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ABSTRACT 

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle Routing Problem 
(CVRP) where customers may be assigned to multiple routes. A new construction heuristic is developed for the SDVRP 
and computational results are given for thirty-two data sets from previous literature. With respect to the total travel dis-
tance, the construction heuristic compares favorably versus a column generation method and a two-phase method. In 
addition, the construction heuristic is computationally faster than both previous methods. This construction heuristic 
could be useful in developing initial solutions, very quickly, for a heuristic, algorithm, or exact procedure. 
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1. Introduction 

The Vehicle Routing Problem (VRP) is a prominent 
combinatorial optimization problem in distribution plan- 
ning. Various forms of the VRP are studied for both 
theoretical and practical purposes. The solution quality of 
these problems is essential to the logistics industry when 
considering transportation costs. Dantzig and Ramser [1] 
first exhibited these cost savings by providing a formula-
tion and solution approach for gasoline distribution. Toth 
and Vigo [2] estimate that computer-generated solutions 
for distribution problems reduce transportation costs by 
5% - 20%, and this is a significant decrease since trans- 
portation costs represent between 10% - 20% of the final 
cost of a unit. Review literature for the VRP includes a 
survey by Toth and Vigo [3] for exact solution proce- 
dures, whereas Cordeau et al. [4-5] survey heuristic pro- 
cedures. 

A well-studied form of the VRP is the Capacitated 
Vehicle Routing Problem (CVRP). The CVRP estab- 
lishes routes to a set of customers from a single depot to 
minimize the total distance traveled. The problem is con- 
strained by the vehicle capacity while meeting customer 
demand. By definition, a customer is on exactly one 
route. The Split Delivery Vehicle Routing Problem (SD- 
VRP) is a relaxation of the CVRP. The SDVRP allows 
customers to be serviced by more than one vehicle route, 
which usually reduces the number of routes and the total 
distance traveled [6]. Generally, the SDVRP takes more 
computer time to solve than the CVRP since the feasible 

space is larger [6-8]. In this paper a set of feasible solu- 
tions is generated for the SDVRP using a construction 
heuristic, and the solution with the shortest travel dis- 
tance is outputted. Recent literature surveys of the SD- 
VRP include [9-11]. 

The SDVRP is appropriate for many CVRP applica- 
tions where customers can be visited more than once. 
Numerous applications for the CVRP are noted in the 
literature [3,12], with the primary emphasis being the 
distribution of various goods. Dror and Trudeau [6,7] 
formally introduced the SDVRP. The primary motivation 
to split a customer’s demand over multiple routes is to 
reduce the travel distance and the number of vehicle 
routes. If each vehicle has the same capacity, then the 
minimum number of routes is the total demand divided 
by the vehicle capacity rounded up to the nearest integer. 

Dror and Trudeau [6,7] proved, given that the distance 
between nodes follows the triangle inequality, there ex- 
ists an optimal solution where no two routes can have 
more than one split demand point in common, and that 
there exists an optimal solution with no k-split cycles (for 
any k). Based on these proofs, Dror and Trudeau [7] de- 
vised a heuristic to solve the SDVRP given an initial 
CVRP solution by splitting the demand of a node to fill 
the routes to capacity. This algorithm allows for addi- 
tional routes over the minimum number of routes. The 
heuristic does not eliminate k-split cycles; however, no 
2-split or 3-split cycles were observed in any of the re- 
sulting solutions. 
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Dror et al. [8] extended the formulation of Dror and 
Trudeau [6,7] with additional constraints, and developed 
a constraint relaxation branch and bound algorithm. The 
directed arc formulation allows the number of vehicle 
routes to vary from the minimum number to the number 
of customers. The additional constraints strengthen the 
subtour elimination constraints, eliminate some fractional 
cycles when the binary decision variables are relaxed, 
and impose an upper bound on the number of arcs used 
in an optimal solution. Results of the algorithm were 
given for problems with 10, 15, and 20 customers and 
optimality gaps were reported. The optimality gap was 
within 10% for 10 customer problems, 20% for 15 cus- 
tomer problems, and 30% for 20 customer problems. 
However, in order to reduce the number of constraints 
produced, arcs over a certain length were eliminated 
from consideration. 

