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Abstract 
 
This paper presents two solution methodologies for the Visual Area Coverage Scheduling problem. The ob-
jective is to schedule a number of dynamic observers over a given 3D terrain such that the total visual area 
covered (viewed) over a planning horizon is maximal. This problem is a more complicated extension of the 
Set Covering Problem, known to be Np-Hard. We present two decomposition based heuristic methods each 
containing three stages. The first methodology finds a set of area covering points, and then partitions them 
into routes (cover first, partition second). The second methodology partitions the area into a region for each 
observer, and then finds the best covering points and routes (partition first, cover second). In each, a last 
stage determines dwell (view) times so as to maximize the visible coverage smoothly over the terrain. Com-
parative tests were made for the two methods on real terrains for several scenarios. When comparing the best 
solutions of both methods the CF-PS method was slightly better. However, because of the increased compu-
tation time we suggest that the PF-CS method with a fine terrain approximation be used. This method is 
faster as partitioning the terrain into separate regions for each observer results in smaller coverage and rout-
ing problems. A sensitivity analysis of the number of observation points to the total number of terrain points 
covered depicted the classical notion of decreasing returns to scale, increasing in a convex manner as the 
number of observation points was increased. The best method achieved 100 percent coverage of the terrain 
by using only 2.7 percent of its points as observation points. Experts stated that the computer based solutions 
can save precious time and help plan observation missions with satisfying results. 
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1. Introduction 
 
The development of Geographical Information Systems 
(GIS) in recent years has made a large contribution to the 
ability to solve various terrain related problems effi-
ciently. Problems such as; 1) finding the optimal path 
between two points over a rough terrain, and 2) locating 
observers in order to visually cover an area can now be 
solved using mathematical tools. Locating observers over 
a given area can be modeled as the Set Covering Prob-
lem (SCP). The traditional art gallery problem first pro-
posed by Chvatal deals with the problem of finding the 
minimal number of observers required for complete visual 
coverage of a 2D polygon [1]. This problem is NP-hard, 
with popular approximations running in  [2]. 

The approach does not model dynamic observers, the 
quality of coverage, nor does it consider costs. 

 logO n n

The Visual Area Coverage Scheduling (VACS) prob-
lem offered here combines the two problems of; locating 
observation points over a 3D terrain, and routing multi-
ple observers through them. Creating the best synchro-
nization between the observers so as to view the maximal 
area of the terrain is the main objective. A second objec-
tive is to smooth coverage over the terrain. The VACS 
problem has been formulated and solved using a Genetic 
Algorithm in [3,4]. This paper introduces two decompo-
sition based methodologies; 1) cover first, partition sec-
ond (CF-PS) and 2) partition first, cover second (PF-CS), 
each containing three stages. The analysis is divided into 
finding observation points, routing observers through 
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them and determining dwell times at each point. Placing 
static observers over a given 3D terrain was studied be-
fore using two heuristic approaches for graph approxi-
mations of the terrain. One is based on a rectangular grid 
representation [5], and the other on a Triangle Irregular 
Network (TIN) [6]. As far as we know, no previous work 
has been made on placing dynamic observers over a 3D 
terrain. Since many observation problems include a rapid 
change of locations, the VACS problem has an important 
practical use in surveillance operations. 

The paper is organized as follows. Section 2 defines 
and formulates the VACS problem. Sections 3 and 4 
present the two decomposition methodologies with illus-
trative examples of each. In section 5 a comparison of 
the two methodologies is made using real life 3D terrains. 
Section 5 also provides a discussion of the results, fol-
lowed by conclusions. 
 
2. The VACS Problem 
 
2.1. Problem Definition 
 
The VACS problem objective is to schedule a fixed 
number of observers (Q), traversing a 3D terrain, over a 
fixed planning horizon (T) such that; the total area cov-
ered is maximal and viewed uniformly subject to the 
following conditions: 1) there is a maximum time limit 
(S) for remaining at a specific observation point, 2) every 
point on the terrain must be covered at least a certain 
amount of time (Y% out of T), 3) no area is visible when 
an observer is on the move, 4) each move must exceed a 
minimal stated distance (d), 5) movement from one point 
to another must be within the observer’s limitations (max 
slope angles, time, etc.), and 6) the observer has 360 de-
gree vision. 
 
2.2. Problem Complexity 
 
Consider the case in which the observation dwell time S 
is not limited (i.e. ), the minimal distance be-
tween every two consecutive points (d) is extremely 
large (i.e. ) and the time required for movement 
between every pair of points in the terrain is very small 
(i.e. ). 

S 

j

d 

0 ,t i ,i j

In this special case, no observer can have more than a 
single observation point along its route, and since there 
are no movement time limitations, each observer can be 
located at any required point in no time. The optimal 
solution to the VACS problem in this specific case is to 
find the Q best observation points in which to place the 
Q observers along the entire planning horizon. This is 
one of the forms of the Set Covering Problem (SCP) [7] 
which is a well known NP-Hard problem [8]. Since the 

VACS problem can be reduced to SCP, we say that the 
VACS problem is also NP-Hard. 
 
2.3. Performance Measure 
 
Visibility and dead zones can be calculated both for 2D 
and 3D environments as shown in [9,10]. The total visi-
ble area observed in the terrain, by all observers at a 
given time t, is accumulated along the entire planning 
period. This accumulated number will be the total visi-
bility performance measure. Maximizing the total area 
observed over the time horizon does not guarantee that 
every point will be seen by the observers. It is thus, nec-
essary to consider the distribution of visible occurrences 
as well. This leads to a bi-criteria objective; 1) maximiz-
ing the number of visible points over the time horizon, 
and 2) trying to view each point an equal amount of time 
or at least a fixed percentage of time. It should be noted 
that both objectives may not be achieved simultaneously. 
 
