
American Journal of Operations Research, 2013, 3, 514-520
Published Online November 2013 (http://www.scirp.org/journal/ajor)
http://dx.doi.org/10.4236/ajor.2013.36050

Open Access AJOR

Adaptive Strategies for Accelerating the Convergence of
Average Cost Markov Decision Processes Using a Moving

Average Digital Filter

Edilson F. Arruda1, Fabrício Ourique2
1Federal University of Rio de Janeiro, Alberto Luiz Coimbra Institute—Graduate School

and Research in Engineering, Rio de Janeiro, Brazil
2Federal University of Santa Catarina (Campus Araranguá), Araranguá, Brazil

Email: fourique@gmail.com

Received July 9, 2013; revised August 9, 2013; accepted August 16, 2013

Copyright © 2013 Edilson F. Arruda, Fabrício Ourique. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

ABSTRACT

This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete aver-
age cost Markov decision processes. An adaptive partial information value iteration algorithm is proposed that updates
an increasingly accurate approximate version of the original problem with a view to saving computations at the early
iterations, when one is typically far from the optimal solution. The proposed algorithm is compared to classical value
iteration for a broad set of adaptive parameters and the results suggest that significant computational savings can be
obtained, while also ensuring a robust performance with respect to the parameters.

Keywords: Average Cost; Markov Decision Processes; Value Iteration; Computational Effort; Gradient

1. Introduction

Discrete-time Markov decision processes aim at control-
ling the dynamics of a stochastic system by mean of tak-
ing suitable control actions at each possible configuration
of the system. At each period, a control action is selected
based on the current configuration (state) of the system,
which triggers a probabilistic transition to another state
in the next decision period and so on in an infinite time
horizon. The objective is to find the best action to be
taken at each possible configuration of the system with
respect to some prescribed performance measure. From
now on, each configuration of the system is referred to as
a state of the system.

An elegant way to find the optimal control actions for
each state is provided by the classical value or policy
iteration algorithms [1-11]. The value iteration (VI) algo-
rithm is arguably the most popular algorithm, in part be-
cause of its simplicity and ease of implementation. In this
paper, we introduce an adaptive way to improve the con-
vergence of the VI algorithm with respect to conver-
gence time, with a view at accelerating the convergence
of the method. We refer to [12] for a study on variants of

the policy iteration algorithm.
We explore a way to accelerate the convergence of val-

ue iteration algorithms for average cost MDPs. The ra-
tionale is to apply the value iteration algorithm to a se-
quence of approximate models, which are simpler than
the original model and hence require less computation.
These models are refined at each new iteration of the
algorithm and converge to the exact model within a finite
number of iterations, which enables one to retrieve the
solution to the original problem at the end of the proce-
dure. The rationale is based on a refinement scheme in-
troduced in [13] for linearly convergent algorithms with
convergence rates that are known a priori.

Classical Markov Decision Problem (MDP) results
yield that VI algorithms converge, but the rate of con-
vergence is unknown a priori and depends on the system
at hand. For more details on the convergence of VI algo-
rithms for average cost MDPs, we refer to [1]. The un-
known rate of convergence renders the results in [13] not
directly applicable for the studied problem. Earlier re-
sults, however, have shown that significant reduction on
the overall computational effort can be attained by a
suitable choice of refinement rate [14]. Unfortunately,

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

515

such rate is now known a priori and the parameter tuning
turns out to be very difficult. Moreover, consistent per-
formance gains over the classical VI algorithm are diffi-
cult to obtain and a poor parameter selection may render
the algorithm slower than classical VI. In this paper, we
try to overcome this difficulty by introducing an adaptive
algorithm that automatically adjusts the refinement rate
at each iteration. It employs the error sequence of the
algorithm to iteratively estimate the empirical conver-
gence rate, and a moving average digital filter is ap-
pended to mitigate the erratic behavior. For more details
about moving average filters, we refer to [15]. We show
that the adaptive algorithm presents a robust performance,
consistently outperforming value iteration.

