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Abstract 
The paper is devised to combine the approximated semi-Lagrange weighted 
essentially non-oscillatory scheme and flux vector splitting. The approximated 
finite volume semi-Lagrange that is weighted essentially non-oscillatory 
scheme with Roe flux had been proposed. The methods using Roe speed to 
construct the flux probably generates entropy-violating solutions. More se-
riously, the methods maybe perform numerical instability in two-dimensional 
cases. A robust and simply remedy is to use a global flux splitting to substitute 
Roe flux. The combination is tested by several numerical examples. In addi-
tion, the comparisons of computing time and resolution between the classical 
weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-La- 
grange weighted essentially non-oscillatory scheme (WENOEL-LF) which is 
presented (both combining with the flux vector splitting). 
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1. Introduction 

The semi-Lagrangian methods are popularly used in weather prediction [1] [2] 
and simulation of the Vlasov equations [3] [4] [5] [6], and so on. These methods 
solve the problems with a characteristic tracing algorithm. It is this property of 
algorithm that leads to the following two advantages: no time discretization and 
the alleviation of CFL time step restriction. The semi-Lagrangian methods 
(combined wih WENO reconstruction [7] [8]) used to solve hyperbolic 
problems are presented in [9] [10] [11]. 

In [10], the authors proposed a finite volume semi-Lagrangian WENO scheme 
for advection problems. The scheme combined the Eulerian-Lagrangian 
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framework [12] [13] with high-order WENO reconstruction, and used a integral- 
based WENO reconstruction to handle trace-back integration. In this framework, 
the scheme trace each computational Eulerian grid cell at time 1nt +  backward 
over a time step along the characteristic line to its Lagrangian track-back region 
at nt . The average mass is simply transported from the Lagrangian region to the 
computational grid cell. In addition, they presented a theoretical proof for the 
accuracy of the method. 

In [11], the authors developed a finite volume semi-Lagrangian WENO 
scheme for nonlinear conservation laws. This method can be regarded as the 
extension of the method for advection problems in [10]. A problem appeared in 
such extension is that one does not have the particle velocity since it is 
nonlinearly related to the unknown solution. Hence, one cannot find the exact 
tracking line of fluid particle. Instead of trying to find the the exact characteristic 
line of particle, they use a known velocity for the tracing line computation. Since 
this will not give the correct tracing line, a flux correction procedure is needed to 
increase the accuracy and numerical stability. The proposed method arrives 
optimal order of accuracy. However, the procedure of flux correction makes the 
scheme rather cost to be implemented. 

In [9], a sort of finite difference semi-Lagrangian ENO and WENO schemes 
are devised for advection problems in incompressible flow. The key part of this 
paper is that the integral form of advection equation is taken over a triangle 
region. This integral procedure transforms the flux integration in time at cell 
center into the integration of mass ( ), nu x t  in space  

( )( ) ( )1 , d , d ,n i

n i

t x n
it x

f u x t t u x t x+

∗=∫ ∫  

where ix∗  is backward characteristic point of cell center ix . This scheme is 
difficult to extent to nonlinear cases. In addition, there is no optimal linear 
weights for WENO schemes for solving advection equations with variable 
coefficients (or also for nonlinear cases). 

In [14], the authors developed an approximated finite volume semi-Lagrangian 
WENO schemes (WENOEL-Roe) for 1D and 2D nonlinear hyperbolic prolems. 
The scheme integrates the hyperbolic equation over the control volume  

1
1 2 1 2, ,n n

i ix x t t +
− +   ×     to obtain a integral equation. They try to directly 

evaluate the integration of flux function in time at cell edge 1 2ix + . 

( )( )1
1/2 , d .n

n

t
it

f u x t t+

+∫  

For linear cases, the integration of flux function in time can be transformed 
into the integration of interpolation polynomial of flux average in space. For 
nonlinear cases, a local freeze method is used to freeze the nonlinear into linear 
cases. The scheme here is different with the traditional semi-Lagrangian scheme 
[10] [11]. The backward tracing characteristic point is needed in the procedure 
of evaluating the integration of flux function. The advantages of the WENOEL- 
Roe scheme are easy implement and high efficiency. Refer to [14] for a detail. 