2.4. Notation 
 
Let  1,2, ,P   N  be the set of all grid points de-
scribing the terrain. Time is broken into small, discrete 
segments  0,1,t  ,T , where T represents the plan-
ning horizon. Let S denote the maximal dwell time, such 
that no observer is allowed to stay more than S units of 
time in one place. Let d denote the minimum allowed 
distance between two consecutive observation points. Let 
Y denote the percentage of time out of T in which every 
point must be covered. Let there be Q observers indexed 
as  1, 2, ,q Q  . Let  represent the location of 
observer q at time t wher , N . L ,q t

,q tP
e, 1, 2, ,q tP   et A  

be a binary variable set to 1, if observer q is observing at 
time t, and 0 otherwise. The values of N, T, S, Y, Q and d 
are given constants while ,q t  and ,q tP A  are integer 
variables. Let D be a N × N matrix whose common ele-
ment ,i j  represents the 3D distance from point i to 
point j. Let MT be a N × N matrix whose common ele-
ment ,i j  represents the time required to move from 
point i to point j. Let V be the 3D visibility matrix, whose 
common element ,i j  equals 1 if point j is visible from 
point i, and 0 otherwise. V and MT can be determined by 
the algorithms in [10,11]. 

d

t
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2.5. Mathematical Formulation 
 
Problem 1: VACS Non-Linear Program 
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where , , 0,1q tA  , 1, ,q tP N  , , 1, ,q Q  0, ,t T  , 
. 1a 

The objective function Z in (1) represents the penal-
ized total visibility throughout the entire planning hori-
zon. The OR logic function returns the value of 1, if at 
least one of the Q observers sees point i at time t. This 
term is multiplied by an exponential function which de-
creases according to the number of previous times the 
point was viewed. This smoothes out the visibility over 
all the points by insuring the more times a point has been 
viewed up to time t, the less value there is to view it 
again. Constraint (2) prevents an observer from staying 
in an observation point more than S continuous segments 
of time. Constraint (3) insures a distance of at least d 
when a move occurs. Constraint (4) is added to avoid 
non feasible solutions in which the observer moves to a 
point that is not adjacent to its current location in the first 
step of its path to the next observation point. Constraint 
(5) ensures that every point will be seen Y percent of the 
time. A more detailed explanation for this formulation 
can be found in [3]. This formulation is untenable using 
mathematical programming techniques as it contains 
logical and nonlinear expressions in both its objective 
function and constraints. Hence, two heuristic solution 
approaches are proffered in the next two sections 
 
3. The Cover First, Partition Second  

(CF-PS) Heuristic 
 
3.1. Overview 
 
This methodology has three phases. The first phase se-
lects M specific locations in the terrain to be visited by 
the observers. The number of observation points is fixed 
at M Q K  , where each observer will stop at K ob-
servation points. Four alternative covering heuristics are 
developed for this purpose, which are described in the 
next section. The second phase solves a modified Vehi-
cle Routing Problem (VRP) [12] heuristic to iteratively 
combine points until there are Q routes, one for each 
observer. The observation time at each point along every 
route is determined using linear programming in the third  

 

Figure 1. Flow chart of CF-PS methodology. 
 

phase. Figure 1 provides a flowchart of steps of the 
CF-PS procedure.  
 
3.2. Phase I—Finding M Preferred  

Observation Points 
 
This problem is a special case of the SCP which is 
known as NP-hard. There are many covering heuristics 
for finding the best M locations to place static observers 
(SCP heuristics). We considered four different covering 
heuristics referred to as: 1) COVER1, 2) COVER2, 3) 
COVERGA, and 4) COVERTIN. Each in turn is ex-
plained below.  
 
3.2.1. COVER1—Covering Heuristic 1 
COVER1 uses a greedy search, starting at the point with 
the largest cover, while covering continues to the next 
points, which will increase the total viewable area. Let 

 represent the subset of points visible to i . Let iV P P

iV  represent the number of points within the subset i . 
Let 

V
A P  represent the subset of preferred observation 

points. The objective of the heuristic is to find A M   
a tosuch that the total visible are  A:  will 

maximized.  
lgorithm 

int  find Order the 
po

i

i
P A

V

 be 

COVER1 A
Step 1: For every po iP P  iV .
ints in a descending order according to iV  and start-

ing from the top. 
Step 2: Start with the current point . Add  to A 

an
iP iP

d delete it from the list. Go over the list of points and 
update iV  for every point jP  such that j j iV V V  . 
Reorder the list according to jV . 
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po . If Step 3: Find the current int iP 0iV   and 
A M  repeat step 2. Else, return A. 

 
.2.2. COVER2—Covering Heuristic 2 

d continues to 

m 
int  find Order the 

po

3
COVER2 starts with the greedy search an
the next best point, which is not visible from the previous 
selected points [5,6]. 

COVER2 Algorith
Step 1: For every po iP P  iV .
ints in a descending order according to iV  and start-

ing from the top.  
Step 2: Start with the current point  Add  to A. 

G
iP .

ry
iP

o over the list of points and delete eve  point visible to 

iP  (including iP  itself). If the list is not empty and 
A M , repeat step 2. Else, return A. 

 
3.2.3 COVERGA—Covering Heuristic GA 

roach [13]. 

.2.4. COVERTIN—Covering Heuristic Using TIN 
 of 

 

COVERGA – uses a genetic algorithm app
The GA approach for finding a set of M observation 
points uses a chromosome encoding of length 2M, com-
prised of M sequences of two genes, indicating the lati-
tude and longitude coordinates of the selected observa-
tion points. Using the 3D visibility matrix V, we calcu-
late the total number of points within the terrain which 
are visible to the M observation points in the chromo-
some. This total number is used as the fitness value. 
Crossovers and mutations are allowed providing the gene 
values do not exceed the terrain’s borders. Figure 2 
shows the chromosome representation. 
 
