain reductions (see 
Figure 1: left). 

2.2. The Factoring Principle 

The reduction by factorization is based on the factoring theorem of Moore & 
Shannon theorem [33], which is considered by several authors as the basis for a 
class of algorithms for computing K-terminal reliability [27] [31]. It consists of 
decomposing a graph by making assumptions about the state of a component 
(edge/node) until a simple configuration is obtained. The theorem of total 
probabilities is then applied to calculate the reliability of this last generated 
graph. The idea behind this process is to consider an edge e in a graph and to 
suppose that is still working. This statement is represented mathematically by 
the function ( )( )( )1| 1eX t xΦ = =  where ( )Φ ∗  represents the structure func-
tion of the network, and ( )X t  is a vector determining the state of the system.  

 

 
                                                                                           

Figure 1. (Left) reducible 2-terminal graph; (center) 2-terminal irreducible graph; (right): reduction/factoring). 
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In other words, it means that the communication through the edge e is provided. 
In a directed graph, perfect communication between two nodes means that, it is 
possible to gather them into a single node and the impossibility of communicat-
ing through an edge means that the edge must be deleted (see Figure 1 (right 
part)). Using the theorem of total probabilities (Equation (1)), we can easily 
compute the reliability of the network.  

Note that theorems of Moore & Shannon [33] or the well-known theorem of 
Bayes [25] and those of Total probabilities are equivalent in our context. We can 
provide easily mathematical relations between them.  

Consider a graph G and a component e E∈  selected arbitrary. The theorem 
of total probabilities allows for a component e to express the reliability of G as a 
conditional probability using Equation (1). 

( ) ( )( )( )
( )( )( ) ( )

( )( )( ) ( )

Pr 1

Pr 1| 1 Pr 1

Pr 1| 0 Pr 0

e e

e e

R G X t

X t x x

X t x x

= Φ =

= Φ = − =

+ Φ = = =

             (1) 

where ( )Pr 1ex =  is the probability that the component e works and ( )Pr 0ex =  
otherwise, and where ( )( )X tΦ  defines the structure function which represents 
the state of the system. In other word, the reliability of the system can be related 
with the expected mathematical expression which is ( ) ( ){ }R G E X= Φ  (see. 
[27]) for explanations. 

It follows that if we substitute ( )Pr 1ex =  by ( )ep  and ( )Pr 0ex =  by 
( )1 ep− , yields to the expression of the reliability given by Equation (2). 

( ) ( )( )( )
( )( )( )
( )( )( ) ( )

Pr 1

Pr 1| 1

Pr 1| 0 1

e e

e e

R G X t

X t x p

X t x p

= Φ =

= Φ = =

+ Φ = = −

              (2) 

This decomposition process continues as many times as it is necessary (recur-
sively), until a simple structure is found (if any) and whose reliability is easy to 
be evaluated. It should be noted that the selection of certain components may 
sometimes decreases the process of reduction, and therefore the solution is ob-
tained more quickly. 

From Equation (2), it can be established the validity of the factoring theorem 
following conditional reliability formula as given by Equation (3): 

( ) ( ) ( )e eR G p R G e q R G e= ∗ + −                   (3) 

where, 
( )R G : The network reliability. 
( )R G e∗ : The probability that the system works when the component e 

works (edge e is contracted). 
( )R G e− : The probability that the system works when the component e is 

down (edge e is removed). 
1e eq p= − : The edge-failure probability. 
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It is easy to say by comparing the Equations (2) and (3) that ( )R G e∗  and 
( )R G e−  are none other than ( )( )( )Pr 1| 1eX t xΦ = =  and  

( )( )( )Pr 1| 0eX t xΦ = = . 
The example depicted in Figure 2 illustrates the application of the factoring 

theorem using component 1 as a pivot. We assume that the node source corres-
ponds to the node a and the terminal node is node c. If we apply Equation (3), 
we obtain the following expression of the reliability:  

( ) ( ) ( )
[ ] [ ]1 2 3 2 3 2

2 1 3 1 2 3

e e

e

R G p R G e q R G e

p p p p p q p
p p p p p p

= ∗ + −

= + − +

= + −

 

Note that the factoring operation is a special case of pivotal decomposition of 
a binary system as stated in [16] [17].  

3. Factorization of Networks with Imperfect Nodes and  
Edges 

For all the underlying development, we assume the following assumptions: 
• The edges and nodes can fail with a probability 1q p= − . 
• The components are s-independent with known probabilities. 
• All K-nodes are perfectly reliable ( 1p = ). 