The procedure of evaluating the integration of flux function also depends on 
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the direction of upwind. The Roe average speed is used to identified the 
upwinding. It is known that the Roe schemes maybe generates entropy-violating 
solutions. More seriously, these scheme can perform numerical instability for 
some two-dimensional problems [15] [16] [17]. A local entropy correction can 
be used to remedy this deficiency. However, it is usually more robust to use a 
global flux splitting. In this paper, an approximated finite volume semi- 
Lagrangian WENO scheme with the smooth Lax-Friedrichs flux splitting 
(WENOEL-LF) is presented. The WENOEL-LF scheme is less resolution than 
WENOEL-Roe since the Lax-Friedrichs flux splitting method is more dissipative 
than Roe method. However, the advantage of WENOEL-LF scheme is it 
generally generates the entropy solution. 

In the paper that follows, we will review the WENOEL-Roe scheme briefly in 
Section 2. In Section 3, we will present the formulation of WENOEL-LF scheme 
in Section 3 in detail. The comparisons of resolution and computing time 
between the WENOEL-LF and WENOJS-LF schemes is presented in Section 4. 

2. Review the WENOEL-Roe Scheme 

Consider the linear advection equation  

( ) ( )( ), , 0, , 0,t xu x t f u x t a x b t+ = ≤ ≤ ≥            (1) 

where ( )( ) ( ), ,xf u x t au x t= . Integrating the Equation (1) on control volume 
1

1 2 1 2, ,n n
i ix x t t +
− +   ×     and rearranging this equation gives  

( ) ( ) ( )( )

( )( )

1
1 2 1 2

1 2 1 2

1

1 1/2

1 2

1 1 1, d , d , d

1 , d .

n
i i

n
i i

n

n

x x t
n n ix x t

t
it

tu x t x u x t x f u x t t
x x x t

f u x t t
t

+
+ +

− −

+

+ −

+

∆ = + ∆ ∆ ∆ ∆
− ∆ 

∫ ∫ ∫

∫
  (2) 

Denote the i -th cell average by  

( )1 2

1 2

1 , d ,i

i

xn
i nx

u u x t x
x

+

−
=
∆ ∫  

and average flux at cell edge 1 2ix +  by  

( )( )1
1 2 1/2

1 , d ,n

n

tn
i it

f f u x t t
t

+

+ +=
∆ ∫                   (3) 

then (2) can be written as  

( )1
1 2 1 2 .n n n n

i i i i
tu u f f
x

+
+ −

∆
= − −

∆
                   (4) 

Denote the value n
iU  approximates the average value j

iu  and the numerical 
flux 1 2

n
iF +  approximates flux function 1 2

n
if + . Then we obtain  

( )1
1 2 1 2 .n n n n

i i i i
tU U F F
x

+
+ −

∆
= − −

∆
                  (5) 

For evaluating average flux 1 2
n

if +  in (3), we can firstly apply a 5th-order 
reconstruction based on piecewise constant average fluxes { } 1

N
k k

f
=

 on stencil 
{ }2 1 1 2, , , ,i i i i i iS I I I I I− − + +=  to obtain interpolation polynomial ( )iP x  on cell iI   
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( )( ) ( ) ( )5, .n if u x t P x x= + ∆                    (6) 

Here, we assume the advection velocity 0a > , then ( ), nu x t  simply spreads 
to the right with velocity a , which gives  

( )( ) ( )( )( )1/2 1 2, ,i i n nf u x t f u x a t t t+ += − −              (7) 

in any time when [ ]1,n nt t t +∈ . Combining the formulas (6) with (7), the flow 
rate ( )( ),f u x t  at cell edge 1 2ix +  is  

( )( ) ( )( ) ( )5
1 2 1 2, .i i i nf u x t P x a t t x+ += − − + ∆            (8) 

In this case, the average flux 1 2
n

if +  can be expressed approximately as  

( )( )
( )( ) ( )

( ) ( )

1

1

1 2

1 2

1 2 1 2

5
1 2

5

1 , d

1 d

1 d .

