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Abstract 

In accordance with the distributive traits of semiprimes’ divisors, the article 
proposes an approach that can find out the small divisor of a semiprime by 
parallel computing. The approach incorporates a deterministic search with a 
probabilistic search, requires less memory and can be implemented on ordi-
nary multicore computers. Experiments show that certain semiprimes of 27 to 
46 decimal-bits can be validly factorized with the approach on personal com-
puter in expected time. 
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1. Introduction 

A semiprime is an odd composite number N that has exactly two distinct prime 
divisors, say p and q, such that 3 p q≤ < . Factorization of the semiprimes has 
been a difficult problem in mathematics and computer science, especially facto-
rization of a RSA number that is a large semiprime, as introduced and over-
viewed in articles [1] [2] [3] [4] [5]. Let k q p=  be the divisor-ratio of the se-
miprime N pq= ; article [6] discovered the genetic property of the odd integers 
and proved that the small divisor p can be calculated by finding the greatest 
common divisor (GCD) with an odd integer that lies in an odd interval 0I  that 
is determined by N itself; article [7] further pointed out that, by taking k to be a 
variable quantity, algorithms could be designed to factorize big semiprimes by 
parallel computing and the article also demonstrated a deterministic approach to 
factor the RSA numbers; article [8] recently made a further investigation on k’s 
influence to the distribution of p, showing that the interval 0I  is a cover of fi-
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nite subintervals each of which is determined by a k and every two adjacent ones 
of which are linked with their unique common end. This means that p can be 
surely found out with a k-subdivision approach. Following such an idea, this 
paper makes an investigation on the new algorithm design for searching the odd 
integer that has GCD with N. As a result, an algorithm that incorporates a deter-
ministic search with a probabilistic search is designed. This paper presents the re-
lated consequences. Section 2 lists the preliminaries for the later sections; Section 3 
proves the mathematical foundations for the new algorithm; Section 4 introduc-
es the new algorithm as well as its designing strategy and numerical experiments. 

2. Preliminaries 

This section lists the preliminaries that include definitions, symbols and lemmas, 
which are necessary for later sections. 

2.1. Symbols and Notations 

In this whole article, a semiprime N pq=  means p and q are both odd prime 
numbers and 3 p q≤ < . An odd interval [ ],a b  is a set of consecutive odd 
numbers that take a as the lower bound and b as the upper bound; for example, 
[ ] { }3,11 3,5,7,9,11= . Symbol x    is the floor function, an integer function of 
real number x that satisfies 1x x x≤ < +       ; symbol GCD means the greatest 
common divisor; let 0m > ; then b

me , p
me , q

me  and 0
me  are defined by 

( )11,2 1
2 1m

b m
m m

e N N−+ −
= = −  

2p m
me N p= −  

2q m
me N q= −  

0 12 1
2

b
m m

Ne e
  +

= − −      
 

Symbol 
2
BA∆ = , which was defined in [8], means A is half of B. 

2.2. Lemmas 

Lemma 1. (See in [8]) Suppose N pq=  is an odd composite number and 

1qk
p

 
= ≥ 
 

; then ,p kl kr
m m me e e ∈   , where 2log 1m N= −   ,  

12 1 1
2

kl b
m m

Ne e
k

   
 = − + −        

, 12 1
2 1

kr b
m m

Ne e
k

  
= − +   +   

 and  

2 1b m
me N= − . 
Lemma 2. (See in [8]) Suppose 1N >  is an odd integer and 1 2k k<  are 

positive integers. Let 
1

1

1 1 1
2 1k

Nls
k

  
= + +   +   

, 
2

2

1 1 1
2 1k

Nls
k

  
= + +   +   

, 

1
1

1 1
2k

Nlb
k

  
= +      

 and 
2

2

1 1
2k

Nlb
k

  
= +      

; then it holds 
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1 1 2 2kl kr kl kr
m m m me e e e< ≤ <  

where ( )1
1

2 1kl b
m m ke e lb= − − , ( )2

2
2 1kl b

m m ke e lb= − − , ( )1
1

2 1kr b
m m ke e ls= − −  and 

( )2
2

2 1kr b
m m ke e ls= − − . 
Particularly, when 2 1 1k k= +  it holds 

1 1 2 2kl kr kl kr
m m m me e e e< = <  

Lemma 3. (See in [8]) For arbitrary odd number 1N > , let  

1 1 1
2 1i

Nls
i

  
= + +   +   

, 1 1
2i

Nlb
i

  
= +      

, ( )2 1il b
m m ie e lb= − −  and  

( )2 1ir b
m m ie e ls= − − , where 1,2, ,i ω=   are positive integers; then odd intervals 

