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ABSTRACT 

This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete aver- 
age cost Markov decision processes. An adaptive partial information value iteration algorithm is proposed that updates 
an increasingly accurate approximate version of the original problem with a view to saving computations at the early 
iterations, when one is typically far from the optimal solution. The proposed algorithm is compared to classical value 
iteration for a broad set of adaptive parameters and the results suggest that significant computational savings can be 
obtained, while also ensuring a robust performance with respect to the parameters. 
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1. Introduction 

Discrete-time Markov decision processes aim at control- 
ling the dynamics of a stochastic system by mean of tak- 
ing suitable control actions at each possible configuration 
of the system. At each period, a control action is selected 
based on the current configuration (state) of the system, 
which triggers a probabilistic transition to another state 
in the next decision period and so on in an infinite time 
horizon. The objective is to find the best action to be 
taken at each possible configuration of the system with 
respect to some prescribed performance measure. From 
now on, each configuration of the system is referred to as 
a state of the system. 

An elegant way to find the optimal control actions for 
each state is provided by the classical value or policy 
iteration algorithms [1-11]. The value iteration (VI) algo- 
rithm is arguably the most popular algorithm, in part be- 
cause of its simplicity and ease of implementation. In this 
paper, we introduce an adaptive way to improve the con- 
vergence of the VI algorithm with respect to conver- 
gence time, with a view at accelerating the convergence 
of the method. We refer to [12] for a study on variants of 

the policy iteration algorithm. 
We explore a way to accelerate the convergence of val- 

ue iteration algorithms for average cost MDPs. The ra- 
tionale is to apply the value iteration algorithm to a se- 
quence of approximate models, which are simpler than 
the original model and hence require less computation. 
These models are refined at each new iteration of the 
algorithm and converge to the exact model within a finite 
number of iterations, which enables one to retrieve the 
solution to the original problem at the end of the proce- 
dure. The rationale is based on a refinement scheme in- 
troduced in [13] for linearly convergent algorithms with 
convergence rates that are known a priori. 

Classical Markov Decision Problem (MDP) results 
yield that VI algorithms converge, but the rate of con- 
vergence is unknown a priori and depends on the system 
at hand. For more details on the convergence of VI algo- 
rithms for average cost MDPs, we refer to [1]. The un- 
known rate of convergence renders the results in [13] not 
directly applicable for the studied problem. Earlier re- 
sults, however, have shown that significant reduction on 
the overall computational effort can be attained by a 
suitable choice of refinement rate [14]. Unfortunately, 
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such rate is now known a priori and the parameter tuning 
turns out to be very difficult. Moreover, consistent per- 
formance gains over the classical VI algorithm are diffi- 
cult to obtain and a poor parameter selection may render 
the algorithm slower than classical VI. In this paper, we 
try to overcome this difficulty by introducing an adaptive 
algorithm that automatically adjusts the refinement rate 
at each iteration. It employs the error sequence of the 
algorithm to iteratively estimate the empirical conver- 
gence rate, and a moving average digital filter is ap- 
pended to mitigate the erratic behavior. For more details 
about moving average filters, we refer to [15]. We show 
that the adaptive algorithm presents a robust performance, 
consistently outperforming value iteration. 

2. Average Cost Markov Decision Processes 

Markov decision processes are comprised of a set of 
states, each representing a possible configuration of the 
studied system. Let S  be the set of all possible system 
configurations. For each state x S , there exists a set of 
possible control actions  A x . Each action  a A x  
drives the system from state x  to state y S  with pro- 
bability 0 1a

xyp  . Since a
xyp  is a probability for all 

x  and y  in S , we have 

 1, , .a
xy

y S

p x S a A x


     

Let   ,A A x x S   be the set of all possible con-  

trol actions and :c S A     represent a cost function 
in the state/action space. When visiting state x  and 
applying a control action  a A x , the system incurs a 
cost  ,c x a . A stationary control policy is a mapping 
from the state space S  to the action space A  that de- 
fines a single action in A  to be taken each time the 
system visits state x S . Let π : S A  denote any 
particular stationary policy and   denote the set of all 
feasible stationary control policy. 

Once a stationary control policy π  is chosen and 
applied, the controlled system can be modeled as a 
homogeneous Markov chain , 0kX k   [16]. The long 
term cost of the system that operates under policy π  is 
given by 

  
1

0

1
lim ,π .