3.1. Polygon-to-Chain Reduction 

The objective of substituting a polygon by a chain is an action used to reduce the 
calculation of the reliability when traditional algorithms are not able to provide a 
finite solution or when the graph is irreducible. For that, Satyanarayana and 
Wood have identified seven types of polygons and presented their equivalent 
mathematical expressions [21] [31]. A table covering these polygons and their 
equivalences is published in [21] just for networks with perfect nodes. 

The reduction polygon-to chain in the case of imperfect graphs is further  
 

 
Figure 2. Application of the factorisation. 
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complicated because the transformation must to take into account the state-
ments of nodes and edges at the same time. Several authors have mentioned this 
difficulty [2] [3] [23] [30] [36]. Theologou and Carlier [22] first, have argued 
that when pivoting on a node, the transformation problem becomes more com-
plex and consequently the graph augments in its size.  

In this paper we propose an algorithm which combines the reduction poly-
gon-to-chain using the works of Theologou and Carlier [22], those of Satyana-
rayana and Wood [21], Simard [14] and Rebaiaia and Ait-Kadi [27], in the sense 
that a combination of Satyanarayana and Wood [21] and of Theologou and Car-
lier [22] are provided. We find the work of Theologou and Carlier [22] very in-
teresting because their technique avoids the problem of dependency between the 
network components’ failures. These assumptions are summarized as follows: 

Consider the link ( ),e u v= , where u and v are two imperfect nodes. We 
suppose that any link l works with a probability lp  when e, u and v work with 
their respective probabilities ( ), ,ip i e u v= . Then lp  can be written using the 
following equation: 

l e u vp p p p=                            (4) 

We note that the pivoting on the link l by applying the factoring theorem 
produces the contraction of the edge e and the merging of edges u and v, and 
this operation creates a new perfect node. By cons, if the link fails, the cause of 
the failure cannot be known a priori, because it could be that one of the three 
components of the link has failed, and the relative conditional probabilities are 
given by Equations (5) and (6). Anyway, this link will be lost and therefore it will 
be deleted.  

After this operation of pivoting, the reliabilities of nodes v and u will be iden-
tified by the following new expressions: 

( ) ( )Pr works | or or are down v u u e

v v u u e
v

v

p q p q
p v v e u

q p q p p q
+

′ = =
+ +

      (5) 

( ) ( )Pr works | or or are down u v v e

u u v v e
u

u

p q p q
p u u e v

q p q p p q
+

′ = =
+ +

      (6) 

We can remark that Equations (5) and (6) show clearly that u and v are inti-
mately connected. Thus, to avoid such dependency and for respecting the initial 
assumptions, Theologou and Carlier in [22] proposed a new expression 
representing the probability of u and v. The idea is as follows: 

Suppose that all the K-nodes of the graph are full connected between them-
selves, that is, if this is not the case, the reliability of the original network is equal 
to,  

( ) ( )K v
v K

KR G p R G
∈

′=∏                        (7) 

where KG  and KG′  contain K-imperfect nodes. They are the initial graph and 
its reduced one. Then there exists at least two K-nodes and it is always possible 
to find an edge in the graph with one of its end-node be perfect.  

Let e be a such link with u (perfect) and v (imperfect). Replacing in (6) 1up =  
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and because 1vp ≠ , the relation (8) is then obtained. 

( )
v e

v
v v e

p qp
q p q

′ =
+

                          (8) 

Note that in the present state, the failure node v depends only on the link e 
and therefore e, u and v are now independent. 

As the node v remains in the graph or the link l is down, then the other links 
that have one of their extremities as node v can now be factored and the failure 
of node v depends only on the failure of these edges. Therefore, we can now de-
termine the general formulation for representing the reliability of the imperfect 
node v at any stage of the factoring process when edges ( )1 2, , , re e e  incident 
to v are factored. Consequently we obtain the reliability vp′′  after applying the 
factoring theorem as given by Equation (9). 

( ) ( )( )1

1

1

Pr fonctionne | ou en panne ou en panne

j

j

v r

r
v ej

r
v v ej

p v v e v e

p q

q p q
=

=

′′ = ∧ ∧

=
+

∏
∏



    (9) 

In the sequel, we present the first transformation of polygon-to-chain using 
the factoring process. Here the polygon of type-1 is a triangle and a chain is two 
successive edges that can be reduced to one edge with its end-points (see Figure 
3). As you can see in Figure 3, the triangle structure must contain at least one 
perfect node. If it contains two perfect nodes, it is named polygon of type-2.  

