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Abstract

This article examines a fifth order critically damped nonlinearsystem in the case of small equal ei-
genvalues and tries to find out an asymptotic solution. This paper suggests that the solutions obtained
by the perturbation techniques based on modified Krylov-Bogoliubov-Mitropoloskii (KBM) method is
consistent with the numerical solutions obtained by the fourth order Runge-Kutta method.
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1. Introduction

The Krylov-Bogoliubov-Mitropoloskii ([1] [2]) method, known as KBM method, is one of the most used meth-
ods for analysing nonlinear oscillatory and non-oscillatory differential systems with small nonlinearities. Krylov
and Bogoliubov [1] first developed this method to find the periodic solutions of second order nonlinear differen-
tial systems with small nonlinearities. However, the method was later improved and justified mathematically by
Bogoliubov and Mitropolskii [2]. It was then extended by Popov [3] to damped oscillatory nonlinear systems.
The Popov results were rediscovered by Mendelson [4] because of the physical importance of the damped oscil-
latory systems. In the meantime, Murty et al. [5] developed an asymptotic method based on the theory of Bo-
goliubov to obtain the response of over damped nonlinear systems. Later, Murty [6] offered a unified KBM
method, which was capable to cover the damped and over-damped cases. Sattar [7] also examined an asymptotic
solution for a second order critically damped nonlinear system. Alam [8] proposed a new asymptotic solution for
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both over-damped and critically damped nonlinear systems. Akbar et al. [9] propounded an asymptotic method
for fourth order over-damped nonlinear systems, which was straightforward as well as easier than the method
put forward by Murty et al. [5]. Later, Akbar et al. [10] extended the method for fourth order damped oscillatory
systems. Akbar et al. [11] also suggested a technique for obtaining over-damped solutions of n-th order nonlin-
ear differential systems. Recently, Rahaman and Rahman [12] have found analytical approximate solutions of
fifth order more critically damped systems in the case of smaller triply repeated roots. Besides, Rahaman and
Kawser [13] have also proposed asymptotic solutions of fifth order critically damped nonlinear systems with
pair wise equal eigenvalues and another is distinct. Further, Islam et al. [14] suggested an asymptotic method of
Krylov-Bogoliubov-Mitropolskii for fifth order critically damped nonlinear systems. Furthermore, Rahaman and
Kawser [15] expounded analytical approximate solutions of fifth order more critically damped nonlinear sys-
tems.

This study seeks to find solutions of fifth order critically damped nonlinear systems where two of the eigen-
values are equal and smaller than the other three distinct eigenvalues. This paper shows that the obtained per-
turbation results show good coincidence with the numerical results for different sets of initial conditions and ei-
genvalues.

2. The Method
Consider a fifth order weakly nonlinear ordinary differential system
x(v)+k1x +kx+kx+kx+kx_—gf( ,'x,xxx) @))

where x and x™ denote the fifth and fourth derivatives respectively and over dots represent the first, second
and third derivatives of x with respect to t; k;,k,,k;,K,, ks are constants, & is a sufficiently small and positive

parameter and f ( X, X, X x) is the given nonlinear function. Let us choose that the characteristic equation of

the linear equation of (1) has five eigenvalues, where two of the eigenvalues are equal and other three are distinct.
Suppose the eigenvalues are —A,-A,—u,—v and 7.
When & =0, the solution of the corresponding linear equation of (1) is

X(t,0)=(a, +hst)e™™ +cee ™ +dse™ +he™ )

where ay,b,c,,d, and h, are integral constants.
When ¢ =0, following Alom [16], an asymptotic solution of (1) is found in the form

x(t,é‘):(éhrbt)e*ﬂtJrce"“+de*“t +he™ +eu, (a,b,c,d ht)+-- 3
where a,b,c,d and h are functions of t and they satisfy the first order differential equations
a(t)=eA (ab,c,dht)+
b(t)=¢ 1(a,b,C,d,h,t)+
¢(t)=¢C,(a,b,c,d,h,t)+:- "
d(t)=¢D,(ab,c,d,ht)+
h(t)=eH, (a,b,c,d,h,t)+