2. Average Cost Markov Decision Processes

Markov decision processes are comprised of a set of
states, each representing a possible configuration of the
studied system. Let S be the set of all possible system
configurations. For each state x S , there exists a set of
possible control actions  A x . Each action  a A x
drives the system from state x to state y S with pro-
bability 0 1a

xyp  . Since a
xyp is a probability for all

x and y in S , we have

 1, , .a
xy

y S

p x S a A x


   

Let   ,A A x x S  be the set of all possible con-

trol actions and :c S A    represent a cost function
in the state/action space. When visiting state x and
applying a control action  a A x , the system incurs a
cost  ,c x a . A stationary control policy is a mapping
from the state space S to the action space A that de-
fines a single action in A to be taken each time the
system visits state x S . Let π : S A denote any
particular stationary policy and  denote the set of all
feasible stationary control policy.

Once a stationary control policy π is chosen and
applied, the controlled system can be modeled as a
homogeneous Markov chain , 0kX k  [16]. The long
term cost of the system that operates under policy π is
given by

  
1

0

1
lim ,π .

N

k k
N k

c X X
N



 

   
 
 (1)

Under general conditions [1], each control policy
π implies a finite long term cost π . The task of
the decision maker is to identify a policy π that
minimizes the long term average cost, thus satisfying the
expression below:

*
*

ππ
, π .      (2)

In order to find the optimal policy, one seeks for the

solution to the Poisson Equation (Average Cost Optimal-
ity Equation):

      ** π * * *,π , ,xy
y S

c x x p h y h x x S


     (3)

which is satisfied only by the optimal policy, where
* :h S   is a real valued function, sometimes referred

to as value function or relative cost function.

3. The Value Iteration Algorithm

A very popular algorithm to find the optimal policy *π
is the value iteration (VI) algorithm. This algorithm it-
eratively searches for the solution * :h S   to the Pois-
son Equation (3).

Let  be the space of real valued functions in
:h S   . The VI algorithm employs a mapping
:T   defined as

 
 

   min , .a
xy

a A x y S

Th x c x a p h y
 

 
 

 
 (4)

The VI algorithm consists in applying the recursion

    1 0, ,k kh x T h x h   (5)

to obtain increasingly refined estimates of the solution to
the Poisson Equation (3). Under mild conditions [1], the
algorithm can be shown to converge to the solution of
Equation (3), thus yielding both the optimal policy *π
and its associated average cost * .

The convergence of the algorithm is linear, but the rate
of convergence is not known a priori [1].

4. The Partial Information Value Iteration
Algorithm

The rationale behind the partial information value itera-
tion (PIVI) algorithm is to iterate on increasingly refined
approximate models that converge to the exact model
according to a prescribed schedule defined a priori. The
purpose of such a refinement is to employ less computa-
tional resources in the early states of the algorithm, when
the algorithm is typically far from the optimal solution,
and hence focus most of the computational resources
within a region that is closer to the optimal solution.

An intuitive way of decreasing the computational ef-
fort at the early iterations is to focus on the most prob-
able transitions at the initial stages of the algorithm. For
any state-action pair z Z let 1 2, ,z zj j  be an order-
ing of the states in decreasing order of transition prob-
abilities, that is    

1
z z
k kj j

p z p z


 . This leads to the
distribution functions

   
1

, z
k

m

j
k

F m z p z


 

   , 1 , .F m z F m z 

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

516

Let

    , min : , ,maxn z m F m z   (6)

where  0,1  .
Consider the following mapping [13]

 

 
   

      ,

,

1

1
min , ,

,
x a

k

m
x a

k ja A x k

T h x

c x a h j p x a
F m z 



 
 

 





 (7)

where  , ,maxm n x a v and
 
1

,F m z
 is a normalizing

factor intended to make the truncated transition probabil-
ity into a normalized probability distribution. Let k be
a limited non-increasing sequence in the interval  0,1
such that

lim 0.k
k

 (8)

The PIVI algorithm can be defined by the following
recursion

1 0, .
kk kh T h h   (9)

Observe that, since the parameter sequence k in (8)
goes to zero, the algorithm tends to the exact algorithm
and, as such, converges to the solution to the proposed
problem. This follows by applying (5) to some iterate

kh in (9), with an arbitrarily high index k relabeled as
zero.