3.1.1. Polygon-to-Chain Reduction of Type-1 (Type-2) for a K-Terminal  
Reliability 

Consider a graph containing a polygon of type-1 or of type-2 as presented in 
Figure 3 (left, up/down) and let sp , ap  et bp  be the individual reliabilities at 
nodes s, a and b. Remember that the node s is the initial node and it is perfect, 
while a and b are imperfect. Note that type-1 polygon is a partial-graph and 
type-2 is a 2-terminal network [36]. Both of them are also known as trian-
gle-network. Note also that this paper considers that nodes and edge both of  

 

 
Figure 3. Type-1 (up) and type-2 (down) polygon-to-chain reductions. 
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them maybe subject to random failures.  
We can now state the following theorem: 
Theorem 1. 
Suppose G be a graph containing a polygon of type-1 as shown if Figure 3 

(up/left). Let G′  denotes the reduced graph generated after transforming G by 
replacing edges 1e  and 2e  by edges 1e′  and 2e′  of reliabilities 1p′  and 2p′  
(e3 is simply deleted). Suppose also that the reliability at node a and b are respec-
tively ap′  and 2p′  (Figure 3 (up/right)), and let Ω  be the multiplier factor 
also called the transformation factor. Then the reliability of the network is: 

( ) ( )R G R G′= Ω                           (10) 

where ( ) ( )A Bδ δ δΩ = + + , ( )1p ACδ δ′ = + , ( )2p BDδ δ′ = + , 
( ) ( )ap AC Aδ δ′ = + + , ( ) ( )bp BD Bδ δ′ = + +  such that: 

[ ]
[ ]
[ ]

( )

( )

1 2 1 3 2 3 1 2 3

2 1 3 1 3

1 2 3 2 3

1 3

1 3

2 3

2 3

2

1

1

a b

b a a a

a b b b

a

a a

b

b b

p p p p p p p p p p p

A p p p p p p p p p

B p p p p p p p p p
p q qC

q p q q
p q qD

q p q q

δ = + + −


= − − +
 = − − +


= +


=
+

               (11) 

Proof: 
Assume that we are in the presence of a graph G which contains at least one 

polygon of type-1. Then the reduced subgraphs ( )1G e∗  and ( )1G e−  are ob-
tained by applying the factoring theorem (Equation (3)) using the link ( )1, ,s e a  
as a pivot and are used to determine the reliability expression of the graph G in 
Equation (12). 

( ) ( ) ( ) ( )1 1 1 11a aR G p p R G e p p R G e= ∗ + − −             (12) 

Assume now that a is a node pivot. After applying Equation (8) to the node a 
the reliability of the node a in the subgraph ( )1G e−  is represented by Equation 
(13): 

( )
1

1a
a

a

a

p qp
q p q

′ =
+

                       (13) 

Then, when pivoting on the link ( )2, ,s e b , the factoring on the reduced sub-
graphs 1G e∗  and 1G e− , generates the new reduced subgraphs  
( )( ) ( )( ) ( )( )1 2 1 2 1 2, ,G e e G e e G e e∗ ∗ ∗ − − ∗  and ( )( )1 2G e e− − . The last sub-

graph is systematically eliminated because at this level of development, the link 
between node s and node a, and node s and node b are broken. The reliability 
expression of the graph G at this step becomes: 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2 1 2 2 1 2

1 2 1 2

1

1 *

a b b

a b

R G p p p p R G e e p p R G e e

p p p p R G e e

= ∗ ∗ + −  ∗ −

 + − − 
   (14) 

Similar to the node a, the new reliability expression of the node b in the sub-
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graph ( )1 2G e e∗ −  is given by Equation (15). 

( )
2

2

b
b

b b

p qp
q p q

′ =
+

                        (15) 

By decomposing successively on the link ( )3, ,s e b  in the reduced graph 
( )1 2G e e∗ −  and on the link ( )3, ,s e a  in the reduced graph ( )1 2G e e− ∗ , then, 
the new expression of the system reliability is:  

( ) ( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1 2 2 3 1 2 3

3 1 2 3 2 1 2

1 2 3 1 2 3 3 1 2 3

1

1

1 1

a b b b

b b

a b a a

R G p p p p R G e e p p p p R G e e e

p p R G e e e p p R G e e

p p p p p p R G e e e p p R G e e e

  ′= ∗ ∗ + − ∗ − ∗
 ′+ − ∗ − − − ∗ 

  ′ ′+ − − ∗ ∗ + − − ∗ −  

 (16) 

In the sub-graph ( )( )1 2 3G e e e− ∗ −  generated in Equation (16), the new 
value of the reliability of the node a is equal to: 

( )
1 3

1 3

a
a

a a

p q qp
q p q q

′′ =
+

                       (17) 

Likewise for the graph ( )( )1 2 3G e e e∗ − − , the reliability of the node b is: 

( )
2 3

2 3

b
b

b b

p q qp
q p q q

′′ =
+

                       (18) 

Note that several states can induce the same graph. To get an idea on the con-
cept of equivalence in this direction (see Figure 4 (terms A, B and C)) to recover 
the equivalent substructures in terms of reliability. We can now establish the 
following equalities: 