n

n

n

n

i

i

tn
i it

t
i i nt

x
ix a t

f f u x t t
t

P x a t t t x
t

P x x x
a t

+

+

+

+

+ +

+

− ∆

=
∆

= − − + ∆
∆

= + ∆
∆

∫

∫

∫





           (9) 

Omitting the high-order term ( )5x∆ , we obtain the numerical flux  

( )1 2
1 2

1 2

1= d .
xin

i ix a ti
F P x x

a t
+

+ − ∆+∆ ∫                   (10) 

The last equality in (9) is obtained by integration of substitution  
( )1 2i nx x a t t+= − − . From the Equation (9), the integration in time [ ]1,n nt t +  is 

transformed into integration in space 1 2 1 2,i ix a t x+ + − ∆  . Due to the integrand 
( )iP x  is reconstruction polynomial, the last integration in (10) can be computed 

exactly. 
In the following of this section, we will present the 5th-order WENO 

reconstruction process to approximate the integral in (10)  

( )1 2

1 2
d .i

i

x
ix a t

P x x+

+ − ∆∫  

The 5th-order WENO reconstruction procedure is represented as the convex 
combination of three 3rd-order reconstructions. First, we intend to reconstruct 
three 3rd-order conservative polynomials ( )j

iP x  on cell 1 2 1 2,i i iI x x− + =    
based on the piecewise constant average fluxes on stencils  

{ } { } { }0 1 2
1 2 1 1 2 1, , , , , , , , ,i i i i i i i i i i i iS I I I S I I I S I I I+ + − + − −= = =  

where the subscript i  denotes the polynomial on cell iI  and superscript j  
denotes the reconstruction based on stencil j

iS . So far, we have obtained the 
conservative interpolation polynomials ( )j

iP x  on each stencil j
iS . In the end, 

the integral in (10) can be expressed as  

( ) ( )1 2 1 2

1 2 1 2

2

=0
d d ,i i

i i

x xj j
i ix a t x a t

j
P x x d P x x+ +

+ +− ∆ − ∆
= ∑∫ ∫  

where jd  are the optimal weights. To alleviate the effect of the non-smooth 
stencils, the nonlinear weights can be constructed as follows  
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0 1 2

j
j i

i
i i i

a
w

a a a
=

+ +
                      (11) 

and  

( )2 ,
j

j
i

j
i

da
ε β

=
+

                       (12) 

where j
iβ  is the indicator of smoothness of the polynomial on the stencil j

iS . 
Finally, the numerical flux should be expressed as  

( )1 2

1 2

2

1 2
0

1 d .i

i

xn j j
i i ix a t

j
F w P x x

a t
+

+
+ − ∆

=

=
∆ ∑ ∫                (13) 

Substituting the formula of polynomial ( )j
iP x  into (13) gives  

( )

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

2

1 2
0

0 2
1 2 1 1 2

1 2
1 1 1 1 1

2 2
2 1 2 1 2 1

1 d

1 2 3 3 2 5
6

 2 3 3 5 2

 2 3 9 6 2 7 11 .

i

i

xn j j
i i ix a t

j

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i i

F w P x x
a t

w f f f f f f f f

w f f f f f f f f

w f f f f f f f f f

λ λ

λ λ

λ λ

+

+
+ − ∆

=

+ + + + +

− + + − +

− − − − − −

=
∆

= − + + − + + −

+ − + + − + − + +

+ − + + − + − + − + 

∑ ∫

(14) 

In contrast, when the advection velocity 0a < , ( ), nu x t  spreads to the left 
with velocity a , which gives  

( )( ) ( )( )( )1 2 1/2, ,i i n nf u x t f u x a t t t+ += − −                (15) 

and the flow rate ( )( ),f u x t  at cell edge 1 2ix +  is  

( )( ) ( )( ) ( )5
1 2 1 1/2, .i i i nf u x t P x a t t x+ + += − − + ∆             (16) 