3
When creating a TIN representation of the terrain out
a grid (height map) containing n points, we select a sub-
set of these points as vertices and connect them using 
edges to form a set of contiguous triangles. This repre-
sentation replaces the original height map using only the 
data of the triangles and vertices. The height of the ter-
rain represented by a TIN in a given point can be calcu-
lated using the plane equation of the triangle that covers 
it. The difference between the real height given by the 
grid and the interpolated height found using the TIN is 
called the error. When creating a triangulation out of a 
grid we can control the number of vertices and triangles 
using a specified maximal error (also called the level of 
 

 

Figure 1. Chromosome representation. 

accuracy) a small 

 COVERTIN heuristic M selected observation 
po

.3. Phase II—Creating Q Routes using the 

 
he objective of this phase is to create a route for each of 

.4. Phase III—Assigning Dwell Times at Each 

 
fter creating the routes and the associated movement 

.4.1. Notation 
n the terrain be indexed 

. Thus, a TIN representation with 
maximal error will contain many vertices and triangles as 
opposed to a TIN representation with a large maximal 
error.  

In the
ints are the first M points inserted as vertices when 

creating a TIN representation of the terrain, based on 
Garland and Heckbert’s [14] triangulation for rendering a 
3D terrain. Using this triangulation, vertices are inserted 
iteratively according to their error. Most of the first M 
points found by this heuristics are peaks and saddle 
points, which are usually good for observation.  
 
3

Vehicle Routing Problem (VRP) 

T
the Q observers, which collectively pass through the M 
observation points determined in Phase I, in minimum 
total time. This problem is solved using a modified ver-
sion of the Vehicle Routing Problem (VRP). Note, that 
VRP is reducible to the TSP, and thus is also Np-Hard 
[12]. Many heuristics for solving the VRP are known, the 
most famous being the Savings Algorithm developed by 
Clarke & Wright [12] which is employed here. We mod-
ify the standard VRP by allowing open end points, no 
demand quantities, no vehicle capacities, and add a re-
quirement that adjacent points on the route exceed a 
minimum distance, d. Since the time horizon is fixed for 
each vehicle, minimizing travel time maximizes the al-
lowable observation time (dwell time). 
 
3

Observation Point 

A
time, it is necessary to determine the dwell (stay) time at 
each of the occupied observation points. This problem is 
formulated as a linear programming (LP) problem, and is 
based on minimizing the maximal hit deviation from the 
average number of hits. We adopt the term hits to repre-
sent the “total number of hits per point”, that is - the total 
number of discrete time units that a terrain point is visi-
ble collectively from all observers. The number of time 
units available is the residual time after removing travel 
times. 
 
3
Let the points i 1,2,p N  . 

n point: j = 1Let j represent the index of each observatio , 
K, (K + 1), 2K, (2K + 1), 3K, (M – K + 1), M. Of the 
M Q K   points, the first K points belong to the first 

he next K points to the second observer, and observer; t

Copyright © 2011 SciRes.                                                                                AJOR 



 
122 H. I. STERN  ET  AL. 

so on. MT(q) denotes the total time spent on moving be-
tween observation points along route q. The residual time 
on route q is ( ) ( )T q T MT q  . T(q) is constant as 
MT(q) is known fine  from Phase II. De jx  as a decision 
variable representing the amount of th dwell time at 
observation point j (which because of the indexing con-
vention is the 

e 

 1
th

j K j Q        observation point 
along the 

th
  route). When s

is me
j Q olving the VACS 

problem, tim asured in small discrete units (mean-
ing that 

e 

jx  must be an integer). However, since T is 
large com red to the smallest time unit, pa jx  is treated 
as a non negative continuous variable. We roduce the 
term “hit”, for a point p, when an observer located at 
point j has visibility indicator , 1j pv   during one unit  

of time. Let the total hits at point 
M

int

p be: ,
1

p j j p
j

h x v  . 

Let 
1

1 N

p
p

h h
N 

 
points, and L

.4.2. LP Dwe I 
g the 

 be the average num

 be its lower bound. 

ll Time Formulation for

ber of 

 Ph

hits over all 

 
3 ase II
The LP approach has the objective of minimizin
largest deviation instead of the total deviation. This 
avoids the problem of having an uneven number of hits 
by smoothing out the size of the deviations. We define a 
new decision variable E, which indicates the largest de-
viation from the average number of hits. This is designed 
to provide a smooth visible coverage of the entire terrain. 

Problem 2: Dwell Time LP 

MinZ E  

;j

s.t. 

x S j      

 
 

1 1

; 1
q K

j
j q K

   

,

         (6) 

x T q q


   

 

;p pe e E p     

Q 

   

 

   

       (7) 

      (8) 

,
1

,
1

;j p
p j 1

1 M

j j p p p
j

M N

jx v e e
N

 

 

    x v

 p     (9)  

,j j p
1 1

1 N M

p j

x v L
N  

        (10)     

0jx j  ; pe , 
irem

0pe p   ; 
ent that 

0 . E
The requ jx , the dwell time, is bounded 

from above by S leads t onstraint (6). Constraint (7) 
insures dwell plus movement time along a single route 
must not exceed T. Let 

o c

pe  and pe  respectively repre-
sent the under and over viewing ror of point p with 
respect to the average number of hits. As error values are 
complementary in any solution, constraint (8) insures 

that the minimal E will equal the maximal deviation. 
Considering these deviations as non negative variables 
we obtain 

er

p p ph e e h    . After appropriate substitu-
tions this ca en as (9). To avoid a solution 
in which all dwell times are set to zero, thus ensuring the 
minimal possible deviation, we add constraint (10) such 
that the average number of hits must exceed a given 
positive value L. The problem can be considered as a 
dual objective problem. Where the first priority is to 
maximize the average number of hits (this is in effect the 
same as the total number of hits), and the second priority 
is to minimize the largest deviation E (which smoothes 
the visible coverage over the terrain). The solution pro-
cedure is to perform a right hand side ranging on con-
straint (10) by increasing L until an infeasible solution is 
reached, and using this max value of L solve Problem LP 
to minimize E so as to smooth the coverage. 
 

