
American Journal of Computational Mathematics, 2018, 8, 175-183
http://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211
ISSN Print: 2161-1203

DOI: 10.4236/ajcm.2018.82013 Jun. 29, 2018 175 American Journal of Computational Mathematics

A Parallel Probabilistic Approach to Factorize a
Semiprime

Jianhui Li1,2

1Department of Computer Science, Guangdong Neusoft Institute Foshan City, Foshan, China
2State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, China

Abstract

In accordance with the distributive traits of semiprimes’ divisors, the article
proposes an approach that can find out the small divisor of a semiprime by
parallel computing. The approach incorporates a deterministic search with a
probabilistic search, requires less memory and can be implemented on ordi-
nary multicore computers. Experiments show that certain semiprimes of 27 to
46 decimal-bits can be validly factorized with the approach on personal com-
puter in expected time.

Keywords

Parallel, Probabilistic, Integer Factorization, Semiprime

1. Introduction

A semiprime is an odd composite number N that has exactly two distinct prime
divisors, say p and q, such that 3 p q≤ < . Factorization of the semiprimes has
been a difficult problem in mathematics and computer science, especially facto-
rization of a RSA number that is a large semiprime, as introduced and over-
viewed in articles [1] [2] [3] [4] [5]. Let k q p= be the divisor-ratio of the se-
miprime N pq= ; article [6] discovered the genetic property of the odd integers
and proved that the small divisor p can be calculated by finding the greatest
common divisor (GCD) with an odd integer that lies in an odd interval 0I that
is determined by N itself; article [7] further pointed out that, by taking k to be a
variable quantity, algorithms could be designed to factorize big semiprimes by
parallel computing and the article also demonstrated a deterministic approach to
factor the RSA numbers; article [8] recently made a further investigation on k’s
influence to the distribution of p, showing that the interval 0I is a cover of fi-

How to cite this paper: Li, J.H. (2018) A
Parallel Probabilistic Approach to Factorize
a Semiprime. American Journal of Com-
putational Mathematics, 8, 175-183.
https://doi.org/10.4236/ajcm.2018.82013

Received: June 14, 2018
Accepted: June 26, 2018
Published: June 29, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2018.82013
http://www.scirp.org
https://doi.org/10.4236/ajcm.2018.82013
http://creativecommons.org/licenses/by/4.0/

J. H. Li

DOI: 10.4236/ajcm.2018.82013 176 American Journal of Computational Mathematics

nite subintervals each of which is determined by a k and every two adjacent ones
of which are linked with their unique common end. This means that p can be
surely found out with a k-subdivision approach. Following such an idea, this
paper makes an investigation on the new algorithm design for searching the odd
integer that has GCD with N. As a result, an algorithm that incorporates a deter-
ministic search with a probabilistic search is designed. This paper presents the re-
lated consequences. Section 2 lists the preliminaries for the later sections; Section 3
proves the mathematical foundations for the new algorithm; Section 4 introduc-
es the new algorithm as well as its designing strategy and numerical experiments.

2. Preliminaries

This section lists the preliminaries that include definitions, symbols and lemmas,
which are necessary for later sections.

2.1. Symbols and Notations

In this whole article, a semiprime N pq= means p and q are both odd prime
numbers and 3 p q≤ < . An odd interval [],a b is a set of consecutive odd
numbers that take a as the lower bound and b as the upper bound; for example,
[] { }3,11 3,5,7,9,11= . Symbol x   is the floor function, an integer function of
real number x that satisfies 1x x x≤ < +       ; symbol GCD means the greatest
common divisor; let 0m > ; then b

me , p
me , q

me and 0
me are defined by

()11,2 1
2 1m

b m
m m

e N N−+ −
= = −

2p m
me N p= −

2q m
me N q= −

0 12 1
2

b
m m

Ne e
  +

= − −      

Symbol
2
BA∆ = , which was defined in [8], means A is half of B.