N

k k
N k

c X X
N



 

   
 
         (1) 

Under general conditions [1], each control policy 
π  implies a finite long term cost π . The task of 
the decision maker is to identify a policy π  that 
minimizes the long term average cost, thus satisfying the 
expression below: 

*
*

ππ
, π .                   (2) 

In order to find the optimal policy, one seeks for the 

solution to the Poisson Equation (Average Cost Optimal- 
ity Equation): 

      ** π * * *,π , ,xy
y S

c x x p h y h x x S


        (3) 

which is satisfied only by the optimal policy, where 
* :h S    is a real valued function, sometimes referred 

to as value function or relative cost function. 

3. The Value Iteration Algorithm 

A very popular algorithm to find the optimal policy *π  
is the value iteration (VI) algorithm. This algorithm it- 
eratively searches for the solution * :h S    to the Pois- 
son Equation (3). 

Let   be the space of real valued functions in 
:h S   . The VI algorithm employs a mapping 
:T    defined as 

 
 

   min , .a
xy

a A x y S

Th x c x a p h y
 

 
 

 
       (4) 

The VI algorithm consists in applying the recursion 

    1 0, ,k kh x T h x h            (5) 

to obtain increasingly refined estimates of the solution to 
the Poisson Equation (3). Under mild conditions [1], the 
algorithm can be shown to converge to the solution of 
Equation (3), thus yielding both the optimal policy *π  
and its associated average cost * . 

The convergence of the algorithm is linear, but the rate 
of convergence is not known a priori [1]. 

4. The Partial Information Value Iteration 
Algorithm 

The rationale behind the partial information value itera- 
tion (PIVI) algorithm is to iterate on increasingly refined 
approximate models that converge to the exact model 
according to a prescribed schedule defined a priori. The 
purpose of such a refinement is to employ less computa- 
tional resources in the early states of the algorithm, when 
the algorithm is typically far from the optimal solution, 
and hence focus most of the computational resources 
within a region that is closer to the optimal solution. 

An intuitive way of decreasing the computational ef- 
fort at the early iterations is to focus on the most prob- 
able transitions at the initial stages of the algorithm. For 
any state-action pair z Z  let 1 2, ,z zj j   be an order- 
ing of the states in decreasing order of transition prob- 
abilities, that is    

1
z z
k kj j

p z p z


 . This leads to the 
distribution functions 

   
1

, z
k

m

j
k

F m z p z


   

   , 1 , .F m z F m z   
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Let 

    , min : , ,maxn z m F m z         (6) 

where  0,1  . 
Consider the following mapping [13] 

 

 
   

      ,

,

1

1
min , ,

,
x a

k

m
x a

k ja A x k

T h x

c x a h j p x a
F m z 



 
 

 





  (7) 

where  , ,maxm n x a v  and 
 
1

,F m z
 is a normalizing  

factor intended to make the truncated transition probabil- 
ity into a normalized probability distribution. Let k  be 
a limited non-increasing sequence in the interval  0,1  
such that 

lim 0.k
k

                  (8) 

The PIVI algorithm can be defined by the following 
recursion 

1 0, .
kk kh T h h               (9) 

Observe that, since the parameter sequence k  in (8) 
goes to zero, the algorithm tends to the exact algorithm 
and, as such, converges to the solution to the proposed 
problem. This follows by applying (5) to some iterate 

kh  in (9), with an arbitrarily high index k  relabeled as 
zero. 

4.1. The Parameter Sequence k  

As pointed out in the last section, it suffices that k  
goes to zero within finite time for the PIVI algorithm (9) 
to converge to the exact solution. Hence, the sequence 

k  can be freely selected from the class of convergent 
sequences in the interval  0,1  whose limit is nil. 
However, it is the form at which the convergent sequence 
goes to zero that will ultimately determine the behavior 
and, therefore, the computational effort, of the PIVI al- 
gorithm [13,14]. 

It has been shown that, for linearly convergent algo- 
rithms with convergence rate  0,1   the optimal se- 
quence with respect to the overall computational effort is 
geometrically decreasing, with rate  , which coin- 
cides with the convergence rate of the algorithm [13]. 
This result applies to discounted MDPs, for which the 
convergence rate   is known and coincides with the 
discount factor. 