The results from [6-8] show that the percent reduction 
in travel distance, when compared to the CVRP, is most 
prominent among problems where customers have high 
demands (i.e., more than 10% of the vehicle capacity). 
The results also indicate that good solutions to the SD- 
VRP tend to have routes that sweep geographic areas, 
and that customers with split demand over multiple 
routes usually have above average demand. The results 
showed that the SDVRP solution used fewer routes than 
the CVRP solution; however, the SDVRP solution did 
not always use the minimum number of routes. The 
computer time to obtain the SDVRP solution was longer 
than the time to compute the CVRP solution. 

Frizzell and Giffin [13,14] solved the SDVRP on grid 
networks in their first paper and with time windows on 
grid networks in their second paper. Archetti et al. [15] 
developed a tabu search algorithm for the SDVRP. Ar-
chetti et al. [16] analyzed the worst-case properties of the 
SDVRP, where they show that the savings are at most 
50% over the optimal CVRP solution. Archetti et al. [17] 
discussed when demand splitting is most beneficial. 
Their results indicated that demand splitting is best when 
the mean customer demand is just over half of the vehi- 
cle capacity and when customer demand variance is low. 
Lee et al. [18] developed a dynamic programming model 
for the vehicle routing problem with split pick-ups with 
an uncountable (infinite) number of state and action 
spaces. 

Belenguer et al. [19] performed a polyhedral study on 
the SDVRP to produce lower bounds through formulat- 
ing the problem with undirected arcs by assuming sym- 
metric distances. Using a cutting-plane algorithm in con- 
junction with a relaxed formulation, they were able to 
obtain feasibility gaps within 12% for problems with 50, 
75, and 100 customers. They did not report computation 
time, only the number of iterations and the number of 
cuts. 

Jin et al. [20] developed a two-stage algorithm to solve 
the SDVRP using valid inequalities. Jin et al. [21] pre- 
sented a column generation procedure that provides com- 
parable lower and upper bounds for the data sets devel-
oped by [19]. Jin et al. [21] allowed for additional routes 
above the minimum number of vehicle routes. Chen et al. 
[22] presented a mixed integer program and a variable 
length record-to-record travel algorithm. They also pro- 
vided computational results for existing and new data 
sets. References [9,22,23] used the Clarke-Wright Al- 
gorithm [24] for the CVRP to provide an initial starting 
solution for the SDVRP. Burrows [25] showed that the 
SDVRP could be modified by splitting customer demand 
into smaller quantities on the same node, and then solved 
using CVRP methods. Recent theses addressing the 
SDVRP, or close variants, include [23,26-29]. 

Direct applications of the SDVRP have been noted in 
literature. Mullaseril et al. [30] modeled a cattle feed 
distribution problem as an SDVRP with time windows. 
They developed a solution algorithm that uses k-split 
interchanges and route addition. Sierksma and Tijssen 
[31] model a helicopter crew-scheduling problem using 
an SDVRP model, and they developed two solution ap- 
proaches. The first used a relaxed linear program and 
column generation scheme to find a solution. The second 
used a cluster-and-route procedure. Song et al. [32] mo- 
deled a newspaper distribution process as a SDVRP and 
solved using a two-phase procedure. The first phase al- 
locates customers using a binary program and the second 
phase generates vehicle routes. 

This paper presents a construction heuristic that gene- 
rates a set of feasible solutions for the SDVRP, and the 
solution with the shortest travel distance is outputted. 
This construction heuristic is compared against two pre- 
vious methods using 32 data sets from earlier literature. 
The solutions from this construction heuristic could then 
be used for other heuristics, algorithms, or exact methods. 
The remainder of this paper is organized as follows. The 
next section provides a mathematical formulation of the 
SDVRP. This is followed by the SDVRP construction 
heuristic, computational experience, and concluding re- 
marks. 

2. SDVRP Formulation 

The SDVRP can be defined as follows. Let G = (N, A) be 
a complete and directed graph, where N = {1, 2, ···, n} is 
the set of nodes and A = {(i, j), i, j  N, i ¹ j} is the set 
of arcs. Node 1 represents the depot and nodes {2, 3, ···, 
n} represent customers. The cost of traversing an arc is 
denoted by cij, and it is assumed that cij is non-negative 
and the triangle inequality holds. The demand of each 
customer is denoted by di. The vehicles, assumed to be 
identical, have a capacity of Q and are based at the depot. 
The total demand D, and vehicle capacity are used to 


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determine the minimum number of routes K. The SD- 
VRP consists of determining K routes from the depot by 
minimizing the total distance traveled, while satisfying 
the customer demand and not exceeding vehicle capacity. 
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The following formulation is a combination of the di- 
rected graph formulation [19] and the undirected graph 
formulation [8]. This formulation assumes that cij satis- 
fies the triangle inequality and that exactly the minimum 
number of vehicle routes, K, is used. The formulation 
does not assume that distances are symmetric. 