,il ir
i m mI e e =    satisfy 

1) 1
ir

i i mI I e+ = ; 

2) 0

1
,

i
r

i m m
i

I e e
ω

ω
=

=

 =  

; 

3) 0

1
,

i
b

i m m
i

I e e
=∞

=

 =  

; as illustrated in Figure 1. 

Lemma 4. (See in [8]) Let 0
1

2
N +

∆ =  
  

 be the length of the odd interval 

0
0 , b

m mI e e =   , i∆  and 1i+∆  be respectively the lengths of the odd intervals iI  

and 1iI +  defined in Lemma 3; then when 
6

1
16
Ni

 
< ≤  

  
, it holds 

1
1
2 i i i+∆ < ∆ < ∆ . 

Lemma 5. (See in [8]) Let 0
1

2
N +

∆ =  
  

 be the length of the odd interval 

0
0 , b

m mI e e =   , 1∆ , 2∆  and 3∆ , be respectively the lengths of 1I , 2I  and 3I ; 

then 1 2 3 0
1
2

∆ + ∆ + ∆ ∆ = ∆  and when 0 26∆ ≥  it holds 1 2 0
1
4

∆ + ∆ > ∆ . 

Lemma 6. (See in [8]) If 3k Nα β ≥   
 for some positive integers 1β ≥  and 

α β> , then k∆  is at most 21
4

Nα α β− 
  

; otherwise it is at least 21 1
4

Nα α β−  −  
 

 

 
Figure 1. Odd intervals’ subdivision and cover. 
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21 1
4

Nα α β−  −  
. Particularly, arbitrary 2α ≥  yields 

2

4k
Nα 

∆ ≤  
  

 for 

3 1k Nα α− ≥   
 and 

2

1
4k
Nα 

∆ ≥ − 
  

 for 3 1 1k Nα α− ≤ −  
. 

Lemma 7. (See in [8]) Let 1 2, , ,I I Iω  be odd intervals defined in Lemma 3;  

then there are intervals that contain at most 
4

4
N 

 
  

 nodes and there are inter-

vals that contain at least 
4

1
4
N 

− 
  

 nodes. 

3. Algorithm Design and Numerical Experiments 

Based on the previous lemmas, theorems and corollaries, one can easily draw the 
following conclusions. 

1) If N pq=  is a semiprime, then there is a term p
me  that lies in the odd in-

terval 0I  and satisfies ( ), p
mp GCD N e= ; 

2) If 0I  is subdivided into a series of subintervals that are defined in Lemma  

3, then p
m ke I∈  with 

qk
p

 
=  
 

, and the bigger k is the fewer nodes are  

contained in kI . Among all the subintervals, 1I , 2I  and 3I  dominate half of  

0I . Lemma 6 shows that, when 3 1k Nα β ≤ −  
 there are at least 

21 1
4

Nα α β−  −  
 nodes in kI . 

These provide a guideline for designing new algorithm for integer factoriza-
tion, as the following subsections demonstrates. 