Similarly, the average flux 1 2
n

iF +  can be expressed as  

( )1 2

1 2

2

1 2 1 1
0

1 d .i

i

x a tn j j
i i ix

j
F w P x x

a t
+

+

− ∆

+ + +
=

=
− ∆ ∑ ∫                 (17) 

The nonlinear weight 1
j

iw +  can be constructed similarly as (11) and (12). 
Substituting the formula of polynomial ( )1

j
iP x+  into (17) gives  

( ) ( )(
( )) ( )(
( ) ( ))

( ) ( ) ( )( )

0 2
1 2 1 1 2 3 1 2 3

1 2
1 2 3 1 1 2

1 1 2

2 2
1 1 1 1 1 1

1 2 6 9 3
6

 11 7 2 2

 3 3 2 5

 2 3 3 5 2 .

n
i i i i i i i i

i i i i i i i

i i i i i

i i i i i i i i i

F w f f f f f f

f f f w f f f

f f f f f

w f f f f f f f f

λ λ

λ

λ

λ λ

+ + + + + + + +

+ + + + + +

+ + +

+ − + + − +

= − + + − +

+ − + + − +

+ − + + −

+ − + + − + − + + 

(18) 

The above process of approximating average flux is reasonable for linear 
advection equation. For nonlinear problems, the formulas (9) and (17) is not 
hold any more since the solution no longer simply translates uniformly. And 
generally the tracking back points cannot be found exactly (even cannot find the 
points with high accuracy). Hence for nonlinear case, rather than trying to find 
the tracking back points; we freeze the nonlinear equation to linear formation 
locally and apply the procedure above to it. For solving the nonlinear case, the 
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propagation direction is distinguished by Rankine-Hugoniot jump conditions  

and propagation velocity is chosen to be 
( )

iu u

f u
a

u
=

∂
=

∂
  

( if propagation direction 0> ) or 
( )

1iu u

f u
a

u
+=

∂
=

∂
  

( if propagation direction 0< ). 

3. Formulation of WENOEL-LF Scheme 

In this section, we solve nonlinear problems by using a more robust global flux 
splitting  

( ) ( ) ( )f u f u f u+ −= +                      (19) 

where  

( ) ( )d d
0 and 0.

d d
f u f u

u u

+ −

≥ ≤  

Insert the Equation (19) into (1) and (2), we can obtain  

( ) ( )1 , , , ,
1 2 1 2 1 2 1 2 ,n n n n n n

i i i i i i
t tu u f f f f
x x

+ + + − −
+ − + −

∆ ∆
= − − − −

∆ ∆
          (20) 

which is similar to conservation formula (4), and denote  

( )( )
1

,
1 2 1 2

1 , d .
n

n

tn
i it

f f u x t t
t

+
± ±

+ +=
∆ ∫  

A scheme approximated (20) can be written as  

( ) ( )1 , , , ,
1 2 1 2 1 2 1 2 .n n n n n n

i i i i i i
t tU U F F F F
x x

+ + + − −
+ − + −

∆ ∆
= − − − −

∆ ∆
         (21) 

This scheme is conservative. Since if we sum 1n
iU +  over the whole set of cells, 

we obtain  

( ) ( )( )1 , , , ,
1 2 1 2 1 2 1 2

1 1
.

N N
n n n n n n
i i N N

i i

tU U F F F F
x

+ + − + −
+ +

= =

∆
= − + − +

∆∑ ∑  

The formulas , ,
1 2 1 2

n n
N NF F+ −
+ ++  and , ,

1 2 1 2
n nF F+ −+  denote the fluxes at the 

extreme edges. The sum of the flux differences cancels out except for the fluxes 
at the extreme. 

The simplest smooth flux splitting we chose is the Lax-Friedrichs splitting  

( ) ( )( ) ( )( )1 1, ( ) ,
2 2

f u f u u f u f u uα α+ −= + = −  

where α  is taken as 
( )

1

d
max

diu N

f u
u

α
≤ ≤

=  over the whole set of cell averages. Since 

( )d
0

d
f u

u

+

≥ , the fluxes ( )f u+  flow right through the cell edges. The flow  

velocity a+  for flux ( )f u+  at cell edge 1 2ix +  is chosen as  

( )d1
2 d

iu u

f u
a

u
α

+
+

=

 
 = +
 
 

. Similarly, The flow velocity a−  for flux ( )f u−  at cell 
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edge 1 2ix +  is chosen as ( )

1

d1
2 d

iu u

f u
a

u
α

+

−
−

=

 
 = −
 
 

. 