Average cost MDPs do converge linearly, but the con- 
vergence rate is unknown and depends on the topology of 
the MDP being solved [1]. This renders the direct appli- 
cation of the results in [13] unpractical. Indeed, geomet- 
rically decreasing sequences k  where tried in [14], and 
promising results where obtained. The difficulty in such 

an approach lies in the fact that guessing the convergent 
rate a priori can be quite a daunting task. Indeed, when a 
suitable decreasing rate is found, it can result in signifi- 
cant computational savings. However, a poor choice of 
decreasing may result in an inefficient algorithm, which 
can even be outperformed by standard value iteration 
[14]. In this paper we address this short-coming by in- 
troducing an algorithm that adaptively decreases the error 
sequence k , and that results in a more robust algorithm, 
with more stable behavior that consistently outperforms 
standard value iteration. 

4.2. Identification of Efficient Parameter 
Sequences 

In this section we propose an adaptive algorithm to adap- 
tively select the parameter sequence k . The selection is 
based on the span semi-norm of the error sequence ob- 
tained by the PIVI algorithm at each iteration, defined as 

   max min ,k k k
x Sx S

e h x h x


            (10) 

where :kh S    is the result of the k-th iterate of 
Algorithm (9). 

The proposed algorithm uses the error defined above 
to assess the empirical convergence rate at iteration k , 
 , defined as: 

1

.k
k

k

e

e




                  (11) 

During the convergence process, the error ke  should 
steadily decay. It is possible, however, that the decrease 
in parameter k  in mapping 

k
T  in the PIVI algorithm 

(9), which is defined in (7), results in an immediate in- 
crease in the error. This happens because a decrease in 
  results in a different, more accurate approximate mo- 
del in (7), for which the current approximation in the 
value function kh  may not be as good. Hence, in order 
to avoid instability, i.e., a 1, 0k k   , whenever the 
error increases, k  is set to zero. 

For the adaptive algorithm, we use a varying decrease 
rate sequence ˆk  and the objective is to adaptively es- 
timate the convergence rate of the exact algorithm, which 
is unknown a priori. In order to do that, gradient,   is 
calculated, which is defined as: 

1ˆ ,k k k                    (12) 

The convergence parameter is estimated by the adap- 
tive gradient recursion Equation as follows: 

1ˆ ˆk k k                    (13) 

where 0ˆ 1  , and  0,1   is an adaptive parameter. 
The parameter sequence k  in Algorithm (9) is then re- 
fined by the following recursion: 

1 ˆ .k k k                     (14) 
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The proposed parameters sequence, k , may result in 
an intensely varying sequence ̂ , due to a possible er- 
ratic behavior in the error sequence ke  and such a va- 
riation may limit the computational gains. To mitigate 
the effect of the error on the estimation process, a refined 
algorithm is presented. Prior to estimating the empirical 
convergence rate Equation (11), the error, ke , goes 
through moving average digital filter of order M  [15]. 
This filter attenuates the error high frequency compo- 
nents, leading to a better estimation of the convergence 
rate parameter, ̂ . The differences Equation that im- 
plements the moving average filter is presented in (15). 

1

0

1 M

k k i
i

e e
M






               (15) 

where ke  is the filter input, and ke  is the filtered error, 
and M  is the filter order. The filter uses M  past it- 
erations to estimate the error ke . The estimated error is 
used in (11) to approximate the empirical convergence 
rate. The higher the filter order M , the longer the past 
history that is taken into account. 

4.3. A Measure for Computational Effort 
Comparison 

In order to compare the overall computational effort, one 
needs to propose a measure of the total computational 
effort applied by each algorithm. Such a measure enables 
one to directly compare different types of algorithms, 
which can rely on different updating schemes. In addition, 
defining this type of measure is more appealing than just 
measuring the convergence time because it makes possi- 
ble to compare different types of algorithms without 
necessarily running them. Furthermore, one can also de- 
fine suitable optimization routines that aim at finding the 
best algorithm in a given class with respect to the overall 
computational effort. This line of study is exploited in 
[13]. 

Examining the updating scheme of mapping T  in the 
VI algorithm (5), it can be verified that the overall com- 
putational effort per iteration, per state, of the VI algo- 
rithm is proportional to the total number of transitions 
examined by mapping T . Hence, one can define the 
computational effort of updating a single state x S  as 
the sum of the cardinalities of the transition probability 
distributions for each feasible action for that state. Let 
 x  denote the computational effort of updating state 

x S  under the VI algorithm. The overall effort for a 
single iteration of the VI algorithm then becomes 

 .
x S

x 


   

The computational effort for an iteration of the PIVI 
algorithm, on the other hand, depends on the total num- 
ber of transitions examined in each iteration of the algo- 

rithm. Letting  k  denote the parameter sequence of 
the PIVI algorithm and  k x  denote the total number 
of transitions at state x , at the k-th iteration of the PIVI 
algorithm, we have 

 
 

 , ,k max k
a A x

x n x a


             (16) 

where  maxn   is the function defined in (6) for state- 
action pairs  ,z x a . Let N  denote the total number 
of iterations up to the PIVI convergence. Consequently, 
the overall computational effort of the PIVI algorithm be- 
comes 

 
1

.
N

k
k x S

x 
 

    

In the next section, we experiment with the parameter 
sequence  k , varying the adaptive parameter   in (13) 
and compare the computational effort measures   and 
 , to obtain the order of the computational savings that 
can be obtained by the PIVI algorithm when compared to 
the classical VI algorithm. 