Indexed Sets: 
i = {1, 2, ···, n}; node index 
j = {1, 2, ···, n}; node index 
k = {1, 2, ···, m}; route index 
Parameters: 
m: the number of vehicle routes 
n: the number of nodes 
Q: the vehicle capacity 
cij: the cost or distance from node i to node j 
di: the demand of customer i (where d1 = 0) 
Decision Variables: 
xijk: 1 when arc (i, j) is traversed on route k; 0 other-

wise 
uik: free variable used in the subtour elimination con-

straints 
yik: 1 when node i is visited on route k; 0 otherwise 
vik: a variable that denotes the amount of material de-

livered to node i on route k 
Without loss of generality, yik and vik are not defined 

for i = 1. 
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The objective is represented by (1), which is to mini- 
mize the total distance traveled. Constraints (2) and (3) 
guarantee that all customer demand is satisfied without 
violating vehicle capacity. Constraints (4) and (5) ensure 
flow conservation and that subtours are eliminated, re- 
spectively. Constraints (6) and (7) force the binary vari- 
ables to be positive if material is delivered to node i on 
route k. Constraint (8) ensures that the depot is entered 
and exited on every vehicle route, and Constraints (9)- 
(11) provide variable restrictions. Additional, mathema- 
tically redundant, constraints that can be used to possibly 
strengthen the formulation are: 
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Constraint (12) guarantees that if a customer is visited 
then material is delivered, and Constraint (13) does not 
allow material to be delivered unless a customer is vis- 
ited. First introduced by Belenguer et al. [19], Constraints 
(14) and (15) ensure each route is used and a customer is 
visited at least once, respectfully. Constraint (16) elimi- 
nates two-node subtours. Dror et al. [8] introduced con- 
straint (17), which eliminates some k-split cycles by plac- 
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ing an upper-bound on the number of arcs that can be 
used in an optimal solution. Constraint (18), which fol- 
lows from constraint (17), restricts the total number of 
customer visits within an optimal solution. Constraint 
(19), introduced by Dror et al. [8], removes some types 
of fractional cycles when the binary restrictions of xijk are 
relaxed. Constraint (20) eliminates alternative optimal 
solutions for routes by sorting the routes from shortest to 
longest. Alternative optimal solutions are nullified by 
Constraint (21) for the direction of the particular route by 
having the shortest arc traversed first of the two arcs ad-
jacent to the depot. Split deliveries are forbidden by 
Constraint (22) to nodes i and j on both routes k and p. 
There exist additional constraints that were not listed; 
however, only constraints that were beneficial in pre-
liminary testing were noted. 

3. SDVRP Construction Heuristic 

The heuristic procedure presented in this section con- 
structs a set of feasible solutions to the SDVRP. The first 
procedure of the heuristic initializes the input. The sec- 
ond procedure assigns customers to vehicle routes, itera- 
tively. The order of each route is then determined by a 
traveling salesman problem (TSP) solution procedure, 
finalizing the solution. Finally, the solution is outputted. 
The computer code for the heuristic assumes that cus- 
tomer demand and vehicle capacity are integers. Similar 
to the flow formulation in Section 2, the computer code 
for the heuristic does not assume symmetric distances 
between two nodes. Ties are broken arbitrarily, unless 
otherwise specified. 

3.1. Partition Procedure 

The partition procedure assigns customers and their de- 
mand to vehicle routes. Initially, the procedure checks 
for feasibility (i.e., adequate capacity). The iterative 
process begins with Control 1, which is completed for 
each vehicle route. A customer, with unsatisfied demand, 
is selected and assigned to the vehicle route in Control 1. 
The capacity threshold is calculated in Control 2. If the 
vehicle is not loaded within the capacity threshold, then 
the algorithm proceeds to Control 3. Otherwise, Control 
1 is repeated for the next vehicle route. Control 3 selects 
a number of customers closest to the set of customers 
already assigned to the vehicle route and determines 
whether or not they will be added to the route. Control 3 
is repeated until the vehicle is loaded within the capacity 
threshold or until all customer demand is satisfied. The 
outputs from this procedure are the vik and yik variables. 
This procedure is shown in Figure 1. 