In order to determine the unknown functions A,B,,C,,D, and H, we differentiat? )the proposed solution (3)

fifth times with respect to t, substituting the value of x and the derivatives X, X, X, x™ xY inthe original equation
(1), utilizing the relation presented in (4) and finally equating the coefficients of ¢, we obtain

N ) B oA N Z(a j(a J
e =+ pu—A||=+v-A||=+n-2 it BB e[ Lh g + C,
[at # j(at Y J[at i J[ at j [at ”j a V)T
B (o b b ‘(o b
+e | =+ 4- + —+n—-v |Dj+e"| —+1- + —+v-n [H 5
[at Vj (at a Vj(at 7 Vj : [at "j (at a "](at Y '7) : ©
o V(o G 0 )
) -f%(a,b,c,d,h,t
+[at+ j[at ’”‘J(at j(at”J”l ( )
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where f(o)(abc,d,h,t)zf(x %o, %, %, XU ))

and x,=(a+bt)e ™ +ce* +de™ +he ™.
In thls investigation, we have expanded the function f© in the Taylor’s series (see also Murty et al. [5] for
details) about the origin in powers of t. Therefore, we obtain

0

itq Z F (a b C,d, h) —(i4+ jp+kv+n)t (6)

q=0 i,j,k,I m=0

Here the limits of i, j,k,I and mare from0to oo.But for a particular problem they have some definite
values. Therefore, using (6) in (5), we obtain

e“(g+y—lj(g+v—l)(a+r] lj 6A1 +2B,
ot ot ot ot at
al 0 (o 0 NG (o 0
+e”‘(a+i—yj (E+V—ﬂ)(a+ﬂ—ﬂjcl+e ‘(E+/1—vj (6t+ﬂ Vj(at-f-?] ij
) (o 0 o .Y(o 0 B
+e —+ - —tpu-nl|=+v-n|H+| =+ || =+ul|=+v|—=+nlu
(at ”j (at : ")[at Y ”j : (6t Mat ”j(at VJ(at ”)1

0 0

:_th Z (a b C,d,h) i+ jut+kv+n)t

q=0 ijkImO

U]

Following the KBM method, Sattar [7], Alam [17], Alam and Sattar ([18] [19]) imposed the condition that u,
does not contain the fundamental terms of f® . Therefore, Equation (7) can be separated in the following way:

0 0 0 oA _t(a jz[a j(a j
e +Uu—A||—+v-A4||—+n-1 +t—+ZB +e | —+A- —+v- —+n—-u|C
(at a j(at Y j(at 7 j(at ot ] R N R P

0 ‘(o G G ‘(o 0
+e| —+1- —+u-v|—+n-v|D+e"| —+1- —+u-n| —+v-n|H 8
(at V) [at g V)[at ! le [at ’7) [at g ”)(at ' ”) 1 ©)
_{ z FOm (a b C,d,h) (i2+ jutkv+ln)t +t z Flm (a b C,d,h) (i2+ ju+kv+in)t }
i,jk,1,m=0 i,jk,I,m=0
o Y(o G G - (i2+ sk
— 4| | =+ t F a,b,c,d,h)e il 9
[at Nat ”j(at )[at j E g )e )
Now, equating the coefficients of t° and t* from both sides of Equation (8), we obtain
- a 6 a aBl < |ﬂ+ 1+Kv+17,
e Sru-A|| =Hv-A|=+n-4 F..(a,b,c,d,h)e skt 10
[at g ][at Y j(at " j "B i )< (0

e“(g+y—ﬂj(g+v—lj(i+n—ﬂj(%+281]
ot ot ot ot

0 (o )
+e | 41— —+v—ul||=+n-u|C

[at ’”’Mat Y “)(at " ”)1

2

%+/1—vj (%—l—y—vj(%—i—n—v}@ (11)
9
ot

2
0 0
+A- —+u-n||—+v-n|H
o) (Geumn) Gvon)n
—_ i FOm(abc,d,h) —(iA+ ju+kv+n)t

Solution of Equation (10) is
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) i (a b, C,d,h) —{(i-1)A+ ju+kv+injt
i,j.k,1,m=0 QOQ]_QZQ3