 

 
Figure 4. Graph of type-1 and its series of successive transformations par application of 
the factoring theorem. 
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( )( ) ( )( )( ) ( )( )( )1 2 1 2 3 1 2 3R G e e R G e e e R G e e e∗ ∗ = − ∗ ∗ ∗ − ∗=    (19) 

By grouping (A, B, C and D, E) and eliminating the configuration F, the sys-
tem reliability becomes: 

( ) [ ] ( )( )
[ ] ( )( )( )
[ ] ( )( )( )

1 2 1 3 2 3 1 2 3 1 2

1 2 3 2 3 1 2 3

2 1 3 1 3 1 2 3

2

1

1

a b

a b b b

b a a a

R G p p p p p p p p p p p R G e e

p p p p p p p p p R G e e e

p p p p p p p p p R G e e e

= + + − ∗ ∗

+ − − + ∗ − −

+ − − + − ∗ −

  (20) 

Assume G′  is obtained from G  after the reduction process. Then by fac-
toring on the link ( )1, ,s e a′ ′ , the reliability of the system G′  is: 

( ) ( ) ( ) ( )1 11 11a aR G p p R G e p p R G e′ ′ ′ ′ ′ ′ ′ ′ ′= ∗ + − −          (21) 

The reliability of the node a′  in the graph ( )1G e′ ′−  is equal to: 

( ) ( )
1

1

a
a

a a

p qp
q p q

′
′

′ ′

′ ′′′ =
′ ′ ′+

                     (22) 

A similar way is applied to the node b′  giving the following reliability ex-
pression as shown in (23): 

( ) ( )
2

2

b
b

b b

p qp
q p q

′
′

′ ′

′ ′′′ =
′ ′ ′+

                    (23) 

Finally, the reliability expression of G′  is given by Equation (24). 

( ) ( )( ) ( ) ( )( )1 2 1 2 2 1 2* 1a b bR G p p p p R G e e p p R G e e′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∗ + − ∗ −    (24) 

Because the graphs G and G′  are equivalent respecting to relation (10), we 
get the following equalities’:  

( )( ) ( )( )1 2 21R G e e R G e e′ ′ ′∗ ∗ = ∗ ∗               (25) 

( )( )( ) ( )( )1 2 3 1 2R G e e e R G e e′ ′ ′∗ − − = ∗ −             (26) 

Now, we remark that Equation (26) is valid if and only if the relations (27), 
(28) and (29) are respected. 

( )aap p ′′′ ′=                        (27) 

( )( )( ) ( )( )1 2 3 1 2R G e e e R G e e′ ′ ′− ∗ − = − ∗            (28) 

( )bbp p ′′′ ′=                        (29) 

Due to Equations (10), (25) and (26), we can determine the following system:  

[ ] [ ]
[ ] ( )
[ ] ( )

( ) ( )

( ) ( )

1 2 1 3 2 3 1 2 3

1 2 1 3 3 2 3

2 1 3 1 3

1 3

1 3

2 3

2

1 2

1 2

1 2

1

3

1

2

2

2 Ω

1 Ω 1

1 Ω 1

aa b

a b b b

b a a a

a a

a a a a

b b

b

b

a

b

b

b b

a

b

p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p

p p p p p p p p p p p p p

p q q p q
q p q q q p q

p q q p q
q p q q q p q

′

′ ′

′

′ ′

′ ′ ′ ′ + + − =

′ ′ ′ ′ − − + + = − 
′ ′ ′ ′ − − + = − 

′ ′
=

′ ′ ′+ +

′ ′
=

′ ′ ′+ +












   (30) 
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By solving the system in (30), the values of 1 2,Ω, , ap p p′ ′ ′  and bp′  are up-
dated according to: 

( ) ( )

( )

( )
( )
( )
( )
( )

1

2

a

b

A B

p
AC

p
BD

AC
p

A

BD
p

B

δ δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

′

′


+ +Ω =


 ′ =
 +

 ′ = +
 + ′ =

+


+ ′ = +

                     (31) 

where δ, A, B, C and D are identified by the following relations: 

[ ]
[ ]
[ ]

( )

( )

1 2 1 3 2 3 1 2 3

2 1 3 1 3

1 2 3 2 3

1 3

1 3

2 3

2 3

2

1

1

a b

b a a a

a b b b

a

a a

b

b b

p p p p p p p p p p p

A p p p p p p p p p

B p p p p p p p p p
p q qC

q p q q
p q qD

q p q q

δ = + + −


= − − +
 = − − +


= +


=
+

             (32) 

Finally, we note that it is possible to derive a simplified topology from another 
more complex by applying a series of reductions using the factoring theorem 
while keeping unchanged the value of the reliability of a network. The problem 
that may arise is how to automating the recognition of such topologies whose 
calculations can be deduced easily. The idea is very beneficial provided to design 
algorithms that easily skip such a critical stage of the calculation process, or at 
least to determine the necessary means to seek equivalencies between structures. 
To deal with such problems, two interesting productions challenge us; they have 
been reported independently in [19] and [22].  