2.2. Lemmas

Lemma 1. (See in [8]) Suppose N pq= is an odd composite number and

1qk
p

 
= ≥ 
 

; then ,p kl kr
m m me e e ∈   , where 2log 1m N= −   ,

12 1 1
2

kl b
m m

Ne e
k

   
 = − + −        

, 12 1
2 1

kr b
m m

Ne e
k

  
= − +   +   

 and

2 1b m
me N= − .
Lemma 2. (See in [8]) Suppose 1N > is an odd integer and 1 2k k< are

positive integers. Let
1

1

1 1 1
2 1k

Nls
k

  
= + +   +   

,
2

2

1 1 1
2 1k

Nls
k

  
= + +   +   

,

1
1

1 1
2k

Nlb
k

  
= +      

 and
2

2

1 1
2k

Nlb
k

  
= +      

; then it holds

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 177 American Journal of Computational Mathematics

1 1 2 2kl kr kl kr
m m m me e e e< ≤ <

where ()1
1

2 1kl b
m m ke e lb= − − , ()2

2
2 1kl b

m m ke e lb= − − , ()1
1

2 1kr b
m m ke e ls= − − and

()2
2

2 1kr b
m m ke e ls= − − .
Particularly, when 2 1 1k k= + it holds

1 1 2 2kl kr kl kr
m m m me e e e< = <

Lemma 3. (See in [8]) For arbitrary odd number 1N > , let

1 1 1
2 1i

Nls
i

  
= + +   +   

, 1 1
2i

Nlb
i

  
= +      

, ()2 1il b
m m ie e lb= − − and

()2 1ir b
m m ie e ls= − − , where 1,2, ,i ω=  are positive integers; then odd intervals

,il ir
i m mI e e =   satisfy

1) 1
ir

i i mI I e+ = ;

2) 0

1
,

i
r

i m m
i

I e e
ω

ω
=

=

 =  

;

3) 0

1
,

i
b

i m m
i

I e e
=∞

=

 =  

; as illustrated in Figure 1.

Lemma 4. (See in [8]) Let 0
1

2
N +

∆ =  
  

 be the length of the odd interval

0
0 , b

m mI e e =   , i∆ and 1i+∆ be respectively the lengths of the odd intervals iI

and 1iI + defined in Lemma 3; then when
6

1
16
Ni

 
< ≤  

  
, it holds

1
1
2 i i i+∆ < ∆ < ∆ .

Lemma 5. (See in [8]) Let 0
1

2
N +

∆ =  
  

 be the length of the odd interval

0
0 , b

m mI e e =   , 1∆ , 2∆ and 3∆ , be respectively the lengths of 1I , 2I and 3I ;

then 1 2 3 0
1
2

∆ + ∆ + ∆ ∆ = ∆ and when 0 26∆ ≥ it holds 1 2 0
1
4

∆ + ∆ > ∆ .

Lemma 6. (See in [8]) If 3k Nα β ≥   
 for some positive integers 1β ≥ and

α β> , then k∆ is at most 21
4

Nα α β− 
  

; otherwise it is at least 21 1
4

Nα α β−  −  

Figure 1. Odd intervals’ subdivision and cover.

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 178 American Journal of Computational Mathematics

21 1
4

Nα α β−  −  
. Particularly, arbitrary 2α ≥ yields

2

4k
Nα 

∆ ≤  
  

 for

3 1k Nα α− ≥   
 and

2

1
4k
Nα 

∆ ≥ − 
  

 for 3 1 1k Nα α− ≤ −  
.

Lemma 7. (See in [8]) Let 1 2, , ,I I Iω be odd intervals defined in Lemma 3;

then there are intervals that contain at most
4

4
N 

 
  

 nodes and there are inter-

vals that contain at least
4

1
4
N 

− 
  

 nodes.

3. Algorithm Design and Numerical Experiments

Based on the previous lemmas, theorems and corollaries, one can easily draw the
following conclusions.

1) If N pq= is a semiprime, then there is a term p
me that lies in the odd in-

terval 0I and satisfies (), p
mp GCD N e= ;

2) If 0I is subdivided into a series of subintervals that are defined in Lemma

3, then p
m ke I∈ with

qk
p

 
=  
 

, and the bigger k is the fewer nodes are

contained in kI . Among all the subintervals, 1I , 2I and 3I dominate half of

0I . Lemma 6 shows that, when 3 1k Nα β ≤ −  
 there are at least

21 1
4

Nα α β−  −  
 nodes in kI .

These provide a guideline for designing new algorithm for integer factoriza-
tion, as the following subsections demonstrates.

