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Abstract 
In this research, we modeled MHD third grade blood flow in a stenosed ar-
tery. The blood viscosity and the density have been modeled into the shear 
thinning/thickening parameters, the most important rheological properties of 
blood. We used regular perturbation method and obtained the flow characte-
ristics such as the flow velocity, the volume flow rate, the shear stress and the 
resistance to the flow considering a single layered stenosed artery. The results 
however showed that there is significant increase in volume flow rate and the 
velocity with increase in the magnetic field intensity H and the shear thinning 
Λ and reduces with increase in the shear thickening Ω. 
 

Keywords 
Third Grade Fluid, Magnetohydrodynamics (MHD), Shear  
Thinning/Thickening 

 

1. Introduction 

The term viscosity (the ability of fluids to resist gradual deformation by shear or 
tensile stresses) is commonly used in fluid mechanics to characterize the shear 
properties of a fluid. It cannot be enough to describe non-Newtonian fluids like 
blood. Blood is a body fluid in humans and other animals, which delivers neces-
sary substances such as nutrients and oxygen to the cells through some body 
canals called arteries and transports metabolic waste products away from those 
same cells through veins. So far, blood is best studied through several other 
rheological properties that relate stress and strain rate tensors under many dif-
ferent flow conditions such as oscillatory shear or extensional flow which is 
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measured using different devices or rheometers. These properties are better stu-
died using tensor-valued constitutive equations, which are common in the field 
of continuum mechanics. According to [1], blood behaves differently when 
flowing in large vessels, in which Newtonian behavior is expected and in me-
dium and small vessels where non-Newtonian effects appear. 

Arteries transport oxygenated blood to different tissues and organs of the 
body. This is essential for metabolic activities and sustaining life functions. Any 
narrowing of an artery will hamper the flow of blood and depending on the ex-
tent of the narrowing, known as stenosis, the artery may be partially or com-
pletely occluded (blocked) [2]. Narrowing of an artery may not cause obvious 
signs and symptoms in the initial stages. If sufficient oxygenated blood is able to 
reach the target organs and tissues, the narrowing may go unnoticed for long 
periods of time. As the condition progresses, the flow of blood will be hampered 
to a degree that affects the oxygen supply to the target tissue. It is usually at this 
stage that the first signs and symptoms become evident [3]. A sudden occlusion 
of an artery (blocked artery) can lead to a host of life threatening illnesses, in-
cluding a myocardial infarction (heart attack), stroke or pulmonary embolism. 
However, slow and progressive narrowing may remain unnoticed for weeks, 
months or years [3]. 

A non-Newtonian fluid is one whose flow curve (shear stress versus shear rate) 
is nonlinear or does not pass through the origin, i.e. where the apparent viscosity, 
shear stress divided by shear rate, is not constant at a given temperature and 
pressure but is dependent on flow conditions such as flow geometry, shear rate, 
etc. and sometimes even on the kinematic history of the fluid element under 
consideration. 

The study of non-Newtonian fluid flow is important due to the nonlinear fluid 
rheology which is of special interest and has practical applications in industry 
and engineering. Several fluid models have been suggested to disclose the nature 
of non-Newtonian fluids. Among them is the differential type. The differential 
type fluid model has a simplest subclass known as the second-grade fluid, which 
describes the normal stress differences but cannot predict the shear thin-
ning/thickening phenomena. However, the third-grade fluid model is capable of 
predicting both the normal stresses and the shear thinning/thickening pheno-
mena, the most important rheological properties of blood. In [4], the study of 
the steady flow of an incompressible, third-grade fluid in helical screw rheome-
ter (HSR) was conducted by “unwrapping or flattening” the channel, lands, and 
the outside rotating barrel. In [5], the authors considered steady boundary layer 
axisymmetric flow of third-grade fluid over a continuously stretching cylinder in 
the presence of magnetic field. They used homotopy analysis method (HAM) to 
solve the differential equations. 

The use of electromagnetic fields in the healing arts dates back as far as the 
fifteenth century, although the magnetic effects of “lodestone” were first de-
scribed by the shepherd Magnes circa 1000 BCE in the region known today as 
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Turkey [6]. In the 18th century, Mesmer began treating hysteria and other dis-
orders (today recognized to be psychosomatic in origin) with lodestones [6]. 

In the 1930s, it was found that haemoglobin has magnetic properties that are 
different depending on whether it is carrying oxygen or not. When the haemog-
lobin is not carrying oxygen it is more sensitive or paramagnetic than oxyge-
nated blood [7]. Recently, however, interest in magnetic field therapy has re-
vived, and a variety of products are available for treatment of humans. 