There are three decisions made in the partition proce- 
dure for each vehicle route, each decision corresponds to 
a control from Figure 1. Control 1 selects an initial node  

 

Figure 1. Partition procedure for SDVRP construction heu-
ristic. 
 
to begin the vehicle route. Control 2 calculates the capa- 
city threshold. Control 3 determines how many nodes to 
evaluate per iteration. This dissertation will focus on 
eight rules for Control 1 and three rules each for Control 
2 and Control 3; thus, there are seventy-two possible 
combinations if every rule is completed for the three 
controls. There are an infinite amount of rules for each 
Control, but based on preliminary testing, intuition, and 
time constraints we have focused on a smaller set of 
rules. 

Control 1: The initial node for each vehicle route is 
selected from the set of customers with unsatisfied de- 
mand. This initial node is selected using one of the fol- 
lowing eight rules: furthest node from the depot, closest 
node from the depot, median node with respect to dis- 
tance from depot, node with highest demand, node with 
smallest demand, furthest node on smallest arc (i.e., the 
arc (i,j), where i ≠ j, i ≠ 1, j ≠ 1, for which cij is the 
smallest), random node, and furthest node based on the 
arc from the Clarke-Wright [24] procedure. The Clarke- 
Wright procedure calculates a savings sij = c1i – cij + cj1 

for each arc (i,j) where i ≠ j, i ≠ 1, j ≠ 1, and the arc with 
the largest savings is selected. These eight rules may 
select the same initial node for a particular vehicle route; 
however, they have the potential to be diverse in their 
selection. 

Control 2: The capacity threshold allows the spare ve- 
hicle capacity (i.e., the total amount of spare vehicle ca- 
pacity across all routes, calculated by mQ – D) to be 
shared amongst all of the vehicle routes. This threshold is 
calculated by three different rules. The first rule takes the 
average spare capacity (i.e., remaining spare vehicle ca- 
pacity divided by the remaining number of vehicle rou- 
tes), based on the remaining number of vehicle routes, 
and rounds the answer down to the nearest integer. The 
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second rule takes the average spare capacity, based on 
the remaining number of vehicle routes, and rounds the 
answer up to the nearest integer. The third rule allows for 
the current vehicle route to use all of the spare capacity. 
These rules can be ignored if there is no spare vehicle 
capacity, since in that case all of the vehicles must be 
filled to capacity. 

Control 3: The node selection decision evaluates the 
closest (relative to the nodes already on the vehicle route) 
one, two, or three nodes per iteration. If only one node is 
selected, then it is evaluated to determine if all or part of 
its remaining demand will be placed on the route. All of 
the demand will be placed on the route if it fits; other-
wise, the vehicle route will be filled and the node’s de-
mand will be adjusted. If two nodes are selected, then 
they are evaluated to determine if one or both can be 
placed on the vehicle route. Both nodes are added to the 
route if all of their remaining demand fits on the route. If, 
individually, both of the nodes remaining demand exceed 
the vehicle capacity, then only a portion of the closest 
node’s demand is placed on the route. Otherwise, all of 
the closest node’s demand is placed on the route and only 
a portion of the second closest node’s demand. If three 
nodes are selected, then they are evaluated to determine 
if one, two, or all will be added to the vehicle route. 

The following procedure is an example of one of the 
72 combinations. Control 1 takes the furthest node from 
the depot, Control 2 rounds the average spare capacity up 
to the nearest integer, and Control 3 evaluates the closest 
two nodes. This example is shown in Figure 2. In addi- 
tion to the formulation from Section 2, the following data 
and variables are used in this procedure: 

S: total available spare capacity across all vehicle 
routes  

A: average spare capacity per route (i.e., A = S/m, 
rounded up to the nearest integer) 

R: set of nodes with unsatisfied demand 
Pk: set of nodes currently assigned to route k 
fi: amount of unsatisfied demand remaining for node i 
bk: remaining capacity of vehicle k 
Step 0: Commentary: Step 0 initializes the data and 

variables for the procedure. Determine constants m, n, D, 
Q, K, and S. Compute the initial value of A. If m < K, 
where K D Q   

1k 

, then STOP the problem is infeasible. 
Place all nodes in set R, except node 1, which corre-
sponds to the depot. Ensure Pk is empty for all k. Set fi = 
di for all i. Set . 