3.1. Strategy for Algorithm Design 

Now it has gotten to know that finding p
me  out means a successful factorization 

of N pq= . Since p
me  hides itself in one of 1 2, , ,I I Iω , it can surely be found 

out by searching the intervals one by one. Considering by Lemma 7 that there 
are intervals that contain small number of nodes that can be searched in small 
time and there are also intervals that contain too many nodes to be searched 
when N is very big, it is necessary to know which intervals contain small number 
of nodes and which ones contain large number of nodes and then perform a 
brute-force search on the small ones and perform other searches on the large 
ones. Since the brute-force search is a time-consuming process, a Tolerable 
Number (TN) can be defined to be an upper bound of nodes that are sure to be 
searched out in a Tolerable Time (TM), which was introduced in FU’s article [9]. 
Obviously, Lemma 6 indicates that TN can be used to determine α  by  

2

4
NTN

α 
=  
  

 and thus 3 1
0 Nα αω − =   

. Since the number of nodes in Iω  is  

smaller than that in 
0

Iω  if 0ω ω>  by Lemma 6, TN is a critical number for the 
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brute-force search. All the intervals 
0 01 2, ,I Iω ω+ +   can be searched by the 

brute-force search. 
Now it turns to the big intervals 

01 2, , ,I I Iω , each of which contains more 
than TN nodes. It is sure that, applying TN to subdivide each of these big inter-
vals can obtain a series of new small odd intervals and then assigning each of the 
newly-subdivided small subintervals a process in a parallel computing system 
can perform the brute-force search in TM, as tested by FU [9]. However, this 
might require huge computing resources. For example, FU’s approach took 
more than 8 days to factorize a big number of 46-decimaldigits on Chinese 
Tianhe Supper Computer with 392 processes. On the other hand, by Lemma 3, 
there is a big probability to find the objective node when applying a probabilistic 
approach. Thus it is worthy of trying a probabilistic search. 

By now, setting a TN, calculating an α  by 
2

4
NTN

α 
=  
  

 plus an ω  by 

3 1Nα αω − =   
 and imagining varying 

qk
p

 
=  
 

 result in a subdivision of the  

interval 0I  into two kinds of subintervals, the kind of small ones and the kind 
of big ones, as shown in Figure 2. Each of the small ones contains no more than 
TN nodes and can be searched by the brute-force search while each of the big 
ones contains more than TN nodes that need probabilistic searching approaches 
to search. 

Now consider a big odd subinterval I that contains n terms. Suppose the ob-
jective odd number o ps=  lies at the m-th position. Referring to the analysis in 
[10], it knows that, choosing randomly k ( k m< ) terms on the left of o, say 

1, , ,j j j ko o o− − − − − , and their respectively symmetric terms on the right of o, 
namely, 1, , ,j j j ko o o+ + , yields 1 1 ... 2j k j j j j j ko o o o o o ko− − − − − + ++ + + + + + + =  
with 1,2, , 1j m k= − − . Therefore, choosing in I randomly 2k terms and add-
ing the chosen terms might obtain o in big probability, as proved in [10]. With 
the help of multi-dimensional random-number generator, as introduced in [11], 
it is easy to pick 2k random terms in I. Considering the case that o lies near the 
start-position or the end-position of the interval I might fail to pick the neces-
sary number of terms, it is reasonable to make near I’s ends one or more small 
subintervals each of which contain TN of nodes. These small subintervals are 
called TN intervals and they can be searched in TM with brate-force searches. 
The remained part of I is called a probabilistic intervals, as shown in Figure 3. 
Such a subdivision that includes two TN intervals near the ends and a probabil-
istic interval in the middle is called a TNPTN subdivision. With the TNPTN 
subdivision, it is necessary to perform brute-force searches on the two TN inter-
vals and a probabilistic search on the whole interval I. 

3.2. TNPTN Parallel Probabilistic Algorithm 

Based on the strategy for algorithm design stated in previous section, a parallel 
algorithm, which is called TNPTN MPI Algorithm, is designed to find an  
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Figure 2. Subdivision of interval I0. 

 

 
Figure 3. TNPTN subdivision. 

 
objective node objN  that has common divisor p with N pq= . The algorithm 
assumes that k q p=     varies from 1 to an upper bound and assigns for each 
k a process to search objN . It requires initial input data N to be the big semi-
prime, TN to be the number of the maximal steps that a brute-force search per-
forms and a number randN  with randN TN<  to set the number of random odd 
integers that are randomly picked in its searched interval with the mul-
ti-dimensional random-number generator introduced in [11]. It also requires a 
brute-force searching subroutine and a probabilistic searching subroutine to 
perform the operations. 
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3.3. Numerical Experiments 

Numerical experiments were made on a Sugon workstation with Xeon(R) 
E5-2650 V3 processor of 20 cores and 128GB memory via C++ MPI program-
ming with gmp big number library. Several big semiprimes with 27 to 46 decim-
al-digits are factorized, as shown in Table 1. 