5. Numerical Experiments 

In order to compare the proposed method with the classic 
VI algorithm [17], two sets of experiments were derived. 
These experiments are replications of the experiments 
presented in [14] and thus offer a ground for comparison. 
In the first experiment we solve a Queueing model with 
two classes of clients. Each client class has a dedicated 
queue whose length varies in the interval  0,200 . More- 
over, no new client is permitted at any given queue when- 
ever the length of that queue is at the upper limit. For both 
experiments, a single server is responsible for the service 
of both queues and serves K   clients at each time 
period. The decision maker must decide whether to serve 
Queue 1, Queue 2, or to stay idle. The cost function de- 
pends on the total of clients in line and is given by: 

  2
1 2 1 2, ,c x x x x   

where 1x  and 2x  denotes the size of Queue 1 and 
Queue 2, respectively. Clearly, such a cost function is de- 
signed to prioritize clients belonging to the second class. 
We also note that the cost function does not depend on the 
selected control actions. The objective is to find the policy 
which minimizes the average cost and satisfies expression (2). 

For the first experiment, both types of clients arrive ac- 
cording to a Poisson process with mean 10  . For com- 
putational purposes, the transition probability generated by 
this process was truncated to accommodate a fraction 
0.9999 of the transitions and re-normalized afterwards. 
Such a normalization yields a total of 22 transitions for 
each line, thus resulting in a total of 484 possible transi- 
tions for each state-action pair. For this experiment K  
was fixed at 21. Since we have three possible control ac- 
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tions and since the number of transitions is the same under 
each action, the total number of transitions per state for the 
VI algorithm is 

  484 3 1452, .x x S       

For a tolerance of 410  [1], the VI algorithm took 950 
iterations to converge, having an overall computational ef- 
fort per state of  61.3794 10 950x     , per state. 
The total effort can be obtained by multiplying this value 
by the cardinality of the state space S, 2201 40401S   . 

Figure 1 depicts the overall computational effort   
for parameter sequences of the type in (14), for different 
values of  . The computational effort was normalized 
with respect to the overall VI effort   to simplify the 
comparison. 

The normalized computational effort for the proposed 
algorithm is plotted in Figure 1 as a function of the 
adaptive parameter  . One can see that, for the best 
 

 
(a) 

 
(b) 

Figure 1. Computational effort: Poisson distribution. (a) 
filter orders M = 4, 5, 7, and 8; (b) filter orders M = 9, 10, 
and 11. 

possible choice of  , the computational effort is ap- 
proximately 0.45  of that of the classical VI algorithm. 
Therefore, the proposed algorithm converges in about 
45%  of the time required for the VI algorithm to con- 
verge. Another point to look at is the improvement due to 
the moving average digital filter. Five curves are shown 
in Figure 1(a), the solid blue curve is the overall com- 
putational effort without filtering of the empirical rate; 
the square-marked dotted line curve, the circle-marked 
dashed line curve, the diamond-marked dashed line curve, 
and the triangle-marked solid line curve present the com- 
putational effort with the moving average digital filter 
defined in (15) of orders 4,5,7,8M  , respectively. 
This filters are used to process the error sequence ke  
prior to the empirical rate estimation in (11). While the 
unfiltered algorithm produces an improvement over the 
classic VI algorithm, the use the moving average filter 
provides an even superior performance, since the filter 
acts as a smoother of fluctuations in the empirical error 
function. Moreover, one can see that the performance im- 
proves as the filter order increases. 

Figure 1 also shows that the proposed algorithm is 
consistently better than the VI algorithm, for a broad 
range of parameters  . Naturally, a better choice of pa- 
rameter results in better savings, but the results suggest 
that the algorithm is robust with respect to the parameter 
choice. This is a significant improvement over the class 
of algorithms proposed in [14], which yield more sig- 
nificant savings in a best-case scenario, but it can be 
outperformed by VI under a poor parameter selection. 
Moreover, the algorithm in [14] seems to be overly sen- 
sitive to the parameter selection and the results tend to 
vary significantly within a small parameter interval. 