Inserting ( )f u+  and ( )f u−  into (14) and (18), respectively, the numerical 
fluxes can be obtained as follows,  

( ) ( ) ( ) ( )( )
( ) ( ) ( )(

( )) ( ) ( )(
( ) ( ))

2, 0
1 2 1 2 1 1 2

21
1 1 1

22
1 1 2 1

2 1 2 1

1 2 3 3 2 5
6

 2 3 3

 5 2 2

 3 9 6 2 7 11 ,

n
i i i i i i i i i i

i i i i i i

i i i i i i i

i i i i i i

F w f f f f f f f f

w f f f f f

f f f w f f f

f f f f f f

λ λ

λ λ

λ

λ

+ + + + + + + + + + +
+ + + + + +

+ + + + + + +
− + +

+ + + + + + +
− + − −

+ + + + + + +
− − − −

= − + + − + + −

+ − + + −

+ − + + + − +

+ − + − + − + 

(22) 

where a t
x

λ
+

+ ∆
=

∆
, and  

( ) ( ) ( )(
( )) ( ) ( )(
( ) ( ))
( ) ( ) ( )

2, 0
1 2 1 1 2 3 1 2 3

21
1 2 3 1 1 2

1 1 2

22
1 1 1 1 1

1 2 6 9 3
6

 11 7 2 2

 3 3 2 5

 2 3 3 5 2

n
i i i i i i i i

i i i i i i i

i i i i i

i i i i i i i i i

F w f f f f f f

f f f w f f f

f f f f f

w f f f f f f f f

λ λ

λ

λ

λ λ

− − − − − − − − −
+ + + + + + + +

− − − − − − −
+ + + + + +

− − − − − −
+ + +

− − − − − − − − −
+ − + + −

= − + + − +

+ − + + − +

+ − + + −

+ − + + − + − + +( )( )1
−
+




(23) 

where a t
x

λ
−

− ∆
=

∆
. 

Algorithm 

Here, we conclude the algorithm for computing the approximated solution 1n
iU +  

at time step 1nt + .  
1) Split the flux function ( )f u  into the positive flux ( )f u+  and negative 

flux ( )f u− . 
2) Determine the flow velocities a+  and a−  of the positive flux ( )f u+  

and negative flux ( )f u− , respectively. 
3) Compute the numerical fluxes ,

1 2
n

iF ±
+  and ,

1 2
n

iF ±
−  by formulas (22) and 

(23). 
4) Insert the numerical fluxes computed above into (21), we obtain the 

approximated solution 1n
iU +  at time step 1nt + . 

4. Numerical Results 

In this section, we use several 1D and 2D nonlinear examples to test the 
WENOEL-LF scheme. The comparisons of resolution and computing time 
between the WENOEL-LF and WENOJS-LF is presented. It is found that, with 
the same number of cells, the WENOJS-LF scheme has slightly higher resolution 
than WENOEL-LF scheme. However, the computing time of WENOJS-LF 
scheme is almost two times for scalar equation (and almost three times for 
nonlinear system) over that of WENOEL-LF scheme. 
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4.1. Burgers’ Equation 

Consider the inviscid Burgers’ equation  
2

0
2t

x

uu
 

+ = 
 

                         (24) 

with two initial conditions:  

( )
1 1 0,

,0
0 0 1,

x
u x

x
− ≤ ≤

=  ≤ ≤
                    (25) 

and  

( ) ( ),0 1.5 sin π .u x x= −                      (26) 

The Burger’s Equation (24) with discontinuous initial condition (25) develops 
the solution which consists of a rarefaction wave and a shock wave. The 
numerical solutions computed by the WENOEL-LF and WENOJS-LF schemes 
are shown in Figure 1. These two solutions are both computed with 100N =  
and CFL = 0.1. The final output time is chosen to be 1t = . From Figure 1, we 
can find that the solution of WENOJS-LF scheme has slightly better resolution 
than that of WENOEL-LF scheme, especially around the rarefaction wave. And, 
in solving nonlinear cases (including the following tests), the WENOJS-LF 
scheme generally possesses slightly higher resolution than WENOEL-LF scheme 
when the same amount of cells is used. 