4. Conclusion and Future Work 

It is a convention to make a comparison of a new approach to the old ones al-
though, sometime, there is no comparability between two things. Accordingly, 
this section makes comparisons and then prospects some future work. 

It can see from the implementation of algorithms list in previous section that, 
each of the algorithms 1, 2 and 3 needs memory only for storing a few integers to 
be taken into the computation. They cost less memory. Since the whole proce-
dure is a parallel one, the time it costs depends on the resources joining the 
computation. Theoretically, it is at most ( )( )34

22 logO N N  bit-operations  

providing that there is 
4

2
N 

 
  

 process joining the computation. 

Now turn to the old ones. It is known that, ever since John Pollard raised in 
1975 his Pollard’s Rho algorithm, which is a probabilistic algorithm and is effi-
cient in factoring small integers, many algorithms of integer factorization have 
developed. As stated in the introductory section, the GNFS has been regarded 
the fastest approach to factorize big integers under both sequential and parallel 
computing and almost all the factorized RSA numbers are factorized by the ap-
proach with parallel computing. So here the new approach is merely compared 
to the Pollard’s Rho approach and the GNFS approach. 
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Table 1. Experiments on some big semiprimes. 

Semiprime bits Divisors Time(s) 

N1 = 521900076822691495534066493 27 15098125637513 20134.371596 

  34567209821461  

N2 = 63281217910257742583918406571 29 125778791843321 22487.545370 

  503115167373251  

N3 = 194920496263521028482429080527 30 289673451203483 326720.128666 

  672897345109469  

N4 = 2400000000000001550240000000000042854447 40 37678804836791 236949.403121 

  63696287883753452357619017  

N5 = l4272476927059598804393l594750096l98971949056l 46 2305843009213693951 336797.313147 

  618970019642690137449562111  

 
First compare with the Pollard’s Rho approach. From the point-view of mem-

ory cost, the new approach is like the Pollard’s Rho approach that costs less 
memory. From the point-view of time consumption, the two are almost the same 
efficiency according to the experiments in articles [6] and [12]. However, as 
pointed out in article [13], the Pollard’s Rho approach cannot be parallelised. 
Actually, this article is the first one that proposes a parallel probabilistic ap-
proach in factoring integers. 

Next compare with the GNFS approach. The GNFS approach is a determinis-
tic one that can be parallelised. As article [14] has pointed out, GNFS requires a 
large amount of memory. Hence from the point-view of memory cost, the new 
approach is superior to the GNFS. From the point-view of time consumption, 
the comparison cannot be available because the new approach has not been ap-
plied on the many computers as the GNFS used in factoring large RSA numbers. 
Nevertheless, it can see from the experiments of factoring the 46 decimal bits 
semiprime that, one computer of 20 cores can factorize it in 3 days. 

There is another approach stated by Kurzweg U H [15]. Seeing from his series 
of Blogs, one can see that Kurzweg actually tried to find out ( )Nφ  to factorize 
the semiprime N. The idea was early seen in chapter 6 of YAN’s book [1]. Ac-
tually, it is quite occasional for Kurzweg’s to factorize the numbers he reported 
because he has not brought an approach that finds out ( )Nφ  inevitably. 

By now it can see that, the approach raised in this article is surely worthy of 
investigation because it is truly derived from the theorems and corollaries that 
are proved mathematically. In spite that the new approach is less of successful 
cases of factoring the RSA numbers, it does factorize many odd integers as many 
old approaches did in the history. As a new approach, it leaves of course quite a 
lot of researches to improve and perfect. For example, the probabilistic searching 
procedure is very rough and needs improving, and the time complexity of the 
algorithm has not be evaluated till now for its probabilistic trait and also for the 
authors’ limitation of the required knowledge. This points out the study of the 
future work. Hope it is concerned more and successful in the future. 
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