3.1. Strategy for Algorithm Design

Now it has gotten to know that finding p
me out means a successful factorization

of N pq= . Since p
me hides itself in one of 1 2, , ,I I Iω , it can surely be found

out by searching the intervals one by one. Considering by Lemma 7 that there
are intervals that contain small number of nodes that can be searched in small
time and there are also intervals that contain too many nodes to be searched
when N is very big, it is necessary to know which intervals contain small number
of nodes and which ones contain large number of nodes and then perform a
brute-force search on the small ones and perform other searches on the large
ones. Since the brute-force search is a time-consuming process, a Tolerable
Number (TN) can be defined to be an upper bound of nodes that are sure to be
searched out in a Tolerable Time (TM), which was introduced in FU’s article [9].
Obviously, Lemma 6 indicates that TN can be used to determine α by

2

4
NTN

α 
=  
  

 and thus 3 1
0 Nα αω − =   

. Since the number of nodes in Iω is

smaller than that in
0

Iω if 0ω ω> by Lemma 6, TN is a critical number for the

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 179 American Journal of Computational Mathematics

brute-force search. All the intervals
0 01 2, ,I Iω ω+ +  can be searched by the

brute-force search.
Now it turns to the big intervals

01 2, , ,I I Iω , each of which contains more
than TN nodes. It is sure that, applying TN to subdivide each of these big inter-
vals can obtain a series of new small odd intervals and then assigning each of the
newly-subdivided small subintervals a process in a parallel computing system
can perform the brute-force search in TM, as tested by FU [9]. However, this
might require huge computing resources. For example, FU’s approach took
more than 8 days to factorize a big number of 46-decimaldigits on Chinese
Tianhe Supper Computer with 392 processes. On the other hand, by Lemma 3,
there is a big probability to find the objective node when applying a probabilistic
approach. Thus it is worthy of trying a probabilistic search.

By now, setting a TN, calculating an α by
2

4
NTN

α 
=  
  

 plus an ω by

3 1Nα αω − =   
 and imagining varying

qk
p

 
=  
 

 result in a subdivision of the

interval 0I into two kinds of subintervals, the kind of small ones and the kind
of big ones, as shown in Figure 2. Each of the small ones contains no more than
TN nodes and can be searched by the brute-force search while each of the big
ones contains more than TN nodes that need probabilistic searching approaches
to search.

Now consider a big odd subinterval I that contains n terms. Suppose the ob-
jective odd number o ps= lies at the m-th position. Referring to the analysis in
[10], it knows that, choosing randomly k (k m<) terms on the left of o, say

1, , ,j j j ko o o− − − − − , and their respectively symmetric terms on the right of o,
namely, 1, , ,j j j ko o o+ + , yields 1 1 ... 2j k j j j j j ko o o o o o ko− − − − − + ++ + + + + + + =
with 1,2, , 1j m k= − − . Therefore, choosing in I randomly 2k terms and add-
ing the chosen terms might obtain o in big probability, as proved in [10]. With
the help of multi-dimensional random-number generator, as introduced in [11],
it is easy to pick 2k random terms in I. Considering the case that o lies near the
start-position or the end-position of the interval I might fail to pick the neces-
sary number of terms, it is reasonable to make near I’s ends one or more small
subintervals each of which contain TN of nodes. These small subintervals are
called TN intervals and they can be searched in TM with brate-force searches.
The remained part of I is called a probabilistic intervals, as shown in Figure 3.
Such a subdivision that includes two TN intervals near the ends and a probabil-
istic interval in the middle is called a TNPTN subdivision. With the TNPTN
subdivision, it is necessary to perform brute-force searches on the two TN inter-
vals and a probabilistic search on the whole interval I.

3.2. TNPTN Parallel Probabilistic Algorithm

Based on the strategy for algorithm design stated in previous section, a parallel
algorithm, which is called TNPTN MPI Algorithm, is designed to find an

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 180 American Journal of Computational Mathematics

Figure 2. Subdivision of interval I0.

Figure 3. TNPTN subdivision.

objective node objN that has common divisor p with N pq= . The algorithm
assumes that k q p=    varies from 1 to an upper bound and assigns for each
k a process to search objN . It requires initial input data N to be the big semi-
prime, TN to be the number of the maximal steps that a brute-force search per-
forms and a number randN with randN TN< to set the number of random odd
integers that are randomly picked in its searched interval with the mul-
ti-dimensional random-number generator introduced in [11]. It also requires a
brute-force searching subroutine and a probabilistic searching subroutine to
perform the operations.