The effects of applying a magnetic field to liquid water have been intensively 
studied since 1980. it has been shown that the water vaporization rate, an essen-
tial process for all biological processes, is significantly affected by the application 
of a static magnetic field in both air and oxygen environments [8]. Studies have 
also found that various aspects of liquid water structure, including the size of the 
water cluster change when exposed to a magnetic field [9]. Blood can be re-
garded as magnetic fluid, in which red blood cells are magnetic in nature. Liquid 
carriers in the blood contain the magnetic suspension of the particle [10]. In [11], 
the author studied the effect of magnetic field on blood samples. Blood was ex-
tracted from donors most of them were men with polycythemia (hyper-viscosity) 
disease. They considered (10 ml) blood samples. Anti-clotting tubes were put 
under the influence of a steady magnetic field (MRI) (1.5 Tesla) for different 
exposure time. It was clearly observed that the viscosity of blood samples de-
creased with increasing the exposure time to magnetic fields. The decrease in 
viscosity was great for samples exposed for (1) minute and (15) minutes. 

Although, the constitutive equations for third grade fluids have various com-
plexities, many researchers have examined the flows of third-grade fluid under 
various aspects. We will take the study under a pulsatile condition and therefore 
begin by considering the flow of electrically conducting fluid (blood) in a ste-
nosed artery. 

The continuity and momentum equations are given as follows 

0divu =                              (1) 

( ) 0
1

T T Tu P r M H
t z r r z

ρ τ µ∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂
            (2) 

Generally, for both Newtonian and non-Newtonian fluids, the Cauchy stress 
tensor is obtained by 

1

n

j
j

PI Sτ
=

= − +∑                           (3) 

, 1, 2,3jS j =  are called the stress tensors, P is the pressure force due to fluid 
flow. The pressure force is directed against the flow direction, which is the axial 
direction to induce the fluid flow. For the third grade fluid we have 3n =  and 
the first three tensors jS  are given by 

1 1S Aµ=                             (4) 
2

2 1 2 2 1S A Aα α= +                         (5) 

( ) ( )2
3 1 3 2 2 1 1 2 3 1 1S A A A A A trA Aβ β β= + + +             (6) 
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where µ  is the coefficient of sheer viscosity and ( ) ( ), 1, 2 , , 1, 2,3i ii iα β= =  are 
material constants. nA  are called Rivlin Ericksen tensors [12], and are defined 
by the recursion relation 

( ) ( )T
1 1 1, 1n n n n

DA A A u u A n
Dt − − −= + ∇ + ∇ >           (7) 

( ) ( )T
1A u u= ∇ + ∇                     (8) 

When ( )0, 1,2,3j jβ = = , then, the above model reduces to second grade flu-
id model and if ( )0, 1,2i iα = =  and ( )0, 1, 2,3j jβ = = , the model reduces to 
classical Navier stokes viscous fluid model [12]. 

Let the velocity field for the fluid flow be given in vector field. We assume the 
flow to be in the positive z-direction. This implies that the pressure gradient 
must be negative and the following must hold. 

1) The velocity field is independent of the coordinate z and θ. That is, 
, , , , , , , 0.rr zz r rz r z zu u u u u u u uθθ θ θ θ θ =  

2) The extra stress being the result of the velocity field, are also independent of 
the z and θ. That is, , , , , 0.rr zz r r zθθ θ θ θτ τ τ τ τ τ= =  

3) The sheer stress zθτ  and zθτ  on planes through the axis of the pipe are 
zero due to symmetry. This implies that the velocity field and the shear stresses 
are functions of r alone. 

Thus, the constitutive equation of motion for a third grade fluid flow is 
32

1 32u u u
r t r r

τ µ α β
∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ 

                (9) 

Since the pressure gradient is a function of z  and t  we assume 

0 1 cos , 0p q A t t
z

ω∂
− = + ≥
∂

               (10) 

The boundary conditions are given as follows. 

Tτ  is finite at 0r =                      (11) 

0Tu =  at ( )r R z=                      (12) 

The geometry of the stenosis is given in Figure 1 and is defined by 

( )
0

0 0
0

0

2π1 cos in
2 2

in the normal artery region

E lR z d d z d l
lR z

R

δ       − + − − ≤ ≤ +    =         



 (13) 

where Eδ  is the height of the stenosis. 
 

 
Figure 1. Geometry of the stenosed artery. 
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2. The Dimensional Analysis of the Equations 

The key to solving modern problems is mathematical modeling. This process 
involves keeping certain elements, neglecting some, and approximating yet oth-
ers. 