n be fully writt

.5. Illustrative Example Using CF-PS 

 
o illustrate the methodology we use a small terrain, 

3
Methodology  

T
called the Dimona map, containing a 23 × 21 grid of 483 
cells (considered as points), with each cell is of size 
50 50m m . The problem is to schedule two observers 

to the parameters: 1) the planning horizon is 
3600 seconds, 2) the observation time must not exceed 
1200 seconds, 3) every observer must change its location 
3 times, 4) the minimal distance between two consecu-
tive observation points is 200 m, and 5) the starting point 
is {0, 0}. We solve the problem using four different sets 
of observation points (found by the four heuristics sug-
gested in section 3.2).  
 

according 

3.5.1. Solution 
ically illustrates the four different solu-Figure 3 graph

tions, each containing two routes passing through 6 ob-
servation points. The observation points in (a) and (b) 
are found using COVER1 and COVER2 heuristics re-
spectively. The observation points in (c) are found using 
GA, and those in (d) are found using Garland and Heck-
bert’s triangulation. The VRP heuristic was used on each 
set in order to determine the best two routes (for the two 
observers) that pass through all 6 points. The routes were 
found by the modified Clarke and Wright’s savings algo-
rithm for each of the four sets. The routes of observers A 
and B are marked using dashed white and black lines, 
respectively, with observation points indicated by the 
tags. Tables 1-4 record the coordinates of the observa-
tion points and associated dwell times of each. In addi-
tion the overall total travel and observation times of each 
observer are given. At the bottom of each table are the 
performance measures in terms of hits.    
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(a)                                              (b) 

 

 
(c)                                              (d) 

Figure 3. Final routes for CF-PS  covering points determined by: (a) 

.5.2. Discussion of Solution 
l number of points hit in 

travel time takes a relatively small amount of the time 

 example, for two observers and four different initial
COVER1, (b) COVER2, (c) COVERGA, and (d) COVERTIN. Observer A and B’s locations are labeled A1-A3 and B1-B3 and 
connected with a white and black dashed lines, respectively.  
 
3
Tables 1-4 show that the tota
solutions (a), (b), and (d) is smaller than the total number 
of points hit in solution (c). We can see that even though 
the total number of hits in solution (c) is relatively large, 
its maximal deviation is the smallest. This implies that a 
good initial set of observation points (found in phase I), 
which together cover a large area of the terrain, is im-
portant when trying to reach a uniform hits distribution. 
Solutions (a) and (d) have a larger total travel time be-
tween observation points (opposed to solutions (b) and 
(c)), leaving less time for observation. Thus, these solu-
tions have much lower numbers of hits. Even though 

horizon (approx 5%) as opposed to dwell times (approx 
95%), the exchange of a unit of travel time for observer 
time has a very large impact on the number of hits (the 
area observed increases). Therefore it is important to find 
solutions with low travel time. Note that 100 percent 
coverage of all 483 points is not attained. Here using 6 
observation points from 65 to 94 percent coverage is 
achieved. In section 5 it is shown that to achieve 100 
percent coverage, from 12 to 37 observation points (2.4 
to 7.7 percent of the total points in the terrain) are needed, 
depending on the covering heuristic used.  

Though the above solutions are very different, they all    
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 solution using COVE

r B 

Table 1. Sample R1 for phase I—Figure 3(a). 

Observer A Observe
Observation point 

(Y) dwell time (Y) dwell time (X) (X) 

1 3 6 1058 2 20 959 

2 16 7 1200 3 11 1200 

3 18 13 1198 20 16 1200 

Total tr l time 

To e 

To 423 % of points hit: 87.5 

]  

2 107 

ave 144 244 

tal observation tim 3456 3356 

tal number of points hit: 

Total number of hits: 1,319,504 Range of hits: [0,6766

Average number of hits: 2731.89 Maximal deviation: 4034.

 
Table 2. Sample solution using COVER2 for phase I—Figure 3(b). 

r B Observer A Observe
Observation point 

(Y) (X) dwell time (Y) (X) dwell time 

1 12 19 1027 7 8 1200 

2 18 16 1200 16 7 1200 

3 14 20 1200 12 20 1027 

Total tr l time 

To e 

To 387 % of points hit: 80.1 

]  

4 554 

ave 173 173 

tal observation tim 3427 3427 

tal number of points hit: 

Total number of hits: 1,899,424 Range of hits: [0,6854

Average number of hits: 3932.55 Maximal deviation: 3932.

 
Table 3. Sample solution using COVERGA for phase I—Figure 3(c). 

r B Observer A Observe
Observation point 

(Y) (X) dwell time (Y) (X) dwell time 

1 4 20 1200 2 1 1084 

2 12 20 1200 12 8 1200 

3 20 18 991 15 1 1200 

Total tr l time 

To e 

To 457 % of points hit: 94 

75]  

8 521 

ave 209 116 

tal observation tim 3391 3484 

tal number of points hit: 

Total number of hits: 1,535,205 Range of hits: [0,68

Average number of hits: 3178.47 Maximal deviation: 3696.
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le solution using COV e 3(d). 

 B 

Table 4. Samp ERTIN for phase I – Figur

Observer A Observer
Observation point

(Y) dwell time (Y) dwell time 
 

(X) (X) 

1 4 18 1200 16 7 1200 

2 10 20 1016 8 17 1004 

3 17 11 1200 4 20 1200 

Total tr l time 

To e 

To 315 % of points hit: 65.2 

]  

2 387 

ave 184 196 

tal observation tim 3416 3404 

tal number of points hit: 

Total number of hits: 1,091,393 Range of hits: [0,6811

Average number of hits: 2259.61 Maximal deviation: 4551.

 
ow a rep er focuses on a 

  

.1

y contains three phases, starting with a 

presentation of the  

sh
d

eating pattern. Each observ
ifferent part of the area. This strengthens the idea that 

another methodology can be applied here as well. This 
method would first divide the area between the observers 
(such that each one will have its own region), and then 
create a route for each observer within its own region. 
This method starts with partitioning and then finds a 
covering route for each region, and therefore, it is classi-
fied as “partition first, cover second”. This solution 
methodology is discussed in the next section. 
 