4.1. The Parameter Sequence k

As pointed out in the last section, it suffices that k
goes to zero within finite time for the PIVI algorithm (9)
to converge to the exact solution. Hence, the sequence

k can be freely selected from the class of convergent
sequences in the interval  0,1 whose limit is nil.
However, it is the form at which the convergent sequence
goes to zero that will ultimately determine the behavior
and, therefore, the computational effort, of the PIVI al-
gorithm [13,14].

It has been shown that, for linearly convergent algo-
rithms with convergence rate  0,1  the optimal se-
quence with respect to the overall computational effort is
geometrically decreasing, with rate  , which coin-
cides with the convergence rate of the algorithm [13].
This result applies to discounted MDPs, for which the
convergence rate  is known and coincides with the
discount factor.

Average cost MDPs do converge linearly, but the con-
vergence rate is unknown and depends on the topology of
the MDP being solved [1]. This renders the direct appli-
cation of the results in [13] unpractical. Indeed, geomet-
rically decreasing sequences k where tried in [14], and
promising results where obtained. The difficulty in such

an approach lies in the fact that guessing the convergent
rate a priori can be quite a daunting task. Indeed, when a
suitable decreasing rate is found, it can result in signifi-
cant computational savings. However, a poor choice of
decreasing may result in an inefficient algorithm, which
can even be outperformed by standard value iteration
[14]. In this paper we address this short-coming by in-
troducing an algorithm that adaptively decreases the error
sequence k , and that results in a more robust algorithm,
with more stable behavior that consistently outperforms
standard value iteration.

4.2. Identification of Efficient Parameter
Sequences

In this section we propose an adaptive algorithm to adap-
tively select the parameter sequence k . The selection is
based on the span semi-norm of the error sequence ob-
tained by the PIVI algorithm at each iteration, defined as

   max min ,k k k
x Sx S

e h x h x


  (10)

where :kh S   is the result of the k-th iterate of
Algorithm (9).

The proposed algorithm uses the error defined above
to assess the empirical convergence rate at iteration k ,
 , defined as:

1

.k
k

k

e

e




 (11)

During the convergence process, the error ke should
steadily decay. It is possible, however, that the decrease
in parameter k in mapping

k
T in the PIVI algorithm

(9), which is defined in (7), results in an immediate in-
crease in the error. This happens because a decrease in
 results in a different, more accurate approximate mo-
del in (7), for which the current approximation in the
value function kh may not be as good. Hence, in order
to avoid instability, i.e., a 1, 0k k   , whenever the
error increases, k is set to zero.

For the adaptive algorithm, we use a varying decrease
rate sequence ˆk and the objective is to adaptively es-
timate the convergence rate of the exact algorithm, which
is unknown a priori. In order to do that, gradient,  is
calculated, which is defined as:

1ˆ ,k k k     (12)

The convergence parameter is estimated by the adap-
tive gradient recursion Equation as follows:

1ˆ ˆk k k     (13)

where 0ˆ 1  , and  0,1  is an adaptive parameter.
The parameter sequence k in Algorithm (9) is then re-
fined by the following recursion:

1 ˆ .k k k   (14)

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

517

The proposed parameters sequence, k , may result in
an intensely varying sequence ̂ , due to a possible er-
ratic behavior in the error sequence ke and such a va-
riation may limit the computational gains. To mitigate
the effect of the error on the estimation process, a refined
algorithm is presented. Prior to estimating the empirical
convergence rate Equation (11), the error, ke , goes
through moving average digital filter of order M [15].
This filter attenuates the error high frequency compo-
nents, leading to a better estimation of the convergence
rate parameter, ̂ . The differences Equation that im-
plements the moving average filter is presented in (15).