Now, we skip the determination of the mathematical relations between the 
original graph and its reduced graph for the cases of type-2 to type-6, the rea-
soning scheme is particularly the same as of type-7. At the end of the paper a ta-
ble is provided to resume the reductions relative to polygon-to-chain of type-1 to 
type-7. 

Note that type-2 polygon-to-chain reduction generates the same mathematical 
relations given in systems (31) and (32). The verification is left to the reader. 

3.1.2. Polygon-to-Chain Reduction of Type-7  
We keep the same principle of factoring process used in the case of poly-
gon-to-chain reduction of type-1, however, with a slight difference. Now, we can 
notice that the number of events has increased significantly; it went from five 
events ( )1 2 3, , , ,a be e e e e  to eight events ( )1 2 3 4 5 6, , , , , , ,a be e e e e e e e  leading the 
states space to be multiplied (See Figure 6). A matrix solution is needed in this 
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case to represent the subgraphs, events-states and all the reductions, they are 
represented in Table 1. Before that, we present the following theorem which 
states the principle of polygon-to-chain of type-7 reduction. It provides all the 
equivalence expressions. To prove the theorem, we proceed by factoring the 
edges and nodes of the graph G, and then, on the reduced graph G′ . Finally we 
establish the equivalences by correspondence using Equation (10).  

Theorem 2. 
Let G be a graph containing a polygon of type-7 as presented in Figure 5, and 

G′  be the reduced graph generated after transforming G by replacing edges 

1 2 3 4 5 6, , , , ,e e e e e e  of reliabilities 1 2 3 4 5 6, , , , ,p p p p p p  by edges 1e′  and 2e′  of 
reliabilities 1p′  and 2p′ , and nodes a and b of reliabilities ap  and bp  by the 
updated reliabilities ap′  and bp′  (See Figure 6). If Ω  is the multiplier factor,  

 

 
Figure 5. Polygon-to-chain reduction of type-7. 

 

 
Figure 6. The graphs induced using the reduction polygon- 
to-chain of type-7. 
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Table 1. Reduced graphs, state vectors and their corresponding probabilities. 

GA States Probabilities 

B1 1 2 3 4 5 6a aF F F F F F F F  
( )( )
( )

2 3 5 6 1 4

2 3 5 6 1 4 1 4

1 1

1
b a a

b a a a

p p p p p p p p p

p p p p p p p p p p p p

α = − −

= − − +
 

C1 1 3 4 5 6a b bF F F F F F F F  
( )( )
( )

1 2 4 5 3 6

1 2 4 5 3 6 3 6

1 1

1
a b b

a b b b

p p p p p p p p p

p p p p p p p p p p p p

δ = − −

= − − +
 

D1 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 3 4 5 6a bF F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F  

3 4 2 5 2 4
1 2 3 4 5 6

3 4 2 5 2 4

1 5 1 6 3 5 2 6

1 5 1 6 3 5 2 6

a b

q q q q q qp p p p p p p p
p p p p p p

q q q q q q q q
p p p p p p p p

β


= + +


+ + + +




 

E1 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F ; 

1 2 3 4 5 6a bF F F F F F F F  

3 5 61 2 4
1 2 3 4 5 6

1 2 3 4 5 6

1a b

q q qq q qp p p p p p p p
p p p p p p

γ = +
 
 


+ + + +


+  

 
then the reliability of the original graph G is determined using the following re-
lations: 

( ) ( ) ( )

1

3

2

2

a

b

p
C

p

p
D

Cp

Dp

γ α γ β δ γ
γ

γ
γ α
γ

γ β
γ

γ δ
γ α
γ α

γ δ
γ δ

 + + +
Ω =



′ = + ⋅


′ = +

 ′ = + ⋅


+ ⋅ ′ = +


+ ⋅ ′ = +

                 (33) 

and such that: 

[ ]1 2 3 5 6 1 4 1 4

3 4 2 5 1 5 1 6 3 5 2 62 4
1 2 3 4 5 6

3 4 2 5 2 4 1 5 1 6 3 5 2 6

3 5 61 2 4
1 2 3 4 5 6

1 2 3 4 5 6

1 2 4 5 3 6 3

1

1

1

b a a a

a b

a b

a b b

p p p p p p p p p p p p p

q q q q q q q q q q q qq qp p p p p p p p
p p p p p p p p p p p p p p

q q qq q qp p p p p p p p
p p p p p p

p p p p p p p p p p p

α

β

γ

δ

= − − +

 
= + + + + + + 

 
 

= + + + + + + 
 

= − − +[ ]6 bp












 (34) 
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Proof: 
Consider a graph containing a polygon of type-7 as depicted in Figure 5 (G). 