4. The Partition First, Cover Second

(PF-CS) Heuristic 
 

. Overview 4
 
This methodolog
terrain triangulation of a given resolution, partitioning it 
into Q regions, one for each observer. In phase I area 
partitioning is done starting with a triangle irregular 
networks (TINs), where the basic primitives are the tri-
angles. Initial creation of this triangulation is done using 
Garland and Heckbert’s Algorithm [14] and is based on a 
desired resolution level. We create a partitioning of the 
area into Q sub areas (comprised of contiguous triangles), 
one for each observer. In a second phase, K points in 
each region are found which provide the maximum visi-
ble cover and then a route for every region is created. 
The observation times at each point on the routes are 
determined using a LP in the third phase. Once there are 
Q routes, we solve LP dwell time problem to find the 
dwell times for each observer at each observation point. 
Figure 4 provides a flowchart of the methodology. 
 
4.2. Phase I—Area Partitioning 
 
Partitioning starts with a given TIN re

 

Figure 4. Flow chart of the PF-CS methodology. 
 
terrain, with n triangle primitives, denoted as . Trian-
gles are combined to form a “Q-partition”. A Q artition 

T i h 

T
-p

of 
th

s comprised of Q subsets 1, , , ,i QT T T   of T suc
at; iT T  and i jT T   ,i j . The area partition 

problem is to find a T-partition of T such that the areas of 
subsets iT  are close to equal. In addition, all the trian-
gles in T  are contiguous, such  triangles 
share a common side. A Q-partition may be obtained 
through an iterative process, starting with n triangles and 
joining c tiguous triangles until there are Q continuous, 
non-empty regions such that each region contains a finite 
number of triangles from the original TIN. To cover a 
region containing n vertices, at most  

i

on

 that any two

1 2n     of its 
vertices are used. Figure 5(a) shows a narrow region 
containing 18 triangles. Note, that only the vertices 2, 4, 
6 and 8 are needed to cover this region. Figure 5(b)  
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(a) 

 

 
(b) 

Figure 5. (a) A narrow region; (b) The use of vertices as 
observation points.  
 
shows a 3D TIN representation of a small map contain-

ons with the same area are allowed 
5], and therefore a heuristic is needed. However, for 

he balanced area partition problem can be formulated as 
g binary 

variab ed 
to  0 ot

ing 70 vertices. The partition problem is NP-Hard even 
when only two regi
[1
small problems a binary integer formulation is proposed. 
 
4.2.1. Binary Integer Linear Programming  

Formulation of the Balanced Area Partition 
(BAP) Problem 

T
a 0-1 integer programming problem by definin

les , 1i jx   if triangle  1, ,j j n   is assign
 1, ,i Q  , andiT herwise. Let ja  represent 

the area of triangle j, iA  the area of iT , such that  

,i j i j
j

A a x  ; i  and A the area of T. Let  ,TA i j   

be ency indicator, equal to 1  triangles i 
and j are adjacent, an 0 otherwise. he following is 

a triangle adjac if
d T a 

formulation f mi  E from
the balanced area state 

or nimizing the largest deviation  
A Q

,
1

;j i j i i
j

a x e e A Q i



n
            (11) 

;i ie e E  i                (12) 

, ,
1

, ; ,
n

i j i k
k

x TA j k x i j


           (13) 

, 1;
Q

i j
i

x j                (14) 

 , 0,1 ,i jx i j  ; ,i ie e i  ; 0E  . 
Note that ei

 , ie  are the deviation errors which can 
be shown to limentary. Constraint 
the target area w he actual area
ment . Co 12) states that the deviation error is 

E. C strain 13) states that if a 
tri

in

angles attached to 
at vertex, and iteratively adds vertices to that region 

this 
occur he region growing 

be

nstra
a
ssig

 comp
ith t
int (

x error 
ed

(11) compares 
 of each partition ele-

iT
below the m

ai

on t (
angle j is a n  to iT  then it must be adjacent to at 

least one of the other triangles assigned to iT . This in-
sures that the set of triangles in any iT  are contagious. 
Constr nt (14) insures that each triangle j is assigned to 
exactly one triangular subset iT . Note that the problem 
does not consider the “compactness” of the triangular 
subsets, and thus long narrow subsets may be obtained. 
Because integer nonlinear programm g problems re-
quire long solution times we propose the following fast 
heuristic to determine the Q-partition. 
 
4.2.2. A Greedy Algorithm for the Balanced Area 

Partitioning (BAP) Problem 
The greedy area partitioning heuristic starts with a single 
vertex, creates a region from all the tri
th
until either of two conditions is violated. When 

s a new region is established. T
stopping conditions are: 1) the area of the region must 
not exceed the area of the terrain divided by the number 
of observers (balanced area), and 2) the distance between 
the two furthest points within each region must not 
exceed a predefined distance (this avoids long narrow 
regions). The triangulation T is represented as a graph 

{ , }G V   where, V is the set of vertices, and   is the 
set of arcs. Let NA be a node adjacency matrix n n  
matrix with common element , 1i j   if vertices i and j 
are adjacent (both vertices appear in the same triangle), 
and 0 otherwise. Let tiV  represent a set of all triangles 

o vertex i. Let  iconnected t A V  represent the al area 
of the triangles attached to vertex i. The BAP algor  
can be shown to be polynomial r  2O n . 