1

0

1 M

k k i
i

e e
M






  (15)

where ke is the filter input, and ke is the filtered error,
and M is the filter order. The filter uses M past it-
erations to estimate the error ke . The estimated error is
used in (11) to approximate the empirical convergence
rate. The higher the filter order M , the longer the past
history that is taken into account.

4.3. A Measure for Computational Effort
Comparison

In order to compare the overall computational effort, one
needs to propose a measure of the total computational
effort applied by each algorithm. Such a measure enables
one to directly compare different types of algorithms,
which can rely on different updating schemes. In addition,
defining this type of measure is more appealing than just
measuring the convergence time because it makes possi-
ble to compare different types of algorithms without
necessarily running them. Furthermore, one can also de-
fine suitable optimization routines that aim at finding the
best algorithm in a given class with respect to the overall
computational effort. This line of study is exploited in
[13].

Examining the updating scheme of mapping T in the
VI algorithm (5), it can be verified that the overall com-
putational effort per iteration, per state, of the VI algo-
rithm is proportional to the total number of transitions
examined by mapping T . Hence, one can define the
computational effort of updating a single state x S as
the sum of the cardinalities of the transition probability
distributions for each feasible action for that state. Let
 x denote the computational effort of updating state

x S under the VI algorithm. The overall effort for a
single iteration of the VI algorithm then becomes

 .
x S

x 


 

The computational effort for an iteration of the PIVI
algorithm, on the other hand, depends on the total num-
ber of transitions examined in each iteration of the algo-

rithm. Letting  k denote the parameter sequence of
the PIVI algorithm and  k x denote the total number
of transitions at state x , at the k-th iteration of the PIVI
algorithm, we have

 
 

 , ,k max k
a A x

x n x a


   (16)

where  maxn  is the function defined in (6) for state-
action pairs  ,z x a . Let N denote the total number
of iterations up to the PIVI convergence. Consequently,
the overall computational effort of the PIVI algorithm be-
comes

 
1

.
N

k
k x S

x 
 

  

In the next section, we experiment with the parameter
sequence  k , varying the adaptive parameter  in (13)
and compare the computational effort measures  and
 , to obtain the order of the computational savings that
can be obtained by the PIVI algorithm when compared to
the classical VI algorithm.

5. Numerical Experiments

In order to compare the proposed method with the classic
VI algorithm [17], two sets of experiments were derived.
These experiments are replications of the experiments
presented in [14] and thus offer a ground for comparison.
In the first experiment we solve a Queueing model with
two classes of clients. Each client class has a dedicated
queue whose length varies in the interval  0,200 . More-
over, no new client is permitted at any given queue when-
ever the length of that queue is at the upper limit. For both
experiments, a single server is responsible for the service
of both queues and serves K  clients at each time
period. The decision maker must decide whether to serve
Queue 1, Queue 2, or to stay idle. The cost function de-
pends on the total of clients in line and is given by:

  2
1 2 1 2, ,c x x x x 

where 1x and 2x denotes the size of Queue 1 and
Queue 2, respectively. Clearly, such a cost function is de-
signed to prioritize clients belonging to the second class.
We also note that the cost function does not depend on the
selected control actions. The objective is to find the policy
which minimizes the average cost and satisfies expression (2).

For the first experiment, both types of clients arrive ac-
cording to a Poisson process with mean 10  . For com-
putational purposes, the transition probability generated by
this process was truncated to accommodate a fraction
0.9999 of the transitions and re-normalized afterwards.
Such a normalization yields a total of 22 transitions for
each line, thus resulting in a total of 484 possible transi-
tions for each state-action pair. For this experiment K
was fixed at 21. Since we have three possible control ac-

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

518

tions and since the number of transitions is the same under
each action, the total number of transitions per state for the
VI algorithm is

  484 3 1452, .x x S     

For a tolerance of 410 [1], the VI algorithm took 950
iterations to converge, having an overall computational ef-
fort per state of  61.3794 10 950x     , per state.
The total effort can be obtained by multiplying this value
by the cardinality of the state space S, 2201 40401S   .