Although the WENOJS-LF scheme has higher resolution than WENOEL-LF 
scheme, the WENOEL-LF scheme has the advantage of decreasing the 
computing time. Table 1 presents the 1l  error and computing time. With the 
same number of cells, the errors generated by WENOEL-LF are larger than 
WENOJS-LF scheme, but the computing times of WENOEL-LF are only half of  
 

 
(a)                                                          (b) 

Figure 1. The solutions of problem (24) (25) are computed by the WENOEL-LF and WENOJS-LF methods: (a) WENOEL-LF 
scheme; (b) WENOJS-LF scheme. 
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that of the WENOJS-LF scheme. For comparing the efficiency between these two 
schemes, we plots the relationship between the 1l  error and computing time for 
these two schemes. From Figure 2, we can find that the efficiency of 
WENOEL-LF is higher than that of WENOJS-LF scheme. That is, to achieve the 
same 1l  error, the WENOEL-LF needs less computing time. 

For the problem (24) (26), the initial condition is smooth, and the solution  

evolves discontinuity at 
1
π

t = . The Figure 3 is plotted with 100N =  and output  

time 0.3t = . From this figure, no obviously difference is presented (however, by 
closed inspection, the resolution of WENOJS-LF is still slightly better than 
WENOEL-LF scheme). Similar to the last test, the superiority of our scheme lies 
in decreasing the computing time. Therefore, in efficiency, the WENOEL-LF 
scheme is still advantageous over the WENOJS-LF scheme. 
 
Table 1. The comparisons of computing time (in seconds) and 1l  error for initial value 
problem (24) (25) between the WENOEL-LF and WENOJS-LF methods. 

 WENOEL-LF WENOJS-LF 

N  1l  error CPU time 1l  error CPU time 

1000 2.2992e−03 1.420 1.8551e−03 2.902 

2000 1.1790e−03 5.710 9.2778e−04 11.996 

4000 6.0402e−04 24.321 4.6385e−04 51.418 

8000 3.0933e−04 102.758 2.3188e−04 206.655 

16,000 1.5837e−04 393.669 1.1591e−04 790.301 

 

 
Figure 2. The comparison of efficiency for problem (24) (25) is presented between the 
WENOEL-LF and WENOJS-LF methods. 
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(a)                                                          (b) 

Figure 3. The solutions of problem (24) (26) are computed by the WENOEL-LF and WENOJS-LF methods: (a) WENOEL-LF 
scheme; (b) WENOJS-LF scheme. 

4.2. The 1D Euler Equation 

In this subsection, we consider 1D Euler equations since one of the main 
application areas of high-resolution scheme is compressible gas dynamics,  

( )

2 0,

t x

u
u u p

E E p u

ρ ρ
ρ ρ

  
   + + =  

   +   

                    (27) 

where ρ , u , p , E  are density, velocity, pressure and total energy, 
respectively. The system of equations is closed by the equation of state for an 
ideal polytropic gas:  

21 ,
1 2

pE uρ
γ

= +
−

 

where the ratio of specific heats 1.4γ = . 
The following three initial conditions combined with Euler Equation (27) are 

considered, which are often used to examine the methods for solving Euler 
equations: 

( ) ( )
( )
0.445,0.698,3.528 , if 5 0,

, ,
0.5,0,0.571 , if 0 5,

x
u p

x
ρ

 − ≤ <=  ≤ ≤
         (28) 

( )
( )( )

27 4 35 31, , , if 5 4,
7 9 3, ,

1 0.2sin 5 ,0,1 , if 4 5,

x
v p

x x
ρ

 
− ≤ < −  =  

 + − ≤ ≤

         (29) 
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( )
( )
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1,0,100 , if 4 5.