We present the following non-dimensional variables 

( ) ( ) ( ) ( ) 2
2 0

0 0 0 0 0

1
2

0 0 0 0 0 0 00 0

, , , , , , ,

, , , , ,
2 24
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R z q z Rz rz r R z q z t t
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ωρδ
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µ

τµ τ
τ τ

µ


= = = = = = = 



= = = = = = 




 

(14) 

Thus, Substituting (14) into (2), (9), (10) and (13) gives 
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and the boundary conditions becomes 

τ is finite and 0u
r
∂

=
∂

                       (17) 

0Tu =  at r R=                          (18) 

( )
0

0
0

2π1 1 cos in
2 2

1 in the normal artery region.

E l
z d d z d l

R z l
δ      − + − − ≤ ≤ +      =        




 (19) 

3. Solution of the Model Using Regular Perturbation Method 

Let us expand the flow characteristics in (15) and (16) in the perturbation series 
below taking 2

Tα  as the perturbation parameter. 
2

0 1
2

0 1

T T T T

T T T Tu u u

τ τ α τ

α

= + +

= + +





 

If we equate the coefficients of 2α  to have; 

( ) ( )( )0
0

2: 4 1 cosT Tr t F H
r r z

α τ∂ ∂
  = + + ∂ ∂


              (20) 

( )0 0
1
2T Tu

r
τ ∂

=
∂

                       (21) 

( ) ( )2
1 0

2:T T Tr u
r r t

α τ∂ ∂
− =  ∂ ∂

              (22) 

( ) ( ) ( )
32

1 1 0 1 0 1
1
2 T T T Tu u u

r t r r
τ

∂ ∂ ∂ +Ω + Λ = ∂ ∂ ∂ ∂ 
           (23) 

Thus, the solution set is given by 
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(26) 

The volume flow rate is given by 
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0
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The resistance to the flow is given by 
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z
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The wall shear stress is given by 

w T r Rτ τ ==                        (29) 
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( )( )( ) ( ) ( )( )2 41 11 cos sin
4 8w Tt R F H R t R

z
τ α

∂
= + + −

∂
     (30) 

4. Results and Discussion 

We present this paper with the view to analyze the effect of magnetic field on 
pulsatile third grade blood flow in a stenosed artery. We have used the following 
parameter values; 0.2 is used for the dimensionless amplitude . The Womersley 
numbers Tα  is taken as 1.2. The Womersley number denotes the ratio of un-
steady inertial forces to viscous forces in the flow. It ranges from as large as 
about 20 in the aorta, significantly greater than 1 in all large arteries, to as small 
as 10−3 in the capillaries [13]. 0.15 is used for Tδ . 

Figure 2 depicts the variation of the total volumetric flow rate in the artery 
geometry along the axial direction for different values of magnetic field intensity 
H, with 2d = , 0.2= , 0.2= , 1l = , 0.15Tδ = . It has been observed that, 
the total volume flow rate increases as the magnetic field intensity increases. 
However, this relation is for the volume flow rate along the axial direction before 
the location of the stenosis. Figure 3 shows that for the fluid model in the axial 
direction for the length of the arteries under study with stenosis, the volume 
flow rate possesses a periodic relation. Thus, it increases with increase in mag-
netic field intensity H. Figure 4 shows that for a constant value of magnetic field 
intensity of about 3, the volume flow rate possesses a periodic relation. Thus, it 
increases with increase in shear thinning and reduces with increase in shear 
thickening as suggested by Figure 5 & Figure 7. Figure 6 & Figure 7 are how-
ever relations just before the stenosis position with increasing shear thinning 
 

 
Figure 2. Variation of the volumetric flow rate with different values of magnetic field in-
tensity in the axial direction before the stenosis position. 
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Figure 3. Variation of the volumetric flow rate with different values of magnetic field in-
tensity in the axial direction after the stenosis position. 
 
and thickening respectively. Figures 8-10 show the variation of the volume flow 
rate with time at different values of the shear thinning, shear thickening and 
magnetic field intensity H. The graphs shift away from the origin when the shear 
thinning and the magnetic field intensity increases and shift closer to the origin 
as the shear thickening increase. This shows that the volume flow rate increases 
with increase in shear thinning and magnetic field but reduces over time, the 
volume flow rate hits the zero bar after some time, implying a possible case of 
occlusion. This result is in agreement with the laboratory results of the work of 
[14]. 