Figure 1 depicts the overall computational effort 
for parameter sequences of the type in (14), for different
values of  . The computational effort was normalized
with respect to the overall VI effort  to simplify the
comparison.

The normalized computational effort for the proposed
algorithm is plotted in Figure 1 as a function of the
adaptive parameter  . One can see that, for the best

(a)

(b)

Figure 1. Computational effort: Poisson distribution. (a)
filter orders M = 4, 5, 7, and 8; (b) filter orders M = 9, 10,
and 11.

possible choice of  , the computational effort is ap-
proximately 0.45 of that of the classical VI algorithm.
Therefore, the proposed algorithm converges in about
45% of the time required for the VI algorithm to con-
verge. Another point to look at is the improvement due to
the moving average digital filter. Five curves are shown
in Figure 1(a), the solid blue curve is the overall com-
putational effort without filtering of the empirical rate;
the square-marked dotted line curve, the circle-marked
dashed line curve, the diamond-marked dashed line curve,
and the triangle-marked solid line curve present the com-
putational effort with the moving average digital filter
defined in (15) of orders 4,5,7,8M  , respectively.
This filters are used to process the error sequence ke
prior to the empirical rate estimation in (11). While the
unfiltered algorithm produces an improvement over the
classic VI algorithm, the use the moving average filter
provides an even superior performance, since the filter
acts as a smoother of fluctuations in the empirical error
function. Moreover, one can see that the performance im-
proves as the filter order increases.

Figure 1 also shows that the proposed algorithm is
consistently better than the VI algorithm, for a broad
range of parameters  . Naturally, a better choice of pa-
rameter results in better savings, but the results suggest
that the algorithm is robust with respect to the parameter
choice. This is a significant improvement over the class
of algorithms proposed in [14], which yield more sig-
nificant savings in a best-case scenario, but it can be
outperformed by VI under a poor parameter selection.
Moreover, the algorithm in [14] seems to be overly sen-
sitive to the parameter selection and the results tend to
vary significantly within a small parameter interval.

One can expect an improvement as the filter order in-
creases, up to some point where the increase no longer
propitiates an improving performance. This behavior can
be observed in Figure 1(b), where the limit is reached
and the best computation effort is achieved with a filter
order of 9M  , when the algorithm needs about 40%
of the total computation effort.

Figure 2 depicts the computational effort for higher
filter orders, 12, 13, 15M  . One can see that no addi-
tional improvement is obtained for orders higher than 9.
The main reason is that the underlying process that gen-
erates the error sequence ke has a given internal mem-
ory, or process memory. Whenever a estimator, i.e. mov-
ing average filter, exceeds the process memory, the esti-
mator will decrease its performance [18].

In order to illustrate the impact of the filter order on
the computation effort, Figure 3(a) shows the computa-
tion effort for different filter order values. One can see
the impact of the filter order in the performance, also
noticing that is always improved with respect to unfil-
tered PIVI algorithm.

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

519

Figure 2. Computational effort: Poisson distribution, filter
orders M = 12, 13, and 15.

(a)

(b)

Figure 3. The best adaptive parameter and computation
effort as a function of the filter order M for Poisson dis-
tribution; (a) computation effort; (b) the best adaptive pa-
rameter γ.

Figure 3(b) presents the best adaptive parameter 
for different values of filter order. One can notice on
Figure 3(b) that the best value for the adaptive parameter
 spans over a wide range. Whenever the filter order is
among 8, 9, 10, 11 ,  8, 9, 10, 11M  , the adaptive pa-
rameter  has low sensibility, any value of  in the
range from 0.30 to 0.65, i.e.,  0.30,0.65  , would
yield a significant improvement in the computational per-
formance.

The first experiment suggests that the proposed me-
thod can provide significant savings in computational for
problems with exogenous Poisson arrival processes. This
is a very interesting results considering that such a class
of problems tends to be very popular for queueing and
manufacturing problems [16,19].