x
u p x

x
ρ

− ≤ < −
= − ≤ <
 ≤ ≤

             (30) 
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For the problem (27) (28), called Lax problem [18], we solve it with  
0.1t x λ∆ = ∆  for the WENOEL-LF and WENOJS-LF methods. The Figure 4 

shows the numerical solutions computed by the WENOEL-LF and WENOJS-LF 
schemes with 200N = . From this figure, no obviously difference can be found 
between these two schemes and they both present high-resolution results. To 
make further comparison, we show the 1l  error and computing time in Table 2. 
The exact solution of Riemann problem (27) (28) is generated by the code of E. 
F. Toro in [19]. From this table, we can find that, with the same number of cells, 
the 1l  error of WENOEL-LF is slightly larger than WENOJS-LF scheme. But 
the WENOEL-LF scheme only need almost one-third of the computing time 
compared with the WENOJS-LF scheme. Here, we also plot the relationship 
between the 1l  error and computing time in Figure 5. Apparently, to achieve 
the equal error, the WENOEL-LF scheme spends less computing time than 
WENOJS-LF scheme. 
 

 
(a)                                                          (b) 

Figure 4. The solutions of problem (27) (28) are computed by the WENOEL-LF and WENOJS-LF methods; (a) WENOEL-LF 
scheme; (b) WENOJS-LF scheme. 
 

Table 2. The comparisons of computing time (in seconds) and 1l  error for the problem 
(27) (28) between the WENOEL-LF and WENOJS-LF methods. 

 WENOEL-LF WENOJS-LF 

N  1l  error CPU time 1l  error CPU time 

200 1.0707e−01 0.530 1.0513e−01 1.373 

400 5.6455e−02 2.137 5.5274e−02 5.476 

800 2.9261e−02 8.518 2.8725e−02 21.762 

1600 1.5890e−02 34.055 1.5637e−02 86.877 

3200 9.2582e−03 136.282 9.1210e−03 347.461 

6400 4.7517e−03 543.570 4.6793e−03 1386.069 
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For solving the problem (27) (29), we have the same set as the previous 
example but with different number of cells. Because no exact solution can be 
obtained, there is no comparison of error. In Figure 6, we show the numerical  
 

 
Figure 5. The comparison of efficiency for problem (27) (28) is presented between the 
WENOEL-LF and WENOJS-LF methods. 
 

 
Figure 6. The numerical solutions for problem (27) (29) is computed by the 
WENOEL-LF and WENOJS-LF methods. The “+” and “  ” denotes the solutions 
computed by the WENOEL-LF and WENOJS-LF schemes with 400N = , respectively. 
The “×” denotes the solutions computed by the WENOEL-LF scheme with 600N = . 
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solution of the WENOJS-LF scheme with 400N =  and the numerical solutions 
of the WENOEL-LF scheme with 400N =  and 600N = , respectively. The 
Figure 7 is the zoomed version of the Figure 6 around the high-frequency wave, 
From this zoomed figure, it is easily found that, with the same number of cells 

400N = , the WENOJS-LF scheme generates the solution with higher resolution 
than WENOEL-LF scheme. However, the WENOJS-LF and WENOEL-LF 
schemes spend about 8 and 3 seconds to evolve the solutions, respectively. In 
addition, we present another numerical solution generated by the WENOEL-LF 
scheme with 600N = . This solution spends about 7 seconds and performs 
clearly higher resolution. In a word, with the same computing time, the 
WENOEL-LF scheme can obtains the solution with higher resolution. 

For the problem (27) (30), also due to there is no exact solution, we use the 
same way as last example to compare these two schemes. In Figure 8, we show 
the numerical solution by the WENOJS-LF scheme with 400N =  and the 
numerical solutions by the WENOEL-LF scheme with 400N =  and 600N = , 
respectively. With the same number of cells, as usual, the WENOJS-LF scheme 
gives higher-resolution solution than the WENOEL-LF scheme, which is shown 
in Figure 9. The computing times needed for the WENOJS-LF and WENOEL-LF 
schemes, when 400N = , are about 15 and 6 seconds, respectively. If the 
number of cells increases from 400N =  to 600N =  for the WENOEL-LF 
scheme, the numerical solution has higher resolution than the WENOJS-LF 
scheme which is computed with 400N = . However, it is noted that the 
WENOEL-LF scheme only needs 13 seconds at this time. That is, to achieve the 
same resolution the WENOEL-LF scheme needs much more cells, but takes less 
computing time. 
 