By pivoting successively on edges 1 2 3 4 5, , , ,e e e e e  and 6e , we obtain the sub-
graphs reported in Figure 6; they are five. The corresponding events and proba-
bilities are presented in Table 1. 

Because the decomposition process uses the links 1e  and 4e  as pivots in the 
reduced graphs B1 (Table 1) and uses the links 3e  and 6e  as pivots in the 
graph C1 (Table 1), then the new reliabilities of the nodes a and bare given by 
the following equations: 

1 4

1 4a
a

a

a

p q qp
q p q q

′′ =
+

                        (35) 

3 6

3 6b
b

b

b

p q qp
q p q q

′′ =
+

                        (36) 

Continuing the application of the factoring theorem on the reduced graph G′  
of G (polygon of type-7) and let 1 2,e e′ ′  and 3e′  the edges of G′ . Table 2 gives 
the subgraphs generated by the decomposition, and their relative state vectors 
and probabilities. 

The following graph in Figure 7 shows how the state’s formulas and their 
probabilities are determined. The results of the transformations are presented in 
Table 2.  

Note that, for the graphs B’ and C’, the conditional probabilities for node a 
and the link 1e′  (graph B’), and for node b and the link 3e′  (graph C’) are given 
by the following equations: 

 
Table 2. Non-defaulting states and the probabilities induced by the decomposition 
process of the graph KG ′′ . 

Graph State Probability 

B’ 1 2 3a bF F F F F  ( )1 2 31 a bp p p p pα ′ ′ ′ ′ ′ ′= −  

C’ 1 2 3a bF F F F F  ( )3 1 21 b ap p p p pδ ′ ′ ′ ′ ′ ′= −  

D’ 1 2 3a bF F F F F  1 2 3 a bp q p p pβ ′ ′ ′ ′ ′ ′=  

E’ 1 2 3a bF F F F F  1 2 3 a bp p p ppγ ′ ′ ′ ′ ′′=  

 

 
Figure 7. Transformation of the reduced graph G’ by applying the factoring theorem. 
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( ) ( )
1

1

a
a a

a a

p qp p
q p q

′ ′′′′ ′ =
′ ′ ′

=
+

                    (37) 

( ) ( )
3

3

b
b b

b b

p qp p
q p q

′ ′′′′ ′= =
′ ′ ′+

                    (38) 

We can use now the relation ( ) ( )R G R G′= Ω  (Equation (10)) to identify 
from Equations (38), (39), (40) and system (41) the coefficients , ,α β δ  and γ  
as presented in the theorem statement.  

Using Equation (10), we obtain the following relations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

, , , ,

B C D E

B C D E

B K C K D K E K

B K C K D K E K

R G R G R G R G

R G R G R G R G

α δ β γ

α β δ γ
′ ′ ′ ′′ ′ ′ ′

⋅ + ⋅ + ⋅ + ⋅

 ′ ′ ′ ′ ′= Ω + + + 
    (39) 

Using Equations (35), (37) and (38) we can identify the following relations:  

( )
1 4

1 14

1a

a

a

aa a

p q q p q
q p q q q p q

′ ′
=

′ ′ ′+ +
                    (40) 

( )
1 4

1 14

1a

a

a

aa a

p q q p q
q p q q q p q

′ ′
=

′ ′ ′+ +
                    (41) 

We equate now the terms of the Equation (39), it follows the following rela-
tions: 

[ ]

3 5 61 2 4
1 2 3 4 5 6

1 2 3 4 5 6

3 4 2 5 1 5 1 6 3 5 2 62 4
1 2 3 4 5 6

3 4 2 5 2 4 1 5

1 2 3

1
1 6 3 5 2 6

1 2 4 5 3 6

2

3

3

6

1 Ω

Ω

1

a b

a b

a b b

a b

b

a b

q q qq q qp p p p p p p p p p p p
p p p p p p

q q q q q q q q q q q qq qp p p p p p p p p q p p p
p p p p p p p p p p p

p

p p p

p p p p p p p p p p p p

 
′ ′ ′ ′+ + + + + + = 

 

 
′ ′ ′ ′ ′+ + + + + + = 

 
− − +

′

= ( )
[ ] ( )

( ) ( )

( ) ( )

1 2 3 5 6 1 4 1 4

1 4

1 4

3

3 1 2

6

3 6

1 2 3

1

1

3

3

Ω 1

1 Ω 1
b a

a b

a

a a

b a a a

a

a a

b b

bb b b

p

p

p p p p

p p p p p p p p p p p p p p p p p

p q q p q
q p q q q p q

p q q p q
q p q q q p q

′ ′ ′ ′−

′ ′ ′ ′− − + = −

′ ′
=

′ ′ ′+









+

′ ′
=

′ ′ ′+

 ′


′




+






 (42) 

By solving the system (42), we identify the expressions of , ,α β δ  and γ  
stated in the Theorem 2 and from which it can be deduced the values of proba-
bilities of the reduced graph.  