Figures 11-13 show variation of velocity profile of the third grade fluid along 
the radial distance for different values of shear thickening, shear thinning and 
magnetic field H, with 2d = , 0.2= , 0.2= , 1l = , 0.15Tδ = . The velocity 
curve shift away from the origin when the shear thinning & magnetic field in-
crease (Figure 12 & Figure 13), and shift to the origin when the shear thicken-
ing increases. Thus, this shows that the velocity increases with increase in shear 
thinning & magnetic field and reduce with increase in shear thickening. 

Figures 14-16 show the variation of the total resistance to the volumetric flow 
rate in the artery geometry along the axial direction for different values of shear 
thickening, shear thinning and magnetic field intensity H, with 2d = , 0.2= , 

0.2= , 1l = , 0.15Tδ = . We observed that increasing shear thickening offers 
high resistance to the volume flow rate (Figure 14), this will result to more 
pressure forces exerting on the heart which serves as the only pressure 
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Figure 4. Variation of the volumetric flow rate with different values of shear thinning in 
the axial direction after the stenosis’ position. 

 

 
Figure 5. Variation of the volumetric flow rate with different values of shear thickening 
in the axial direction after the stenosis’ position. 
 
source to drive the flow of blood thereby weakening the muscular walls of the 
heart resulting to myocardial infarction (in which part of the heart muscle dies) 
or cardiac arrest (in which blood flow stops altogether). In [15], the author 
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Figure 6. Variation of the volumetric flow rate with different values of shear thinning in 
the axial direction before the stenosis’ position. 
 

 
Figure 7. Variation of the volumetric flow rate with different values of shear thickening 
in the axial direction before the stenosis’ position. 
 
opines that this is the cause of the sudden break down of the entire circulatory 
system leading to death in recent time. Increasing shear thinning reduces the re-
sistance to flow (Figure 15) and the resistance to flow decreases as the magnetic 
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Figure 8. Variation of the volumetric flow rate with increasing shear thinning in the axial 
direction over time. 
 

 
Figure 9. Variation of the volumetric flow rate with increasing shear thickening in the 
axial direction over time. 
 
field intensity increases (Figure 16). That is, increasing magnetic field strength 
offers low resistance to the flow. 
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Figure 10. Variation of the volumetric flow rate with increasing magnetic field intensity 
in the axial direction over time. 
 

 
Figure 11. The velocity profile with increasing shear thickening. 
 

Figure 16-18 show the shear stress profile for different values of magnetic 
field intensity H, with 2d = , 0.2= , 0.2= , 1l = , 0.15Tδ = . It has been 
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Figure 12. The velocity profile with increasing shear thinning. 
 

 
Figure 13. The velocity profile with increasing shear thickening. 
 
observed that the wall shear stress behave similar to the volume flow rate. The 
graphs shift away from the origin as the magnetic field increases with a periodic 
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Figure 14. The resistances to flow with increasing shear thickening. 
 

 
Figure 15. The resistances to flow with increasing shear thinning. 
 
relation in Figure 16, which explains the effect of the stenosis in the artery along 
the direction of flow. 
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Figure 16. The resistance to flow with increasing shear thickening. 
 

 
Figure 17. Theshear stress with increasing magnetic field intensity in the axial direction. 

5. Conclusion 
Any fluid that does not obey Newton’s Law of Viscosity is a non-Newtonian flu-
id. The viscosity of such fluids is mostly dependent on their shear rate or the 
shear rate history. In fluid mechanics, the fluid property called viscosity is used 
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Figure 18. Theshear stress with increasing magnetic field intensity in the axial direction 
after the stenosis’ position. 
 
to characterize the shear properties of a fluid, which is inadequate to describe 
non-Newtonian fluids. Non-Newtonian fluids are best studied through several 
other rheological properties that relate stress and strain rate tensors under many 
different flow conditions. An example of a non-Newtonian fluid with the shear 
thinning and thickening properties is blood which we considered as third grade 
fluid. This application is highly valued for its importance in understanding flows 
in defective arteries within the body, as it allows us to relate the magnetic field 
and blood to further understand the flow characteristics of blood through a ste-
nosed artery. 
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Nomenclatures 

( )R z  - Radius of the stenosed artery 

Eδ  - Maximum height of the stenosis 

0l  - The length of stenosis. 
d  - Location of the stenosis. 
z  - The axial distance. 
r  - The radial distance. 

Tτ  - The shear stress for the Third grade fluid. 

Tρ  - The density of the Third grade fluid. 
p  - The pressure force. 

Tµ  - Viscosity of the Third grade fluid. 

TU  - Velosity of the Third grade fluid. 
M  - Magnetisation of the fluid. 

0µ  - The magnetic permeability. 
H  - The magnetic field intensity. 

pR  - The plug core radius. 
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