The BAP algorithm 
1) Calculate 

tot
ithm

 of orde

 iA V or every vertex i V . Sort the 
vertices in descending order   i

 of the Q-partition. 
Problem 3: Balanced area partition integer program  

MinZ E  

s.t. 

 f
 of A V . Let 1j   and 

let c be the first vertex in the list. 
2) Add vertex c to region jT . a) Delete vertex c from 
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th rtex i V , if t c tiV V 
V  

e list. b) For every ve , de-
cr on triease the comm angle's areas out of Ai such that; 
     i i t i t cA V A V A V V   , i . 

ng
c) 
 o

So list o
rder according to 

rt the f the 
remaining vertices V in decreasi
 iA V . d) Find the next verte  in V which is a neighbor 

of one of the vertices in the current regi
x c

on jT , and 
tex 

adds 
the largest area to the region, i.e. find a ver c such that, 

  , k jv .  
3) If at least one of the above mentioned two condi-

s violated, then a new region is established. Let 
1j j  . Find c, among unassigned vertices, with the 

max area:  

arg

tions i

1i i kc Max A V T   

 argc Max A V v V  . Go to step 2. i i

V4) Repeat steps 2 and 3 until 

n of the region provi Q
, a

. 
 

 

In

4.3. Phase II—Finding Covering Routes 

The partitio  smaller probledes 
 K

ms. 
 each we need to locate only nd not M Q K   

 sec-obser

m

resent

 

vation points using the 

 instead of the Q vehicle g

Methodology 

ate the methodology we 
ed in Figure 3 and th e

COVER

 routin

e sam

Table 5.

1
ob-

 p  the 

a

 terrain 
of the 
uristic 

fter performing the partitioning into two regions we get 
shown in Figure 6(a). Observer A is 

he terrain was divided into the two regions presented in 
er A to the north-western 

 

 A sam the

Observer B 

 heuristic (see
ing pr

roblem as in

ints with 

use the same
 assumptions 

P he

ple solution using 

tion 3.2.1), and then solve a single vehicle rout
le
previous approach. The routing problem becomes one of 
a simple shortest path problem through K po  
given start point and an open end point.  
 
4.4. Phase III—Assigning Dwell Times 
 
After creating the routes, the LP dwell time problem is 
solved.  

over a triangulation with a 5 m level of accuracy. In 
phase II the COVER1 heuristic is used in each region to 
find the location of the 3 observation points, followed by 
the use of the modified savings algorithm to find the 
route through each set of points in each region. Phase III 
uses the dwell time LP in order to determine the observa-
tion time at each observation point.  
 
4.5.1. Solution 

Observer A 

A
the two regions 
assigned to the area colored gray and observer B is as-
signed to the area colored white. To help the reader visu-
alize the triangulation, a picture of the terrain from the 
same view point is given in Figure 6(b). The covering 
points found and the two routes through them are shown 
in Figures 6(c) and (d). The labels in the figures show 
the covering points, and the routes of observers A and B 
are indicated by the dashed white and black lines, re-
spectively. Table 5 shows the coordinates of the obser-
vation points and their associated dwell times. In addi-
tion the total travel and observation times of each ob-
server are given. At the bottom of each table are the per-
formance measures in terms of hits. 
 
4.5.2. Discussion of Solution 
T
Figure 6(a), assigning observ
region, and observer B to the eastern region. Table 5 
shows that the total number of points hit in this solution 
(and therefore the % of area covered) is better than in 
solutions 6(a), (b), and (d) for the previous CF-PS exam-
ple, but yet its maximal deviation is larger. One can see 
that the dwell LP worked as it did seem to push down the 
deviation above the mean 6859 – 4075 = 2784. The max 
dev of 4075 is the same as the mean, meaning it occurred 

 area partitioning methodology. 

 
4.5. Illustrative Example Using PF-CS 

 
To illustr
p
CF-PS example. Phase I uses the greedy BA

Observation point 
(Y) (X) dwell time (Y) (X) dwell time 

1 10 13 1200 8 1200 1 

2 

Total tr l time 134 

Total obse tion ti 3393 3466 

Total 36 % of points hit: 90.2 

To 430 Range of hits: [0,6859]  

4 75.424 

13 20 1200 15 1 1066 

3 4 20 993 16 8 1200 

ave  

me 

it: 4

,

207 

rva

number of points h

tal number of hits: 1,968

Average number of hits: 4075.42 Maximal deviation: 40
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(a)                                                 (b) 

 

      
(c)                                                (d) 

Figure 6. Partitioning of the map into two regions, an esultant routes for PF-CS example. (a) TIN represe tation of the 
terrain and its partition into two regions; (b) anothe of the partition; (c) final routes and observation p ints; (d) 3D 
visualization of the solution.  

 high (each point was seen 
075 times or seconds on average) which is good, as it 

 
everal tests were conducted to compare the quality of 

r the VACS problem using both 
F-PS and PF-CS decomposition heuristics. The tests 

were tested; 1) Dimona map, grid = 23 × 21, terrain area 
= 1 × 1 km, 2) Modiin map, grid = 61 × 61, terrain area = 

d the r n
r view o

 
between 0 hits (points not seen) and the mean 4075. This 
is because the mean was very

of maps, differing by size and topographic structures, 

4
implies the total number of hits was also very high. 
 
5. Performance Comparison of CF-PS and 

PF-CS Decomposition Methods 
 
5.1. Test Parameters 

S
the solutions achieved fo
C
examined the solutions found by the methodologies for 
three maps and two scenarios, using 4 and 3 different 
versions of the CF-PS and PF-CS methods, respectively. 
This resulted in a total of 42 test cases. The performance 
of both methodologies was evaluated by function (1), 
which represented the total visibility of the terrain by all 
observers, penalized for multiple coverage. Three types 

3 × 3 km, 3) Valley of Elah map, grid = 81 × 82, terrain 
area = 4 × 4 km. Figure 7 shows the terrains, where con-
tour lines are 10 meters apart. The various grid sizes rep- 
resent up to a 400 Percent scale up of the problem size. 
For the CF-PS method the original rectangular grid point 
height representation of the terrain is used. Four covering 
versions are tested (COVER1, COVER2, COVERGA and 
COVERTIN) for this method. For the PF-CS method the 
grid height maps are converted to TIN representations. 
Three different TIN versions are tested, each represent-
ing different approximations of the terrain. These are 
denoted as TIN5, TIN10 and TIN20 for approximations 
of 5 m, 10 m, and 20 m levels of accuracy. 