[ ]1 2 3 5 6 1 4 1 4

3 4 2 5 1 5 1 6 3 5 2 62 4
1 2 3 4 5 6

3 4 2 5 2 4 1 5 1 6 3 5 2 6

3 5 61 2 4
1 2 3 4 5 6

1 2 3 4 5 6

1 2 4 5 3 6 3

1

1

1

b a a a

a b

a b

a b b

p p p p p p p p p p p p p

q q q q q q q q q q q qq qp p p p p p p p
p p p p p p p p p p p p p p

q q qq q qp p p p p p p p
p p p p p p

p p p p p p p p p p p

α

β

γ

δ

= − − +

 
= + + + + + + 

 
 

= + + + + + + 
 

= − − +[ ]6 bp












 

( ) ( ) ( )
2

γ α γ β δ γ
γ

+ + +
Ω = ; 1p

C
γ

γ α
′ =

+ ⋅
; 2p γ

γ β
′ =

+
;  
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3p
D
γ

γ δ
′ =

+ ⋅
; a

Cp γ α
γ α
+ ⋅′ =
+

; b
Dp γ δ

γ δ
+ ⋅′ =
+

 

At this step, we state that all the mathematical relations are clearly identified, 
and the values of the probabilities of the reduced graph components (nodes and 
edges) can be calculated at each step of the reduction process until the final re-
duced graph which corresponds to a chain.  

Thus, the following algorithm presents the different steps to reach the solution.  

3.2. Algorithm Description 

Begin 
Input data: structure of the graph and the probability of nodes and edges 

( ),G V E= : Graph must be composed by one connected component (V: 
nodes; E: Edges) 

( ), ,i j i jP E E= : Associated matrix constructed from the edges of the graph 

, 2K V K⊆ ≥  

1M =  
While there is a simple reduction of the following types: 
      Call procedures:  
         -Series reductions: i j kP P P= × ; remove the link ( ),i jE E  and 

updating the probability vector and the matrix associated with the graph. 
         -Parallel reduction ( ) ( )R G R G′= Ω : ( ) ( )1 1 1i j kP P P= − − × − ; re- 

move one of the links and update the vector of probabilities and the matrix asso-
ciated with the graph.  

         -Reduction of degree 2. Let M M= ×Ω  for each reduction. 
end_while. 
Start by exploring the complex substructure (polygons). 
Let s the initial node. 
Determine the ascending nodes of the first, the second level and the lower le-

vels, according to the polygon type) 
While a polygon exists 
   If a polygon of type T exists, apply the corresponding reduction of this 

type of subgraph. Note: One always begins with seeking that of type 1, type 2, 
etc. 

- Store in a stack the links to be removed. 
- Remove the corresponding links in the graph associated matrix. 
- Rebuilt the new chains from the links stored by forging the links in 

the matrix of associated graph 
- Update the vector of probabilities with the new values for each type 

T. 
- Update the vector of probabilities. 
- Update the associated matrix of the graph. 

end-if 
end-while 
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Construct the graph from the resulting matrix. 
if the obtained matrix is a simple one 
Calculating the reliability as the product of probability links 
else 
Print “Matrix is no longer decomposable” 
Apply any other algorithm that calculates the reliability (SDP BDD…) 
end_if 
Display the reliability value of the graph G 
end_of_the algorithm. 

4. Application 

Suppose that the nodes and edges all are imperfect except the initial and the 
terminal nodes (s, t). We consider that their associated probability values are 
equal to 0.9. The probabilities value of nodes s and t are equal to 1. Using the 
following network  

The associated matrix and the probabilities vectors relative to the graph in 
Figure 8 are: 

1 2

3 5

4

e e
e e

G
e

 
 
 =
 
 
 

; ( )1 2 3 4 5, , , ,P edge p p p p p− = ;  

( )1, , , 1s a b tP Nodes p p p p− = = =  

Node_inital = S; Stack = Node_inital 
List-succ(s) = (a, b) 
Stack = Stack ∪ List-succ(s) (queue = {s, a, b} 
X = pop(Stack) = {b} 
Y = List-succ(X) = {a, t} 
if Y ≠t 
    Z = X ∩ Stack = (b) ∩ (s, a) = (a) 
    Then the polygon is of type 1  
Updating of the vectors and the matrix: 