 
Figure 7. The zoomed version of Figure 6 around the part of high-frequency wave. 
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Figure 8. The numerical solutions for problem (27) (30) is computed by the 
WENOEL-LF and WENOJS-LF methods. The “+” and “  ” denotes the solutions 
computed by the WENOEL-LF and WENOJS-LF schemes with 400N = , respectively. 
The “×” denotes the solutions computed by the WENOEL-LF scheme with 600N = . 
 

 
Figure 9. The zoomed version of Figure 8 around complicated region. 

4.3. The 2D Euler System 

Finally, we consider a numerical experiment for 2D Euler equations for gas 
dynamics,  
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              (31) 

where the equation of state is  

( ) ( )2 211 , 1.4.
2

p E u vγ ρ γ = − − + = 
 

 

Here, we apply the WENOEL-LF and WENOJS-LF schemes to the 2D 
double-Mach shock reflection problem where a strong vertical shock moves 
horizontally into a wedge which inclined with some angle with the ratio of 
specific heats 1.4γ = . Initially, this problem was proposed by Woodward and 
Colella [20] and had been taken extensively as a test example for high-order 
schemes. The computational domain is chosen to be [ ] [ ]0,4 0,1×  and the  

reflective wall lies on the bottom of the computational domain for 
1 4
6

x≤ ≤ . In 

the beginning, a Mach 10 shock, moving right, is located at 
1
6

x = , 0y =  and  

makes an angle 60˚ with the x-axis. For the boundary conditions, the exact  

postshock condition is imposed for bottom boundary from 0x =  to 
1
6

x = ,  

and the reflective boundary condition is imposed for the rest; the flows are 
imposed on the top boundary such that there is no interaction with the Mach 10 
shock; inflow and outflow boundary conditions are set for the left and right 
boundaries respectively. The unshocked fluid has a density of 1.4, a pressure of 1 
and this problem is run until 0.2t = . 

In Figure 10, we plot the numerical solution of the WENOJS-LF scheme with 
cells 400 × 100 and the numerical solutions of the WENOEL-LF scheme with 
cells 400 × 100 and 560 × 140, respectively. As the conclusion of 1D cases, with 
the same number of cells, the WENOJS-LF scheme can obtain higher-resolution 
solutions than the WENOEL-LF scheme, but with much more computing time. 
When we increase the number of cells from 400 × 100 to 560 × 140, the 
numerical solution of the WENOEL-LF scheme performs higher resolution but 
with almost the same computing time as the WENOJS-LF scheme with 400 × 100. 

5. Conclusion 

This paper aims to combine the finite volume semi-Lagrangian WENO method 
with flux vector splitting. The proposed scheme is rather robust and easily 
implemented. And the computing time of the WENOEL-LF scheme is about half 
and one third of the WENOJS-LF scheme in scalar equation and nonlinear 
system, respectively. But with the same number of cells, unlike the performance 
in [14], the numerical solution of WENOJS-LF scheme is slightly better than that 
of WENOEL-LF scheme. If we compare the 1L  error with computing time (or 
the resolution of numerical solution and computing time), then we can find the  
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Figure 10. Double Mach problem. (a) The density contour is computed by the WENOEL-LF scheme with 
400 × 100; (b) The density contour is computed by the WENOEL-LF scheme with 560 × 140; (c) The density 
contour is computed by the WENOJS-LF scheme with 400 × 100. 30 equally spaced contour lines are plotted 
from 1.731 to 22.9705. 

 
WENOEL-LF scheme possesses higher efficiency than the WENOJS-LF scheme. 
That is, to obtain the numerical solution with the same resolution, the 
WENOEL-LF scheme needs less computing time. 
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