Observation missions can have different objectives 
according to different scenarios. This can have a large 
effect on the desirable number of relocations and the 
allowable observation dwell times. We chose to examine 
the two following scenarios:    
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(a)                                     (b)                                       (c) 

Figure 7. 3D contour maps of the three tested terrains. 
 

First scenario:
territory to locate an object (such

he observers must visibly cover t
p

 

 
tly a different partitioning dif-

re obtained. The performance value 

 
-

observer and their obser-
) represents the solution 

ined by solving problem LP. The 
VA and the LP was solved     

 Observation teams are sent to enemy 5.2. Test Results 
 as a crashed aircraft). 
he entire terrain while 

 
Table 7 presents the test results using CF-PS and PF-CST

s ending limited time at any location. Every point must 
be viewed just enough to determine if the object exists. 
An observer must move so the distance between loca-
tions exceeds a minimum distance to avoid detection. 
This type of scenario dictates the use of many observa-
tion points (for complete coverage) without spending too 
much time in each. Thus, the maximal dwell time S at 
every observation point is relatively small. 

Second scenario: Several observation teams are in 
enemy territory looking for rocket launchers. Rockets 
can be launched from almost any point within the terrain 
at any time. Since rocket locations are unknown, it is 
desirable for observers to use large coverage points for 
quick detection of launchers. Here also the team’s moves 
must exceed a minimum distance. This type of scenario 
dictates the use of fewer observation points spending a 
relatively large time at each, such that large areas will be 
visible. The maximal dwell time S should be relatively 
large.  

Table 6 presents the values for; Q- the number of ob-
servers for each map, K- the number of observation 
points for each route, S- the maximal allowed observa-
tion dwell time in seconds at each observation point, d- 
the minimal distance between every two consecutive 
points, and T- the planning horizon. Note that more ob-
servation points were used for the larger sized terrains 
and for the first scenario. 

In addition, a sensitivity analysis was made (using the 
CF-PS method, and the Dimona map) to study the affect 
of the number of observation points on the percent of 
area (terrain points) covered. Finally, all of results were 
subjectively evaluated by soliciting the opinion of sev-
eral experts in the field. 

methodologies (values = 1st scenario/2nd scenario). Since 
the 3 versions of the PF-CS correspond to three TIN ap-
proximations with a different number of triangles and

uenvertices, and conseq
rent solutions wefe

was calculated using the objective of the VACS problem 
(Equation (1)). This function sums the total number of 
viewable points within the terrain to all observers (not 
including overlaps) throughout the entire planning hori-
zon, giving an exponentially decreasing contribution 
(starting from 1 and going to 0) to each visible point ac-
cording to the number of times it was previously seen. 
 
5.3. Two Sample Solutions 
 
Figure 8 illustrates the solution using both methodolo-
gies for a 16 km2 terrain of the Valley of Elah (the area in 
which David confronted Goliath). There are three observ-
rs, each changing its location 3 times. The labels indie

cate the order of visits of each 
ation time (sec.). Figure 8(av

achieved by the CF-PS methodology using COVERGA 
for phase I. Figure 8(b) represents the solution achieved 
by the PF-CS methodology based on a TIN with a 5 m 
level of accuracy. 
 
5.3.1. CF-PS (Figure 8(a)) 
The set of covering points was selected using GA (Phase 
I) which was found to give good visual coverage. In 
Phase II the routes where generated using the modified 
savings algorithm In Phase III the observation dwell 

mes where determti
code was implemented in JA
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Table 6. Test parameters for all maps and scenarios (table values are 1st scenario/2nd scenario). 

Map Q K S d T 

Dimona 2/2 5/3 600/1200 200/200 3600/3600 

M 600 00 40 00 720 00 

Va h 

odiin 3/2 5/4 /18 0/4 0/72

lley of Ela 3/3 8/3 600/2400 500/500 7200/7200 

 
F-PS and PF-CS (col 4 and 5 values are for 1st nd scenario)

Performance Value* 104 No. observers, No. points Version Method Map 

Table 7. Results for C  scenario/2 . 

21.6/51 2.10/2.6 COVER1 

19.1/50.6 2.10/2.6 COVER2 

24.5/61.6 2.10/2.6 COVERGA 

C  

PF-CS 

Dimona 

1  COVER1 

2  COVER2 

COVERGA 

C  

CF-PS 

PF-CS 

Modiin 

COVER1 

COVER2 

COVERGA 

C  

CF-PS 

PF-CS 

Valley of Elah 

14.3/29.4 2.10/2.6 OVERTIN

CF-PS 

23.4/60.5 2.10/2.6 TIN 20 

23.5/62.8 2.10/2.6 TIN 10 

23.8/62.9 2.10/2.6 TIN 5 

97.7/484.23.15/2.8 

36.9/527.33.15/2.8 

292.7/716.5 3.15/2.8 

186.6/358.2 3.15/2.8 OVERTIN

275/645.5 3.15/2.8 TIN 20 

290/673.4 3.15/2.8 TIN 10 

285.6/642.9 3.15/2.8 TIN 5 

409.6/1426 3.24/3.9 

423.5/1451 3.24/3.9 

569.6/2024 3.24/3.9 

507.3/1810 3.24/3.9 OVERTIN

555.9/1896 3.24/3.9 TIN 20 

566.3/1946 3.24/3.9 TIN 10 

566.2/1946 3.24/3.9 TIN 5 

 
using Matlab. This solution pr  a clear area
tioning between the observers. Observer C moves along 

e western ridge (advancing from south to north), which 

5.3.2. PF- (Figure 8(b)) 
In Pha  area was part the three regions 
for a terrain triangulation of 5 m accuracy. In Phase II 

h observer focuses on a re-
s sent to the north-western    

oduces  parti-

th
visually covers the entire valley and most of the gorges 
which flow from east to west. Observer B covers the 
southern part of the terrain moving from west to east. 
Observer A covers the northern side of the terrain with 
its deep gorges, which are not visible from the western/ 
southern ridge. 