1 2

5

4

e e
e

G
e

 
 
 =
 
 
 

; 1 2 4 5, , 0, ,P edge p p p p
A C B D
δ δ

δ δ
 − = = = + ⋅ + ⋅ 

; 

1, , ,1a b
A C B DP Nodes p p

A B
δ δ
δ δ
+ ⋅ + ⋅ − = = = + + 

 

X = pop(Stack) = {a} 
Y = Liste-succ(X) = {t} 
if Y = t 
   Prob = Prob × Prob(X, t) = 5 51 p p× =  
Stack = pop(Stack) = {s} 
Prob = Prob×Prob(Pile, X) = 5 1 ap p p× ×  
end 
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                    (a)                                                                     (b) 

Figure 8. A simple testing graph: (a) the original graph, (center) parallel-series reduction, (b) the reduced graph (chain). 
 
Updating of the vectors and the matrix: 

( )1 ,e s a′ =  

2 1

4

e e

G
e

′ 
 
 =
 
 
 

; 1 2 4, , 0, , 0
.

P edge p Prob p p
B D
δ

δ
 − = = = + 

; 

Prob = 1 
Liste-succ(s) = {b} 
Stack = Stack ∪ Liste-succ(S) ( then Stack = (s, b)) 
X = pop(Pile) = {b} 
Y = Liste-succ(X) ={t} 
if Y = t 
   Prob = Prob × Prob(X, t) = 4 41 p p× =  
Stack = pop(Stack) = {s} 
Prob = Prob × Prob(Pile, X) = 4 2 bp p p× ×  
Updating of the vectors and the matrix: 

( )2 ,e s t′ =  

1 2e e

G

′ ′ 
 
 
 
 
 



; ( )1 2, , 0,0,0P edge p Prob p Prob− = = = ; 

( ) ( )( )1 1 11 1 1 ,0,0,0,0P edge p q q′′− = = − − × −  
end_if 
end_Algorithm 
Calculus: 
function imperfect() 
p1 = .9 
p2 = .9 
  p3 =.9  
pa = .9 
  pb = .9 
  A = p2*pb*(1-p1*pa-p3*pa+p1*p3*pa) 
  B = p1*pa*(1-p2*pb-p3*pb+p2*p3*pb) 
  delta = pa*pb*(p1*p2+p1*p3+p2*p3-2*p1*p3*pa) 
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  C=(pa*(1-p1)*(1-p3))/((1-pa) +pa*(1-p1)*(1-p3)) 
D=(pb*(1-p2)*(1-p3))/((1-pb) +pb*(1-p2)*(1-p3)) 
omega = (delta + A)*( delta + B)/ delta 
  p1p = delta /( delta + A*C) 
  p2p = delta /( delta + B*D) 
pap = (delta + A*C)/( delta + A) 
pbp = (delta + B*D)/( delta + B) 
x = 1-(1-p1p*pbp*.9)*(1-p2p*pap*.9) 
  y = x*.81*omega 
end 
A = B = 0.08829; eta = 0.78732; C = D = 0.0825688073394495; p1p = p2p = 

0.990825688073394; pap = pbp = 0.907493061979649; omega =  
0.9738008333333333. 

As the graph turned into two parallel chains, the reliability of the network is 
computed as follows: 

R = 1 – (1 – p2p*pbp * p4)*(1 – p1p*pap * p4) = 0.963614702184995 
R(G) = R * omega * Ps * Pt = 0.963614702184995 * 0.9738008333333333 * 0.9 * 

0.9 * = 0.760078728. 

5. Conclusion 

This paper presents a computational technique determining the reliability of 
networks. In such networks, it is considered that edges and nodes can fail ran-
domly and the failure events are supposed to be s-independent or not. The used 
techniques combine some algorithms based on the factoring theorem and se-
ries-parallel reductions. The algorithm tries first to identify seven types of struc-
tures if possible and when one of them is found, such structure is removed and 
replaced by a more simple chain. Logically, all the remained components’ values 
are substituted by new values determined by the derived mathematical expres-
sions. The correctness of the algorithm is not hard to show and it can be ob-
served that at most 2 E V−  can ever pass through T (T is a stack structure) 
before T becomes empty (Satyanarayana and Wood (1985)) and the algorithm 
still of linear complexity. These techniques are very easy to be integrated to a 
large software reliability system that can also determine solutions for optimizing 
the reliability, the availability and the maintainability of critical systems’ design. 
Future extensions of this work consist of determining some efficient procedures 
and heuristics to select edges and nodes that can be primary used as pivot for 
generating the most possible fast solution. 
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Appendices A: Table Representing Seven Polygon-to-Chain Reductions 
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Continued 
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