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 181 American Journal of Computational Mathematics

3.3. Numerical Experiments

Numerical experiments were made on a Sugon workstation with Xeon(R)
E5-2650 V3 processor of 20 cores and 128GB memory via C++ MPI program-
ming with gmp big number library. Several big semiprimes with 27 to 46 decim-
al-digits are factorized, as shown in Table 1.

4. Conclusion and Future Work

It is a convention to make a comparison of a new approach to the old ones al-
though, sometime, there is no comparability between two things. Accordingly,
this section makes comparisons and then prospects some future work.

It can see from the implementation of algorithms list in previous section that,
each of the algorithms 1, 2 and 3 needs memory only for storing a few integers to
be taken into the computation. They cost less memory. Since the whole proce-
dure is a parallel one, the time it costs depends on the resources joining the
computation. Theoretically, it is at most ()()34

22 logO N N bit-operations

providing that there is
4

2
N 

 
  

 process joining the computation.

Now turn to the old ones. It is known that, ever since John Pollard raised in
1975 his Pollard’s Rho algorithm, which is a probabilistic algorithm and is effi-
cient in factoring small integers, many algorithms of integer factorization have
developed. As stated in the introductory section, the GNFS has been regarded
the fastest approach to factorize big integers under both sequential and parallel
computing and almost all the factorized RSA numbers are factorized by the ap-
proach with parallel computing. So here the new approach is merely compared
to the Pollard’s Rho approach and the GNFS approach.

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 182 American Journal of Computational Mathematics

Table 1. Experiments on some big semiprimes.

Semiprime bits Divisors Time(s)

N1 = 521900076822691495534066493 27 15098125637513 20134.371596

 34567209821461

N2 = 63281217910257742583918406571 29 125778791843321 22487.545370

 503115167373251

N3 = 194920496263521028482429080527 30 289673451203483 326720.128666

 672897345109469

N4 = 2400000000000001550240000000000042854447 40 37678804836791 236949.403121

 63696287883753452357619017

N5 = l4272476927059598804393l594750096l98971949056l 46 2305843009213693951 336797.313147

 618970019642690137449562111

First compare with the Pollard’s Rho approach. From the point-view of mem-

ory cost, the new approach is like the Pollard’s Rho approach that costs less
memory. From the point-view of time consumption, the two are almost the same
efficiency according to the experiments in articles [6] and [12]. However, as
pointed out in article [13], the Pollard’s Rho approach cannot be parallelised.
Actually, this article is the first one that proposes a parallel probabilistic ap-
proach in factoring integers.

Next compare with the GNFS approach. The GNFS approach is a determinis-
tic one that can be parallelised. As article [14] has pointed out, GNFS requires a
large amount of memory. Hence from the point-view of memory cost, the new
approach is superior to the GNFS. From the point-view of time consumption,
the comparison cannot be available because the new approach has not been ap-
plied on the many computers as the GNFS used in factoring large RSA numbers.
Nevertheless, it can see from the experiments of factoring the 46 decimal bits
semiprime that, one computer of 20 cores can factorize it in 3 days.

There is another approach stated by Kurzweg U H [15]. Seeing from his series
of Blogs, one can see that Kurzweg actually tried to find out ()Nφ to factorize
the semiprime N. The idea was early seen in chapter 6 of YAN’s book [1]. Ac-
tually, it is quite occasional for Kurzweg’s to factorize the numbers he reported
because he has not brought an approach that finds out ()Nφ inevitably.

By now it can see that, the approach raised in this article is surely worthy of
investigation because it is truly derived from the theorems and corollaries that
are proved mathematically. In spite that the new approach is less of successful
cases of factoring the RSA numbers, it does factorize many odd integers as many
old approaches did in the history. As a new approach, it leaves of course quite a
lot of researches to improve and perfect. For example, the probabilistic searching
procedure is very rough and needs improving, and the time complexity of the
algorithm has not be evaluated till now for its probabilistic trait and also for the
authors’ limitation of the required knowledge. This points out the study of the
future work. Hope it is concerned more and successful in the future.

https://doi.org/10.4236/ajcm.2018.82013

J. H. Li

DOI: 10.4236/ajcm.2018.82013 183 American Journal of Computational Mathematics

Acknowledgements

The research work is supported by the State Key Laboratory of Mathematical
Engineering and Advanced Computing under Open Project Program
No.2017A01, Department of Guangdong Science and Technology under project
2015A030401105, Foshan Bureau of Science and Technology under projects
2016AG100311, Project gg040981 from Foshan University. The authors sincerely
present thanks to them all.