the observation points in each region were selected using 
a greedy SCP heuristic, and the routes which pass through 
them were generated using the shortest path algorithm. 
Phase III also used the LP problem. In this solution we 

CS 
se I the itioned to 

can see once again that eac
stricted region. Observer A i
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(a)                                                          (b) 

Figure 8. Two sample solutions using: (a) CF-PS , (b) PF-CS. 
 
part, Observer B is responsible on the eastern part, and 
observer C is sent to the s
 

.4. Sensitivity to the Num

of the subset of 
83 

 on 
e t of terrain grid points seen at least once 

n teams in 
cated the solutions included ex-
nts and routes providing good 

o a 400 Percent scale up of the problem size. 

Comparison of the performance values across problem
es are inflated for larger size 
 that for the CF-PS method 
rithm covering approach re-

ulted better performance for all scenarios and maps. The 
were considerably larger 

guided by a total 

   

outhern part. size is not valid as the valu

5 ber of Observation 
terrains. The results show
(Table 7) the Genetic Algo

Points 
 

e also examined the effect of the size W
candidate observation points, M, taken from all 4
points of the grid representation of the Dimona map

otal percent th
(percent of area covered by the observation points). This 
was done using the four covering heuristics of CF-PS 
method while varying the number of observation points 
M from 1 to 483 as shown in Figure 9. 
 
5.5. Expert Opinion 
 
Solutions were presented to two military experts, who 

here responsible for placing observatiow
combat zones. Both indi
ellent observation poic

coverage, and that computerized methodologies were 
very helpful. They indicated that determining the loca-
tion of observation points and the routes between them is 
time consuming when done manually, and until now 
there had not been a method to establish the quality of a 
solution. 
 
5.6. Discussion of Results 
 
Results using three terrains of various grid sizes repre-
sented up t

 

s
computation times, however, 

r this approach. This is because it is fo
area coverage objective, and maintaining a population of 
solutions at each iteration. For the PF-CS method, per-
formance varies depending on the terrain, but in general 
finer resolutions of the TIN resulted in higher perform-
ance. Independent of the method, the 2nd scenario per-
formance times are larger than those in the 1st scenario 
for the Dimona and Modiin maps. This is expected be-
cause the allowable dwell time at the observation points 
are 2 to 3 times longer than in the 1st scenario, so the 
good visibility positions provide more hits on each visi-
ble point. This was not true, however, for the Valley of 
Elah map. The many irregularities defeated the advan-
tages of long dwell times, as there were fewer opportuni-
ties to view large areas from single observation points. 
When comparing the best solutions of both methods the 
CF-PS method was slightly better. However, because of 
the increased computation time we suggest that the 
PF-CS method with the finer terrain TIN approximation 
be used. This method is faster as partitioning the terrain 
into separate regions for each observer, provides smaller 
coverage and routing problems. The GA version took 
from 13 to 180 minutes to run, while all other methods 
took from 4 to 20 minutes. The code for all methodolo-
gies was written in Visual Java 6, and was not optimized. 
All calculations were performed on a Pentium 4 PC with 
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Figure 9. Percentage of area covered by M observation points. 
 
3 MHz speed and RAM of 512 megabytes. Sensitivity of 
the number of observation points to the total number of 
terrain points covered depicted the classical notion of 
decreasing returns to scale, increasing in a convex man-
ner as the number of points w

 100 percent coverage was attained by using 4.9, 6.2, 

d partition first, cover second (PF-CS). 
ethods to decompose this Np-Hard 
ain phases. Comparative tests were 

ade for the two methods on real terrains. When com-

Several solutions were presented to two military experts, 
which where responsible for placing observation teams 
in combat zones. Both experts found the solutions in-
cluded excellent observation points, with good coverage 

terized methodologies were 
very helpful. They indicated that determining the loca-

 the Art Gallery 
Problem,” Proceedings of 31st International Confer- 

ics and Interactive Techniques 
 August 2004. 

as increased. Convergence routes, and that the compu
to
2.7 and 12.6 percent of the terrain points as observation 
points for the COVER1, COVER2, COVERGA and 
COVERTIN, respectively. The best results were for the 
COVERGA, where by using 13 observation points (only 
2.7% of the points in the terrain) 100 percent coverage 
was achieved.  
 
6. Conclusions  
 
This paper defined a VACS problem and provided two 
decomposition methodologies: cover first, partition sec-
ond (CF-PS) an
Both use heuristic m
problem into three m
m
paring the best solutions of both methods the CF-PS 
method was slightly better. However, because of the in-
creased computation time we suggest that the PF-CS 
method with the finer TIN terrain resolution be used. 
This method is faster as partitioning the terrain into 
separate regions for each observer, provides smaller 
coverage and routing problems. A sensitivity analysis of 
the number of observation points to the total number of 
terrain points covered depicted the classical notion of 
decreasing returns to scale, increasing in a convex man-
ner as the number of points was increased. The best 
method achieved 100 percent coverage of the terrain by 
using only 2.7 percent of its points as observation points. 

tion of observation points and the routes between them is 
time consuming when done manually, and until now 
there had not been a method to establish the quality of a 
solution. The method can easily be adapted to consider a 
decreased value of viewing points farther away from the 
observation point. Also, the method can handle impor-
tance weights given to various areas or points in the ter-
rain. The methodology developed can be applied to ci-
vilian search operations such as downed planes/lost hik-
ers in remote areas. Also, non dynamic versions of the 
problem have applications to telecommunication prob-
lems such as wireless network coverage.  
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