Step 1: Commentary: Step 1 selects the furthest node 
from the depot and adds it to the route currently being 
constructed, this is the first node added to the route. If 

, then STOP. From set R, find the node furthest 
from the depot, call it node i. Place node i in set Pk. If fi > 
Q, then set yik = 1, vik = Q, fi = fi – Q, 

1k m 

( )A S m k    , 
and k = k + 1; and go to Step 1. Otherwise, if Q – fi ≤ A, 

then remove i from set R and set yik = 1, vik = fi, 
 S S Q f   i , A ( )S m k    , fi = 0, and k = k + 1; 

and go to Step 1. Otherwise, remove i from set R and set 
yik = 1, vik = fi, bk = Q – fi, and fi = 0; and go to Step 2. 

Step 2: Commentary: Step 2 selects nodes to add to the 
route currently being constructed. If set R is empty, then 
STOP. If there is only one node in set R, then call it i and 
go to Step 2f. Otherwise, from set R, find the two closest 
nodes to the nodes in set Pk. Call the closest node i and 
the next closest node j. 

If fi > bk and fj ≤ bk, then go to Step 2a. 
If fi ≤ bk and fj > bk, then go to Step 2b. 
If fi ≤ bk, fj ≤ bk, and fi + fj > bk, then go to Step 2c. 
If fi ≤ bk, fj ≤ bk, and fi + fj ≤ bk, then go to Step 2d. 
If fi > bk and fj > bk, then go to Step 2e. 
Step 2a: Commentary: Step 2a adds node j to the route 

currently being constructed, and then determines if more 
nodes need to be considered. If bk – fj ≤ A, then remove j 
from set R, place j in Pk, and set yjk = 1, vjk = fj, 

 S S b f  k i , A ( )S m k    , fj = 0, and k = k + 1; 
and go to Step 1. Otherwise, remove j from set R, place j 
in Pk, and set yjk = 1, vjk = fj, bk = bk – fj, and fj = 0; and 
go to Step 2. 

Step 2b: Commentary: Step 2b adds node i to the route 
currently being constructed, and then determines if more 
nodes need to be considered. If bk – fi ≤ A, then remove i 
from set R, place i in Pk, and set yik = 1, vik = fi, 

 S S b f  k i , A ( )S m k    , fi = 0, and k = k + 1; 
and go to Step 1. Otherwise, remove i from set R, place i 
in Pk, and set yik = 1, vik = fi, bk = bk – fi, and fi = 0; and 
go to Step 2. 

Step 2c: Commentary: Step 2c adds node i to the route 
currently being constructed, and then determines if more 
nodes need to be considered. If fi = bk, then remove i 
from set R, place i in Pk, and set yik = 1, vik = fi, 
A ( )S m k    , fi = 0, and k = k + 1; and go to Step 1. 

Otherwise, remove i from set R, place i in Pk, and set yik 
= 1, yjk = 1, vik = fi, vjk = bk – fi, A ( )S m k   

1k k
, fi = 0, 

fj = fj – vjk, and  

1jky

; and go to Step 1. 
Step 2d: Commentary: Step 2d adds nodes i and j to 

the route currently being constructed, and then deter-
mines if more nodes need to be considered. If bk – fi – fj ≤ 
A, then remove i and j from set R, place i and j in Pk, and 
set yik = 1,  , vik = fi, vjk = fj, S = S – (bk – fi – fj), 
A ( )S m k   

v f

 /( )

, fi = 0, fj = 0, and k = k + 1; and go to 
Step 1. Otherwise, remove i and j from set R, place i and 
j in Pk, and set yik = 1, yjk = 1, ik i , vjk = fj, bk = bk – 
fi – fj, fi = 0, and fj = 0; and go to Step 2. 

Step 2e: Commentary: Step 2e adds node i to the route 
currently being constructed, and then determines if more 
nodes need to be considered. Place i in Pk and set yik = 1, 
vik = bk, fi = fi – bk, A S m k    , and k = k + 1; 
and go to Step 1. 