One can expect an improvement as the filter order in- 
creases, up to some point where the increase no longer 
propitiates an improving performance. This behavior can 
be observed in Figure 1(b), where the limit is reached 
and the best computation effort is achieved with a filter 
order of 9M  , when the algorithm needs about 40%  
of the total computation effort. 

Figure 2 depicts the computational effort for higher 
filter orders, 12, 13, 15M  . One can see that no addi- 
tional improvement is obtained for orders higher than 9. 
The main reason is that the underlying process that gen- 
erates the error sequence ke  has a given internal mem- 
ory, or process memory. Whenever a estimator, i.e. mov- 
ing average filter, exceeds the process memory, the esti- 
mator will decrease its performance [18]. 

In order to illustrate the impact of the filter order on 
the computation effort, Figure 3(a) shows the computa- 
tion effort for different filter order values. One can see 
the impact of the filter order in the performance, also 
noticing that is always improved with respect to unfil- 
tered PIVI algorithm. 
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Figure 2. Computational effort: Poisson distribution, filter 
orders M = 12, 13, and 15. 
 

 
(a) 

 
(b) 

Figure 3. The best adaptive parameter and computation 
effort as a function of the filter order M for Poisson dis- 
tribution; (a) computation effort; (b) the best adaptive pa- 
rameter γ. 

Figure 3(b) presents the best adaptive parameter   
for different values of filter order. One can notice on 
Figure 3(b) that the best value for the adaptive parameter 
  spans over a wide range. Whenever the filter order is 
among 8, 9, 10, 11 ,  8, 9, 10, 11M  , the adaptive pa- 
rameter   has low sensibility, any value of   in the 
range from 0.30 to 0.65, i.e.,  0.30,0.65  , would 
yield a significant improvement in the computational per- 
formance. 

The first experiment suggests that the proposed me- 
thod can provide significant savings in computational for 
problems with exogenous Poisson arrival processes. This 
is a very interesting results considering that such a class 
of problems tends to be very popular for queueing and 
manufacturing problems [16,19]. 

In the second experiment, the clients arrive in the first 
queue according to a geometric distribution with mean 

9  . Clients belonging to the second class arrive uni- 
formly in the integer interval from 0 to 9. The geometric 
distribution is also truncated to retain a fraction of 0.9999 
of the total transitions and then renormalized. Such a 
normalization is not needed for the uniform distribution. 
The joint arrival processes yields 660 possible transitions, 
hence 

  660 3 1980, .x x S       

The classical VI algorithm converged in 104 iterations 
and applied an overall computational effort per state of 

52.0592 10   . 
Figure 4 depicts the overall computational effort   

for parameter sequences of the type in (14), for different 
values of  , normalized with respect to the overall VI 
effort  . For this experiments, we make 20K  . The 
normalized computational effort for the proposed algo- 
rithm is plotted in Figure 4 as a function of the adaptive 
parameter,  . One can see that, for a broad range of  ,  
 

 

Figure 4. Computational effort: Geometric uniform distri- 
butions. 
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0.01 0.50  , the computational effort is less than the 
classical VI algorithm. At the best point, the cost is about 
75%  of the classical VI algorithm. 

Note that the savings of the proposed algorithm for the 
second setting, though still appealing, are much less sig- 
nificant than those obtained for Poisson exogenous arri- 
val processes. This suggests that more modest savings 
may be expected for uniform distribution settings. This is 
consistent with the results in [13], which suggest that 
PIVI algorithms tend to have a stronger performance for 
highly concentrated probability distributions, such as the 
Poisson distribution, while yielding less significant sav- 
ings for distributions that are widely spread. Moreover, 
one can also notice that the moving average filter addi- 
tion seems to have no significant effect on the results. 

6. Concluding Remarks 

This paper introduced a gradient adaptive version of the 
partial information value iteration (PIVI) algorithm in- 
troduced in [13] to the average cost MDP framework, 
with the addition of a moving average filter to smooth 
the empirical error sequence. 

The proposed algorithm was validated by means of 
queueing examples, and presented consistent computa- 
tional savings with respect to classical value iteration. 
Moreover, the proposed algorithm yielded consistent 
improvement over value iteration for a wide range of 
parameters, thus overcoming a shortcoming of a previous 
approach [14] that was overly sensitive to the parameter 
choice. 
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