Q, ={(i-1) A+ ju+kv+In}
Ql:{l/1+(1—1)y+kv+|77}
={id+ ju+(k-1)v+In}

Q, ={id+ ju+kv+(1-1)n}

(12)

where

Substituting the value of B, from Equation (12) into Equation (11), we obtain

d 0 d oA l( Jz[a j(a j
e +u—-A||=+v-A||—+n-41 +e™ +A- —+v- —+n—u|C
(at a j(at j(at g )& a T\ a T T e T

2 2
+e‘”‘(%+ﬂ—vj (%+ﬂ—vj(%+ﬂ—vjD1+e_"t(§+ﬁ—77j (;Jr# ﬂj[%ﬂ’—’?j"'l (13)

i FO (a b od h) iaefuskoeln)t L i 1m (a b C,d,h) —(iA+ ju+kv+in)t

i,j,k,l,m=0 i,j,k,1,m=0 Qo

Different authors imposed different conditions according to the behavior of the systems, such as Alam ([20],
[21]) imposed the condition i, +iyA, +--+i A, < (i +i,+--+i ) (4 + 4, +--+4,)/n. Consequently, we
have investigated the solutions for the case A <« u < v < n. Thus, we shall be able to separate the Equation
(13) for the unknown functions A,C,,D, and H,; and solving them. Thus, substituting the values of
A,B,,C,D, and H, into the Equation (4) and integrating, we shall obtain the values of a,b,c,d and h. Equ-
ation (9) is a fifth order inhomogeneous linear differential equation. Therefore, it can be solved for u, by the
well-known operator method. Hence, the determination of the first order approximate solution is completed.

3. Example

As an example of the above method, we consider the weakly nonlinear differential system
XU ko™ K+ KK+ KX+ kX = —£X° (14)
Comparing (14) and (1), we obtain
£ =(a® +3a’t +3ab’t’ +b’t* Je > +3(a’ + 2abt +b°t* )ce )" +3(a’ + 2abt + b°t? ) de )
+3(a” +2abt + bt* ) he 7 1 3(a+bt)c’e 1?4 3(a+ bt)d%e AN
+3(a+bt)h%e ) 1 el 4 3c?de )" 1 3ed e PN 4 g% (15)
+ S(CZe’Z”‘ +2cde ) 4 2 ) he ™ +3ch?e 27" 4 3dhZe (27"
+h% " 16(a+bt)cde )" +6(a+bt)che " 1 6(a+bt)dhe !

Now, comparing Equations (6) and (15), we obtain
Z F (a b C,d,h) —(iA+ ju+kv+in)t

|
— a3e -3t + 3a20e 7(2/I+I])t 7(/I+2/1)t

+3ad%e ) 4 3ah2e (1 4 ¢33 4 3c?de (24! 4 3cd e !

+d3%e3 +3(c2e’2”‘ +2cde ) 4 d 2% 2”‘) e 4+ 3ch2e (24t

—(22+u)t (24+v)t

+3a%de” +3a’he +3ac’e

+3dh2e )t 4 n3e31t 4 Gacde 7 1 pache )" + 6adhe !
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i I:l,m (a: b,c,d, h)e’(”*i/ﬁkwlq)t

i,j.k,l,m=0
= 3a’be** + 6abce *)" + 6abde ***)" + pabhe (**7)" 4 3pcZe (H 24!

+3pd2e #2)t  3ph2e (42t 4 gphede !t 4 Bhche Mt 1 ehdhe 4!

i Fom (a, b,c,d, h) g (i i)t

i,j.k,I,m=0
—3ab%e M + 3bzce—(2/1+y)t n 3b2de—(21+v)t +3p? he—(21+r7)t

i F3,m (a, b, c, d, h) e’(i)~+jﬂ+kv+lr;)t _ bgeiait

i,j.kI,m=0

For Equation (14), the Equations (9) to (11) respectively become

el

S {3ab2t2e‘“‘ +3p%t%ce Pt 4 3p%t2de ) 41302t %he (A 4 b3t3e‘“t}

e (ﬁ+ﬂ—ﬂ](ﬁ+v—lj(g+ﬁ—ﬂj%
ot ot ot ot

= {:Sazbte"”~t +6abtce )" 1 gabtde > + sabthe **)" 4 3ptcZe 24!