Step 2f: Commentary: Step 2f adds node i to the route 
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currently being constructed. Place i in Pk. If fi ≤ bk, then 
remove i from set R and set yik = 1, vik = fi, and STOP. 
Otherwise, set yik = 1, vik = bk, fi = fi – bk, 

( )A S m k    , and k = k + 1; and go to Step 1. 
The above example is the procedure for Control 1 tak-

ing the furthest node from the depot, Control 2 rounding 
the average spare capacity up to the nearest integer, and 
Control 3 evaluating the closest two nodes. A flowchart 
of this example is shown in Figure 2. A simple explana-
tion of the steps is as follows. Step 0 is initializes the 
problem and iteration procedure. Step 1 selects the fur-
thest node and calculates the average spare capacity, 
performing Control 1 and Control 3. Step 2 selects a 
node or nodes to add to the vehicle route, performing 
Control 2. Included within each step are stopping and 
iterating instructions. 

3.2. TSP Solution Procedure 

The procedure presented in Section 3.1 assigns custom- 
ers and their demand to vehicle routes. The order of each 
individual route is then calculated using a TSP solution 
procedure. If the number of customers on a particular 
route is small (i.e., ≤10), then an enumeration method 
ensures the best possible route with little computation. 
Initial solution procedures and three-opt neighborhood 
search procedures can be used for a larger number of 
customers. Syslo et al. [33] provide detailed algorithms 
for the TSP, including a branch-and-bound enumeration 
procedure, a furthest node insertion method, and a three- 
opt procedure. The outputs from the TSP solution pro- 
cedure are xijk variables and the objective value. After the  
 

 

Figure 2. Partition procedure for SDVRP Construction He- 
uristic where Control 1 takes the furthest node from the de- 
pot, Control 2 rounds the average spare capacity up to the 
nearest integer, and Control 3 evaluates the closest two 
nodes. 

conclusion of the assignment and TSP procedures, an 
initial feasible solution for the SDVRP is complete. 

4. Computational Experience of SDVRP  
Construction 

Initial feasible solutions were constructed for the data 
sets from Belenguer et al. [19] and Chen et al. [22] based 
on the Construction Heuristic Procedure described in Se- 
ction 3.2. The procedure was coded in FORTRAN 95 
and compiled by GNU FORTRAN on an Intel Xeon 
Processor 2.49 GHz computer with 8 GB RAM. The best 
solution from the 72 combinations was outputted as the 
final solution for the construction heuristic for each data 
set. Of the 72 combinations, only nine combinations 
were needed to find the best solution for all data sets, and 
those nine combinations come from an initial set of 36 
rule combinations. The best nine combinations are listed 
in Table 1, these combinations result in the best solution 
for all data sets. For the computational results, the 72 
combination runtime, 36 combination runtime, and the 
best nine runtime are reported. 

The number of customers and vehicles for 11 data sets 
from Belenguer et al. [19] are shown in Table 2. The  
 
Table 1. Best nine combinations that result in the best solu-
tions for all data sets. 

Control 1 Control 2 Control 3 

Farthest Node Round-up Closest Node 

Smallest Demand Round-up Closest Node 

Farthest Node Round-up Closest Two Nodes 

Farthest Node Round-down Closest Two Nodes 

Largest Demand Round-up Closest Two Nodes 

Clarke-Wright Round-up Closest Two Nodes 

Clarke-Wright All Closest Two Nodes 

Farthest Node Round-up Closest Three Nodes 

Clarke-Wright Round-up Closest Three Nodes 

 
Table 2. Eleven data sets from Belenguer et al. [19]. 

Data Set Customers Vehicles 

S51D2 50 9 

S51D3 50 15 

S51D4 50 27 

S51D5 50 23 

S51D6 50 41 

S76D2 75 15 

S76D3 75 23 

S76D4 75 37 

S101D2 100 20 

S101D3 100 31 

S101D5 100 48 
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number of customers ranged from 50 to 100, with an 
additional node for the depot. The data sets also differ by 
amount of spare capacity per vehicle. The customers 
were placed randomly around a central depot and de-
mand was generated randomly based on a high and low 
threshold. 

The number of customers and vehicles for 11 data sets 
from Belenguer et al. [19] are shown in Table 2. The 
number of customers ranged from 50 to 100, with an 
additional node for the depot. The data sets also differ by 
amount of spare capacity per vehicle. The customers 
were placed randomly around a central depot and de-
mand was generated randomly based on a high and low 
threshold. The number of customers and vehicles for 21 
data sets from Chen et al. [22] are shown in Table 3. The 
number of customers ranged from eight to 288, with an 
additional node for the depot. The data sets do not have 
any spare vehicle capacity. The customers were placed 
on rings surrounding a central depot and the demand was 
either 60 or 90, with a vehicle capacity of 100. Results 
from Jin et al. [21] and Chen et al. [22] were used as a 
comparison to the results from the Construction Heuristic 
Procedure (Section 3) for these 32 data sets, as shown in 
Tables 4-6. 

Comparative results for 11 data sets from Belenguer et 
al. [19] are shown in Table 4. The construction heuristic 
produced a solution in the least amount of computer time 
for each data set (bold), and produced the solution with 
the least amount of travel distance in four cases (bold). 
Jin et al. [21] found a better solution for three data sets 
(bold) and Chen et al. [22] in four cases (bold). However, 
Jin et al. [21] allowed for additional vehicles in their so-
lution, above the minimum number required for the 
SDVRP, which increases the cost of the overall system. 

Comparative results for 21 data sets from Chen et al. 
[22] are shown in Table 5. The construction heuristic 
produced a solution in the least amount of computer time 
for each data set (bold), and produced the solution with 
the least amount of travel distance in 16 cases (bold). 
Chen et al. [22] found a better feasible solution for four 
data sets (bold). Both methods found a solution with the 
same objective for data set S1. Chen et al. [22] reported 
pseudo lower bounds based on a graphical estimation 
described in Chen [23]. Chen et al. [22] finds a feasible 
solution that matches this pseudo lower bound for four 
instances (italic). The construction heuristic finds a fea-
sible solution that matches this pseudo lower bound for 
five data sets (italic), and finds a feasible solution lower 
than this bound for nine data sets (italic and underline). 

Using lower bounds from previous literature [19,21] 
the duality gap of the construction heuristic solution is 
shown in Table 6 for 11 data sets. The duality gap varies 
from 5.26% to 8.72%, with a solution time of no more 
than 11.250 seconds. The problem size ranged from 50 to  

Table 3. Twenty-one data sets from Chen et al. [22]. 

Data Set Customers Vehicles 

S1 8 6 

S2 16 12 

S3 16 12 

S4 24 18 

S5 32 24 

S6 32 24 

S7 40 30 

S8 48 36 

S9 48 36 

S10 64 48 

S11 80 60 

S12 80 60 

S13 96 72 

S14 120 90 

S15 144 108 

S16 144 108 

S17 160 120 

S18 160 120 

S19 192 144 

S20 240 180 

S21 288 216 

 
100 customers and 9 to 48 vehicle routes, as shown in 
Table 2. Similar results for the 21 data sets are not avail- 
able since a valid lower bound is not available from pre- 
vious literature. 

The solutions from the construction heuristic are not 
guaranteed to be local optimal solutions. A neighborhood 
search was implemented using two or three exchanges 
amongst the vehicle routes from the best solution and 
resolving the necessary TSPs. However, the objective 
value for the 32 data sets only decreased in a few cases, 
and then only by a small percentage, while using consid-
erable extra computation time (i.e., much longer than the 
construction heuristic). Therefore, using a neighborhood 
search was determined to be ineffective. 

5. Conclusion 

This paper focused on formulating and solving the 
SDVRP using a flow formulation and a construction 
heuristic. The primary research result of this paper is a 
construction heuristic that provides good initial starting 
solutions (within 8.72% duality GAP for 11 data sets) for 
the SDVRP in little computer time (within 11.250 se- 
conds for all test cases). The best solution from this con- 
struction heuristic could then be used as a starting solu- 
tion for other methods, such as Tabu search [15], column 
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Table 4. Comparing the construction heuristic versus [21,22] for 11 data sets. 

Data Set Heuristic 
Heuristic (72)  

Time (s) 
Heuristic (36) 

Time (s) 
Heuristic (9) 

Time (s) 
Chen et al. [22] Time (s) Jin et al. [21] Time (s) 

S51D2 735.33 27.625 10.438 2.110 - - 722.93* 10741 

S51D3 998.75 2.719 1.360 0.094 - - 968.85 833 

S51D4 1647.25 0.282 0.157 0.031 1586.5 201.74 1605.64* 789 

S51D5 1405.30 0.266 0.156 0.046 1355.5 201.62 1361.24* 10 

S51D6 2267.08 0.125 0.063 0.016 2197.8 301.9 2196.35* 478 

S76D2 1143.16 111.109 50.532 6.422 - - 1146.68* 75074 

S76D3 1471.76 12.172 10.563 0.312 - - 1474.89 3546 

S76D4 2166.86 12.359 11.532 0.141 2136.4 601.92 2157.87* 369 

S101D2 1458.76 231.938 80.453 11.250 - - 1460.54* 189392 

S101D3 1945.23 27.265 22.094 0.703 - - 1956.91* 36777 

S101D5 2881.35 3.516 2.297 0.453 2846.2 645.99 2885* 5043 

*[21] starred-solutions used more than the minimum number of vehicles, computer specifications unavailable, and computer solution time includes time to 
compute both lower and upper bounds; Heuristic presented cpu specifications: FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; [22] cpu specifications: 
Visual Studio C++, CPLEX 9.0, Intel Pentium 4, 1.7 GHz, 512 MB RAM. 

 
Table 5. Comparing the results of the construction heuristic versus the two-phase method of [22] for 21 data sets. 

Data Set Heuristic Heuristic (72) Time (s) Heuristic (36) Time (s) Heuristic (9) Time (s) Chen et al. [22] Time (s) 

S1 228.28 <0.001 <0.001 <0.001 228.28 0.7 

S2 708.28 <0.001 <0.001 <0.001 714.4 54.4 

S3 430.58 <0.001 <0.001 <0.001 430.61 67.3 

S4 640.02 0.015 <0.001 <0.001 631.06 400 

S5 1390.57 0.031 0.016 <0.001 1408.12 402.7 

S6 860.46 0.032 0.015 <0.001 831.21 408.3 

S7 3640.00 0.062 0.032 <0.001 3714.4 403.2 

S8 5068.28 0.100 0.062 0.015 5200 404.1 

S9 2071.05 0.125 0.047 0.016 2059.84 404.3 

S10 2772.03 0.281 0.141 0.031 2749.11 400 

S11 13280.00 0.578 0.266 0.063 13612.12 400.1 

S12 7279.97 0.672 0.375 0.078 7399.06 408.3 

S13 10110.57 1.094 0.641 0.094 10367.06 404.5 

S14 10786.52 1.860 1.000 0.203 11023 5021.7 

S15 15160.04 3.360 1.844 0.344 15271.77 5042.3 

S16 3434.81 2.437 1.187 0.313 3449.05 5014.7 

S17 26559.92 4.766 2.360 0.484 26665.76 5023.6 

S18 14302.22 4.172 2.156 0.500 14546.58 5028.6 

S19 20152.53 7.453 3.890 0.844 20559.21 5034.2 

S20 39706.51 21.141 10.594 2.312 40408.22 5053 

S21 11461.20 26.219 12.719 3.313 11491.67 5051 

Heuristic presented cpu specifications: FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM; [22] cpu specifications: Visual Studio C++, CPLEX 9.0, Intel 
Pentium 4, 1.7 GHz, 512 MB RAM. 
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Table 6. Duality GAP for construction heuristic solution for 11 data sets. Lower bounds from [21]. 

Data Set Linear Relaxation Lower Bound Construction Heuristic Objective GAP Heuristic (Best 9) Time (s)

S51D2 379.36 693.13 735.33 5.74% 2.110 

S51D3 379.36 920.86 998.75 7.80% 0.094 

S51D4 379.36 1503.54 1647.25 8.72% 0.031 

S51D5 379.36 1291.70 1405.30 8.08% 0.046 

S51D6 379.36 2107.85 2267.08 7.02% 0.016 

S76D2 485.53 1065.26 1143.16 6.81% 6.422 

S76D3 485.53 1394.36 1471.76 5.26% 0.312 

S76D4 485.53 2019.91 2166.86 6.78% 0.141 

S101D2 579.90 1344.35 1458.76 7.84% 11.250 

S101D3 579.90 1831.57 1945.23 5.84% 0.703 

S101D5 579.90 2724.32 2881.35 5.45% 0.453 

 
generation [21], the two-step method developed by Chen 
et al. [22], and a neighborhood search [26]. The con-
struction heuristic does not assume symmetric distances, 
and a future research direction would be to test this heu-
ristic with asymmetric data sets. 
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