In the second experiment, the clients arrive in the first
queue according to a geometric distribution with mean

9  . Clients belonging to the second class arrive uni-
formly in the integer interval from 0 to 9. The geometric
distribution is also truncated to retain a fraction of 0.9999
of the total transitions and then renormalized. Such a
normalization is not needed for the uniform distribution.
The joint arrival processes yields 660 possible transitions,
hence

  660 3 1980, .x x S     

The classical VI algorithm converged in 104 iterations
and applied an overall computational effort per state of

52.0592 10   .
Figure 4 depicts the overall computational effort 

for parameter sequences of the type in (14), for different
values of  , normalized with respect to the overall VI
effort  . For this experiments, we make 20K  . The
normalized computational effort for the proposed algo-
rithm is plotted in Figure 4 as a function of the adaptive
parameter,  . One can see that, for a broad range of  ,

Figure 4. Computational effort: Geometric uniform distri-
butions.

E. F. ARRUDA, F. OURIQUE

Open Access AJOR

520

0.01 0.50  , the computational effort is less than the
classical VI algorithm. At the best point, the cost is about
75% of the classical VI algorithm.

Note that the savings of the proposed algorithm for the
second setting, though still appealing, are much less sig-
nificant than those obtained for Poisson exogenous arri-
val processes. This suggests that more modest savings
may be expected for uniform distribution settings. This is
consistent with the results in [13], which suggest that
PIVI algorithms tend to have a stronger performance for
highly concentrated probability distributions, such as the
Poisson distribution, while yielding less significant sav-
ings for distributions that are widely spread. Moreover,
one can also notice that the moving average filter addi-
tion seems to have no significant effect on the results.

6. Concluding Remarks

This paper introduced a gradient adaptive version of the
partial information value iteration (PIVI) algorithm in-
troduced in [13] to the average cost MDP framework,
with the addition of a moving average filter to smooth
the empirical error sequence.

The proposed algorithm was validated by means of
queueing examples, and presented consistent computa-
tional savings with respect to classical value iteration.
Moreover, the proposed algorithm yielded consistent
improvement over value iteration for a wide range of
parameters, thus overcoming a shortcoming of a previous
approach [14] that was overly sensitive to the parameter
choice.

7. Acknowledgements

This work was partially supported by the Brazilian Na-
tional Research Council-CNPq, under Grant No. 302716/
2011-4.

REFERENCES
[1] M. L. Puterman, “Markov Decision Processes: Discrete

Stochastic Dynamic Programming,” John Wiley & Sons,
New York, 1994.
http://dx.doi.org/10.1002/9780470316887

[2] R. Bellman, “Dynamic Programming,” Princeton Univer-
sity Press, Princeton, 1957.

[3] R. Howard, “Dynamic Probabilistic Systems,” John Wil-
ey & Sons, New York, 1971.

[4] A. S. Adeyefa and M. K. Luhandjula, “Multiobjective
Stochastic Linear Programming: An Overview,” Ameri-
can Journal of Operational Research, Vol. 1, No. 4, 2011,
pp. 203-213. http://dx.doi.org/10.4236/ajor.2011.14023

[5] M. He, L. Zhao and W. B. Powell, “Approximate Dy-
namic Programming Algorithms for Optimal Dosage De-
cisions in Controlled Ovarian Hyperstimulation,” Euro-
pean Journal of Operational Research, Vol. 222, 2012,

pp. 328-340. http://dx.doi.org/10.1016/j.ejor.2012.03.049

[6] S. A. Tarim, M. K. Dogru, U. Ozen and R. Rossi, “An
Efficient Computational Method for a Stochastic Dy-
namic Lot-Sizing Problem under Service-Level Constraints,”
European Journal of Operational Research, Vol. 215, No.
3, 2011, pp. 563-571.
http://dx.doi.org/10.1016/j.ejor.2011.06.034

[7] E. F. Arruda, M. Fragoso and J. do Val, “Approximate
Dynamic Programming via Direct Search in the Space of
Value Function Approximations,” European Journal of
Operational Research, Vol. 211, No. 2, 2011, pp. 343-
351. http://dx.doi.org/10.1016/j.ejor.2010.11.019