+3btd %e 2 4 3pth2e 27" 4 gbtcde ) + Bbtche 4! 4 6btdhe'(“v+’7)t}

af 0 ) ) oA uf® ‘(o b
e =+ u—A|| =—+v-A||—+n-A|| =+2B |+e | —+A- —tv—pu || =—+n-
(at g j(at ' j(at 7 j[at J [at “] (at Y “J[at "
b (o 0 b (o )
+e =+A- —+pu-v|—+n-v|D+e"| —+1- —+u-nl|=+v-n|H
[at Vj [at # Vj(at 7 le (at "j [at g ”](at Y ") :

— _{a?:e—:ﬂt + 3azce—(22+y)t + 3a2de—(21+v)t + 3a2he—(2/1+77)t + 3acze—(l+2y)t +3ad Ze—(i+2v)t + 3ahze—(i+2r])t

+% % 4 3c2de ) 4 3cd %e B 4 3 4 3(cze’2“t +2cde )t 4 g% ) he ™"
+3ch%e 7 1 3dh2e (27t 4 3" 4 6acde )" + bache )" +6adhe 17 )‘}
The solution of the Equation (18) is
B, = l,a’be ?* +l,abce )" 4 I bc%e 24 +1,abde **)" + I bede !
+1,abhe " ¢ 1bche " + 1.bd %e 2 + I,bdhe 7" 1, bh%e 2"

3 -3
24 (u-32)(v-32)(n-34) 2= AA+u)(v—pu-22)(n-2A-u)
-3 -3

where l =

I, =

6 -3

2 i) (v —2u-2)m-2u=2) A=y -2 —v—24)

(A+v)(u+v)(A+p)(n-A-p-v)’ e A(A+n)(u-24-n)(v-24-n)’

6 -3

l, = l, =

(A+m)(u+n)(A+u)(v=2-u-n)

2V(/1+V)(,u—l—2v)(77—2v—l)’

(16)

(17)

(18)

(19)

(20)
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6 -3
’ I =
(A+n)(A+v)(v+n)(u—-A-v—-n) 10 2n(u-2A-2n)(v-2-2n)(n+2)
Putting the value of B, from Equation (21) into Equation (20), we obtain

af 0 ) b oA (o B
e =—+tu—A||=+v-A|=+n-4 re =+ A- —+v—u||=+n-ulC
[at g j(at ' j(at § ](at) (at ”Mat ' ”J(at ! ”jl
b (o 0 B (o 0
+e =+1- —+u—v| —+n-v|D+e"| —+1- + H,
(at Vj [at g V)(at ! V] : (at ”J (at o ")(at . ’7]

{ase 3y ga20a (224t

ly =

—(24+v)t (22+n)t (A+2u)t (A+2v)t (A+2n)t

+3a’de +3a’he” +3ac’e” +3ad%e +3ah%"

+c%e ¥ 4 3c%de B 4 30 e 4 g3 +3(cze’2”t +2cde )t 4 d% 2V‘)he”’t

+3ch2e @)t 1 3dn2e ")t 4 n3%e " 4 gacde **)" + Gache !t 16adhe ! } 1)

—2l,a%be** (u—32)(v—34)(n-32) + 4alabce ! (v =22 — ) (n — 22— p)
+2lpce A (A + ) (v - 2u—2)(n—2u— A)+4A,abde N (u—24—-v)(n-24-v)
—2lpede N (v 2) (A + ) (17 —v = A— )+ 4Algabhe P (- 22— ) (v —24-7)
—2lLbche N (A4 ) (v—A—p—n)(A+ u)+2lpd%e D (u—2v = 2) (v + A)(n—2v - 2)
—2|9bdhefl+v+”)t(,u—v—/l—n)(ﬂ+77)(v+/1)+2|10bh g (2re A (L=2n-2)(v-2n-2)(A+n)

Since the relation 1<« u<v < n among the eigenvalues, so the Equation (21) can be separated for the
unknown functions A,C,,D, and H, in the following way:

o (Grrnt | Govt | Gon-2) B () -e-20)(r -0

2
(o] (a0

v—
at
= 4M2abce*(2my)t (v —-2A —/1)(77 _21— ,U) _3aZCef(Zl+y)t
+21,bc%e (A (A+up)(v—-2u—-2)(n-2u—2) _ 3acle (2t _ 3g-3ut

2
e (§+}L—v) [%+u—vj(§+n—vj D,
=—3a’de **)" —3ad%e "2 _3c?de (4t —3cd2e )t — g% —pacde )

+42),abde™ ! (u—24-v)(n-24—v)=2lbede N (v + A) (A + p)(n—v—A— )
+2lbd%e @ (u—2v = 2)(n—2v=2)(v+2)

G ‘(o 0
e’ +A- —+u- +v—-n|H,
(at "J [at g ”j(at "J

_ Sa he (22+n)t 3ah2 7ﬂ.+217 3(02 —Zﬂt+20de p+v)t 2 —2vt)he nt 3Ch2e7(277+,u)t

—3dh%e ")t _ 33" —pache 4 )t —6adhe'“”” +42labhe M (u—24—n)(v-24-7)

— 21, bche et (/1+77)(}L—i—/l)(v—ﬂp—,u—n)—2|9bdhef(“”")t (u—v—-2A-n)(A+n)(v+2)

+21,bh?e T A (u—2n = 2) (v =21 - 2)(2+7) 22)
Solving Equation (22), we obtain

A =ma’be** + m,a’e " (23)
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I 1
where m==<,m =
AT 22(u-34)(v-34)(n-34)
C, = kabce 2 + kbeZe ! 4 k,a%ce 2* + k,ac%e 1N 4k cle M (24)

L 1 C.0) R 3
(A+,u)2’ ? T (/1+,u)2(v—2/1—,u)(77—2/1—,u)'
3 _ 1
(2-3u)" (v=3u)(n~3u)

1.+;t)t

where k, =

Coai(v-2u-2)(n-2u-2)"

—2t

D, = p,abde ?* + p,bede ™" + p.bd%e ™) 4+ p,ade  + p,acde !

(25)

A+v +v 3.2t
# e

+ pydcZe 24 + p,ad?e " 4 pedZe M 4 pyd
41,2 0 :2|5(/1+/21)’ pszlg(l—i-v), 0, - -3 |
(v+u) 2v? (/1+V)2(,u—21—v)(77—2/1—v)

—6 3 -3

(v (V) m—r—p—) " —zuv ) (ue)—2u—v) " @ (u-2v—1)
3 -1

B 21/(&—21/—#)2 (77—2v—lu)' Po= (1—31/)2 (1—=3v)(n-3v)
2% g,bche ! 4 q,bdhe ) + g,bh%e 7" 4+ g.a%he A
h Aty q.cdhe (4N (26)

—2nt

Ps

H, = g,abhe

+geache )" 4 q.c%he 24 + g adhe " + g,ah%e

—2vt vt

+ qllchzr-z’(’”")t +0,d%he™" + qladhze’( +q,h%

41,2 g :2l7(ﬂ+77) :2|9(/1+v) q =|10(/1+77)
N ) A (2
05 = 2 -3 v g = 2 ° )
(A+n) (u—22-n)(v-24-n) (u+n) (A+n)(v-2A-pu-n)
3 B 6
(A2un) (uen)v—2e-m) " (ven) (Zen)(uv—2-n)
-3 B —6
d® (u-2n-2)(v-2n-2) qm_(l—,u—v—n)z(ern)(,uan)’
3 q, = 3
277(1—277—;1)2(1/—277—;1)’ . (/1—2v—77)2(y—2v—77)(v+77)’
_ 3 3 -1
S22 (u-2n—v) ¢ (A=n) (u—3n)(v—3n)
And the solution of the Equation (18) is

g, =

gy =

O =

Ous

u, =ab’ (nltz +nt+ ﬂg)e_w +b° (n4t3 +nt’ +nt+n, )e'”t + bzc(nst2 +ngt+ nm)e’(““*)‘
@7)
+b7d (nyt? + b+ nyg Je 1 bPh (gt gt +nyg e 7

3 1 1 1 1

427 (32— u)(34—v)(34-1)’ nz:an[(s,z—y)+(3,1—v)+(3,1—77) Al

where n, =
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1 1 1 1 1 1 1
n, =2n >+ + 2+(—+ J{ + ]
{(34_77) (382-n)(34-v) (34-v)" 4 31-u)\384-n 31-v

+i+ 1 + 1
42*  A(34-u) (3,1_ﬂ)2 '

n, =

= n; =3n 1 + 1 + 1 +l
422 (32-p)(3A-v)(34-n)" ° T (BA-u) (34-v) (3A-n) A

1 1 (1 1 J( 1 1 J
ng =6n + =+| =+ +
{ 31— ;7 32 77)(31—‘/) (3,1_‘/) A 3A-u)\3i-n 31-v
L3 1
42? ,1(3,1—;1) (34_ﬂ)2 '

n =6n[ ! + ! + 1 + 1
" BA-n) (3a-n) (34-v) (3i-v)(31-5) (31-v)

+(l+ 1 j L + L + :
A 3A-u)\ (3a-n) (34-v)(32-n) (31-v)

J{ﬁJrﬁJ(%Jr 2(3/11—,U)+(3/1:”)2]

+i+ 3 + ! + !
22° A2*(3A-u) A(3a-u) (34-u) |

3 { 1 1 12 }
Ny =2n, + +—+ ,
2&(/1+,u (2A+pu—v)(24+p— 77) 2+u—-v 2A+u-n 24 A+u

1 N 1 i
2/1+,u 77 2/1+# n)(24+u-v) (2A+pu-v)

1 1 1 1 1 3
—+ + ,
[2/1 /1+,uJ[2/1+,u n 24+ u-— v] 422 2(A+n) (/H#)z]
3

n, = , h,=2
T2(A+v) (24+v-p)(24+v-n) n“{

1 1 1
n,=2 + +
s nll[(2/1+v—i7)2 (22+v-n)(24+v—pu) (2}L+v—,u)2

1 1 1 2
+ +—+ ,
2A+v—u 2l+v-n 24 A+v

(l 2 j 1 1 1 1 3
+ —+ + +—5+ + Al
20 A+v )\2A+v-n 2A+v-pu) 42° A(A+v) (A+v)

3
= y n =2
e 22(A+n) (24+n-p)(24+n-v) n”{

1 1 1 2
+ +—+ ,
2A+n—pu 2l+n-v 24 A+7n



Md. F. Alam et al.

1 1 1
Ne =2n + +
° 14[(2}.+77—V)2 (22+n-p)(22+n-v) (2&—1—77—/1)2

1 2 1 1 1 1 3
+| —+ + +—+ + 5
24 A+n \2A+n-pu 22+n-v) 42° A(A+n) (A+n)
Substituting the values of A,B,,C,,D, and H, from Equations (23), (20), (24), (25) and (26) into Equation
(4), we obtain

a=¢ [mlazbe‘“t +m,a’e” “‘]

b:g[llazbe’“‘ +l,abce ! 11 be%e 2 +1,abde ! + I bede 4N

+lgabhe 7" + 1 bche 7 + I)bd e " +I,bdhe " +1, bh%e " |
¢= g[klabce +k,bc2e ! 4k alce M +k,ac’e ! 4 ksc3e’2”‘] (28)

(/1+,u)t (/I+;t

d= g[ p,abde 2 + p,bede ! + p.bd%e ™) + p,a’de? + poacde”

+ pgdce? +p,ad?e ™) 4 pedZe ! 4 p9d3e‘2"]

h= g[qlabh 2% 4 q,bche )" 4 g bdhe ) 4+ g bh% e 7 4 g a’he 2H

A+v l+n

+geache " 4 q,c?he? + giadhe " + gyah%e " + g cdhe !

+qyych’e 7 + q,d*he ™ + g dh’e 7 4 h’e " |

Here the equations of (28) have no exact solutions, but since a,b,¢,d and h are proportional to the small
parameter &, so they are slowly varying functions of time t. Therefore, it is possible to replace a,b,c,d and h by
their respective values obtained in linear case in the right hand side of Equation (28). Murty and Deekshatulu [22]
and Murty et al. [5] first made such type of amendment to solve similar type of nonlinear equations. Thus, the
solution of (28) is

-2t

—e 31 e—22t
a=a,+¢ maob ¥ +m,a; ———

22
24t 1— —(A+u)t 72/11 1 —(A+v)t
b=by +| Lalh, =S+ Labe, i L L,
24 A+pu 2u A+v
1— il (/“’I) 1- ~(un)t 1—e 2
+|5bocodoe— e ob ho +I7bocohoe—+lsbod§ ° (29)
HEV mtn

_a vt -2t
by dh I p, hzi}
v+n 2n

-2t —(A+p)t 2t —( A+t

1- 1- 1- 1- 1—e24
c=c,+&| kaghye, S k,b,c2 ¢ +k;aZc, =° k,a,C; € +kcs ¢

A+u 24 A+u 2u

1—g2M 1- e—(/1+u)t ,1- e—(/Hv)t . 1- g A

d =d, +&| paghyd, —5 P20,c,d, WJF P3byd, — " P,3;d, i

1— e—(/1+,u) e—2/4t (/1+v)t 1— e—(,u+v)t 1— e—2vt
+ Ps2yCody ————+ Psly Co + p7a0d2 +p8C0d02 + pgdg

A+u 2u A+v H+v 2v
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22t —(A+u)t —(A+v)t —(A+n)t
—e l-e l1-e l-e
h= ho te qlaoboho T + qzbocoho ﬁ + qsbodoho ? + q4boh§ ﬁ
1—g2M _a(Ara)t 1—g 2 1— e—(lﬂ/)t
+qsa§hoT+qeaocoho +q7C§hoT+qaaodoho Aty
()t ~(u)t ~(u)t 1_eg2

l-e 1-e 1-e -
+ q9aoh§ﬁ+qmcodoho?+qucohg +q12d§hoT
7(v+7])l s 1_ 672171

l-e
+0,,d,h? +
q13 0''0 V—‘r]] q14h0 277

We, therefore, obtain the first approximate solution of the Equation (14) as
x(t,e)=(a+bt)e ™ +ce* +de™ +he ™ +eu, (30)

where a,b,c,d and h are given by the Equation (29) and u, is given by (27).

4. Results and Discussion

Generally, the perturbation solution is compared to the numerical solution in order to test the accuracy of the
approximate solution obtained by a certain perturbation method. First, we have considered the eigenvalues
A=015 x=0.80, v=3.82 and 7=14.5. We have then computed x(t,&) using (30), in which a,b,c,d
and h are obtained from (30) and u, is calculated from Equation (27) together with initial conditions
a,=0.30, b,=0.1 ¢,=0.3,d,=045 and h,=0.4 when £=0.1. Throughout the paper all the figures
(Figures 1-3) represent the perturbation results which are displayed by the continuous line and the correspond-
ing numerical results have been computed by fourth-order Runge-Kutta method, which are plotted by a discrete
line.

Again, we have computed x(t,g) from (30) by considering 4=0.1, x£=0.75, v=3.82 and r=14.3.
We have computed x(t,g) using (30), in which a,b,c,d and h are obtained from (30) and u, is calculated
from Equation (27) together with initial conditions a, =0.25, b,=0.1, c¢,=04, d,=0.35 and h,=05
when ¢=0.1.

Finally, we have computed x(t,g) from (30) by considering 4=0.2, x=0.85 v=39 and 5 =14.7.
We have computed x(t,g) using (30), in which a,b,c,d and h are obtained from (30) and u, is calculated
from Equation (27) together with initial conditions a,=0.35, b,=0.2, ¢,=0.3, d,=04 and h,=0.45
when ¢=0.1.
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Figure 1. Comparison between perturbation and numerical results.
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1.2
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Figure 2. Comparison between perturbation and numerical results.
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Figure 3. Comparison between perturbation and numerical results.

5. Conclusion

In this paper, we have obtained an analytical approximate solution based upon the KBM method of fifth order
critically damped nonlinear systems. Moreover, we have shown in this paper that the results obtained by the
proposed method correspond satisfactorily to the numerical results obtained by the fourth order Runge-Kutta

method.
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