References
[1] Yan, S.X. (2008) Cryptanalytic Attacks on RSA. Springer US, New York.

[2] Surhone, L.M., Tennoe, M.T. and Henssonow, S.F. (2011) RSA Factoring Challenge.
Springer US, New York.

[3] Wanambisi, A.W., Aywa, S., Maende, C., et al. (2013) Advances in Composite In-
teger Factorization Bibinfojournal. Materials & Structures, 48, 1-12.

[4] Abubakar, A., Jabaka, S., Tijjani, B.I., et al. (2014) Cryptanalytic Attacks on Rivest,
Shamir, and Adleman (RSA) Cryptosystem: Issues and Challenges. Journal of
Theoretical & Applied Information Technology, 61, 1-7.

[5] Kessler, G.C. (2017) An Overview of Cryptography (Updated Version 26 February
2017). http://commons.erau.edu/publication/412

[6] Wang, X.B. (2017) Genetic Traits of Odd Numbers with Applications in Factoriza-
tion of Integers. Global Journal of Pure and Applied Mathematics, 13, 493-517.

[7] Wang, X.B. (2017) Strategy for Algorithm Design in Factoring RSA Numbers. IOSR
Journal of Computer Engineering, 19, 1-7.
https://doi.org/10.9790/0661-1903020107

[8] Wang, X.B. (2018) Influence of Divisor-Ratio to Distribution of Semiprime’s Divi-
sor. Journal of Mathematics Research, 10, 54-61.
https://doi.org/10.5539/jmr.v10n4p54

[9] Fu, D.B. (2017) A Parallel Algorithm for Factorization of Big Odd Numbers. IOSR
Journal of Computer Engineering, 19, 51-54.
https://doi.org/10.9790/0661-1902055154

[10] Wang, X.B., Li, J.H., Duan, Z.H. and Wan, W. (2018) Probability to Compute Divi-
sor of a Hidden Integer. Journal of Mathematics Research, 10, 1-5.
https://doi.org/10.5539/jmr.v10n1p1

[11] Hu, X.P. and Cui, H. (2010) Generating Multi-Dimensional Discrete Distribution
Random Number. Sixth International Conference on Natural Computation IEEE
10-12, 1102-1104. https://doi.org/10.1109/ICNC.2010.5583695

[12] Li, J.H. (2017) Algorithm Design and Implementation for a Mathematical Model of
Factoring Integers. IOSR Journal of Mathematics, 13, 37-41.
https://doi.org/10.9790/5728-1301063741

[13] Brent, R.P. (1990) Parallel Algorithms for Integer Factorisation Number Theory and
Cryptography. Loxton, J.H., Ed. Cambridge University Press, Cambridge, 26-37.

[14] Wang, Q., Fan, X. and Zhang, H. (2016) The Space Complexity Analysis in the
General Number Field Sieve Integer Factorization Theoretical Computer Science,
630, 76-94.

[15] Kurzweg, U.H. (2012) More on Factoring Semi-Primes.
http://www2.mae.ufl.edu/ũhk/MORE-ON-SEMIPRIMES.pdf

https://doi.org/10.4236/ajcm.2018.82013
http://commons.erau.edu/publication/412
https://doi.org/10.9790/0661-1903020107
https://doi.org/10.5539/jmr.v10n4p54
https://doi.org/10.9790/0661-1902055154
https://doi.org/10.5539/jmr.v10n1p1
https://doi.org/10.1109/ICNC.2010.5583695
https://doi.org/10.9790/5728-1301063741
http://www2.mae.ufl.edu/%C5%A9hk/MORE-ON-SEMIPRIMES.pdf

	A Parallel Probabilistic Approach to Factorize a Semiprime
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Symbols and Notations
	2.2. Lemmas

	3. Algorithm Design and Numerical Experiments
	3.1. Strategy for Algorithm Design
	3.2. TNPTN Parallel Probabilistic Algorithm
	3.3. Numerical Experiments

	4. Conclusion and Future Work
	Acknowledgements
	References