[8] A. Saure, J. Patrick, S. Tyldesley and M. L. Puterman,
“Dynamic Multi-Appointment Patient Scheduling for Ra-
diation Therapy,” European Journal of Operational Re-
search, Vol. 223, No. 2, 2012, pp. 573-584.
http://dx.doi.org/10.1016/j.ejor.2012.06.046

[9] T. Hao, Z. Lei and A. Tamio, “Optimization of a Special
Case of Continuous-Time Markov Decision Processes
with Compact Action Set,” European Journal of Opera-
tional Research, Vol. 187, No. 1, 2008, pp. 113-119.
http://dx.doi.org/10.1016/j.ejor.2007.04.011

[10] H. Wang, “Retrospective Optimization of Mixed-Integer
Stochastic Systems Using Dynamic Simplex Linear In-
terpolation,” European Journal of Operational Research,
Vol. 217, No. 1, 2012, pp. 141-148.
http://dx.doi.org/10.1016/j.ejor.2011.08.020

[11] P. Benchimol, G. Desaulniers and J. Desrosiers, “Stabi-
lized Dynamic Constraint Aggregation for Solving Set
Partitioning Problems,” European Journal of Operational
Research, Vol. 223, No. 2, 2012, pp. 360-371.
http://dx.doi.org/10.1016/j.ejor.2012.07.004

[12] S. D. Patek, “Policy Iteration Type Algorithms for Re-
current State Markov Decision Processes,” Computers &
Operations Research, Vol. 31, No. 14, 2004, pp. 2333-
2347. http://dx.doi.org/10.1016/S0305-0548(03)00190-4

[13] A. Almudevar and E. F. Arruda, “Optimal Approximation
Schedules for a Class of Iterative Algorithms, with an
Application to Multigrid Value Iteration,” IEEE Transac-
tions on Automatic Control, Vol. 27, No. 12, 2012, pp.
3132-3146. http://dx.doi.org/10.1109/TAC.2012.2203053

[14] E. F. Arruda, F. Ourique and A. Almudevar, “Toward an
Optimized Value Iteration Algorithm for Average Cost
Markov Decision Processes,” Proceedings of the 49th
IEEE International Conference on Decision and Control,
Atlanta, 15-17 December 2010, pp. 930-934.
http://dx.doi.org/10.1109/CDC.2010.5717895

[15] D. M. John and G. Proakis, “Digital Signal Processing,”
4th Edition, Prentice Hall, Upper Saddle River, 2006.

[16] P. Brémaud, “Gibbs Fields, Monte Carlo Simulation, and
Queues,” Springer-Verlag, New York, 1999.

[17] D. P. Bertsekas, “Dynamic Programming and Optimal
Control,” 2nd Edition, Athena Scientific, Belmont, 1995.

[18] R. A. D. Peter and J. Brockwell, “Time Series: Theory
and Methods,” 2nd Edition, Springer, New York, 1991.

[19] S. M. Ross, “Stochastic Processes,” 2nd Edition, John Wiley
& Sons, New York, 1996.

http://dx.doi.org/10.1002/9780470316887�
http://dx.doi.org/10.4236/ajor.2011.14023�
http://dx.doi.org/10.1016/j.ejor.2012.03.049�
http://dx.doi.org/10.1016/j.ejor.2011.06.034�
http://dx.doi.org/10.1016/j.ejor.2010.11.019�
http://dx.doi.org/10.1016/j.ejor.2012.06.046�
http://dx.doi.org/10.1016/j.ejor.2007.04.011�
http://dx.doi.org/10.1016/j.ejor.2011.08.020�
http://dx.doi.org/10.1016/j.ejor.2012.07.004�
http://dx.doi.org/10.1016/S0305-0548(03)00190-4�
http://dx.doi.org/10.1109/TAC.2012.2203053�
http://dx.doi.org/10.1109/CDC.2010.5717895�

