
American Journal of Computational Mathematics, 2015, 5, 224-238 
Published Online June 2015 in SciRes. http://www.scirp.org/journal/ajcm 
http://dx.doi.org/10.4236/ajcm.2015.52019  

How to cite this paper: Ali, A., Zaman, H., Abidin, M.Z., Naeemullah and Shah, S.I.A. (2015) Analytic Solution for Fluid Flow 
over an Exponentially Stretching Porous Sheet with Surface Heat Flux in Porous Medium by Means of Homotopy Analysis 
Method. American Journal of Computational Mathematics, 5, 224-238. http://dx.doi.org/10.4236/ajcm.2015.52019  

 
 

Analytic Solution for Fluid Flow over an  
Exponentially Stretching Porous Sheet with 
Surface Heat Flux in Porous Medium by 
Means of Homotopy Analysis Method 
Azhar Ali1*, H. Zaman1, M. Z. Abidin2, Naeemullah1, S. I. A. Shah1 
1Faculty of Numerical Science, Islamia College University, Peshawar, Pakistan  
2Faculty of Mechanical Engineering, CECOS University of IT and Emerging Science, Peshawar, Pakistan  
Email: *azhar_ali017@yahoo.com  
 
Received 23 April 2015; accepted 27 June 2015; published 30 June 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, the analytical solution of a viscous and incompressible fluid towards an exponen-
tially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and 
heat transfer flow, is presented. The equations of continuity, momentum and the energy are 
transformed into non-linear ordinary differential by using similarity transformation. The solu-
tions of these highly non-linear ordinary differential equations are found analytically by means of 
Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical re-
sults presented in the literature. The accuracy of the HAM is indicated by close agreement of the 
two sets of results. By this method, an expression is obtained which is admissible for all values of 
effective parameters. This method has the ability to control the convergence of the solution. 
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1. Introduction 
In fluid mechanics and heat transfer many engineering problems are basically nonlinear. The majority of these 
problems do not have analytical solutions. Using numerical techniques, some of them can be solved and some 
can be solved analytically. Stability and convergence should be considered so that the divergence can be avoided 
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in results obtained by numerical method. To find the analytic solution of these non linear equations, we need 
other methods such as perturbation method [1]. But in perturbation method, a small parameter is needed that is 
to be inserted in the equation. The main deficiency of perturbation method is to find that small parameter which 
is exerted it into the equation. 

1992 [2] [3], Liao introduced the homotopy analysis method (HAM) which doesn’t need such small/large pa-
rameter and then he further improved and developed this method. The most significant feature of this method is 
that region of convergence can be controlled and adjusted, in comparison to other methods. It should be neces-
sary to mention that the Homotopy Perturbation Method (HPM) brought forth in 1998, is only a particular case 
of HAM [4] [5]. 

HAM based on introduction of homotopy in topology combined with the traditional perturbation method for 
the solution of non linear equations, but contrary to the traditional perturbation methods, HAM doesn’t need a 
small perturbation parameter in the equation. A homotopy is constructed with an embedding parameter p. Val-
ues are given to p from zero to one. The problem under consideration takes a convenient simple form which 
presents a closed form of analytical solution as p = 0. Similarly if the value of p increases, that finally takes the 
value one. Then at this stage, the solution of the original problem is obtained. The reliability of HAM also de-
pends on two other auxiliary parameters, first is the parameter   and the other one is function. The choice of 
that function is to be practiced with in order to find out the optimal solution. With the help of  -curve, the 
convergence of the analytic solution is ensured. HAM is a novel technique [6] [7], which has been used by many 
researchers for solving non linear ordinary differential equation. Recently, HAM has applied by many research-
ers to find the solution of different problems in science and engineering. Ayub [8] has considered the problem of 
steady, third grade fluid flowing past an infinite porous plate and for exact analytical solution of the governing 
non-linear differential equation, he uses HAM. On the basis of HAM, Wang and Pop [9] also proposed exact 
analytic solutions for flow within a non-Newtonian fluid film whose motion is caused solely by the unsteady 
stretching of a horizontal elastic surface. Wang [10] applied HAM to find out the explicit analytic solution of the 
Volterra equation. The comparison of HAM and HPM through a linear partial differential equation has been 
made by Liang and Jeffrey [11]. To numerically approximate the Eigen values of the fractional Sturm-Liouvile 
problems, Abbasbandy and Shirzadi [12] used HAM. The application of HAM was considered by Nassar [13], 
as he suggested that by using HAM the solution of the nonlinear Poisson-Boltzmann equation for semiconductor 
devices was extremely good analytical approximations. Zaman [14] studied the series solution of stagnation 
point flow with mass transfer along an accelerated vertical porous plate with suction by means of HAM and he 
found out an exact analytical solution. Also Zaman, H. [15] proposed exact analytic series solution for heat 
transfer from a continuous surface in a parallel free stream of viscoelastic fluid. The above discussion shows that 
HAM is more flexible, valid and effective for the solution of non linear ordinary differential equations arises in 
science and engineering. 

In the present study, we use the homotopy analysis method for the solution of two non linear ordinary diffe-
rential equations introduced by Mandal [16]. The distribution of the paper is as follows. In Section 2, the 
methematical formulation of the problem is presented. The basic idea of HAM and solution by means of HAM 
is discussed in Section 3. The convergence of the obtained series solutions is carefully analyzed in Section 4. 
The graphical results, table and discusion are presented in Section 5. The conclution is presented in Section 6. 

2. Mathematical Formulation 
2.1. Flow Problem 
Assume the two-dimensional, steady and incompressible flow of a viscous fluid past a flat sheet coincided by 
the plane 0y =  in a porous medium with a non-uniform permeability 1K . Mandal [16] considered the flow in 
the porous medium. The governing equation of the problem is based on Darcy’s law. The Darcy’s law accounts 
for the drag applied by the porous medium [17] [18]. There is an increase in the form drag [19] due to the sig-
nificant inertial effects at maximum velocities. The inertial effects and the effects of solid bodies have been ig-
nored. Near the boundary and in a media with high porosity [20] [21] these effects are more important. In addi-
tion, the non-linear Forhheimer term is ignored however the linear Darcy term is retained. That Darcy term de-
scribes the distributed body force exerts by porous medium. The Reynolds number was assumed to be very 
small in this study (typically < 10) [20] [22]. 

We consider Cartesian coordinates (x; y; z). It is supposed that the sheet is associated to a variable heat 
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flux ( )( )wVHWq x . The flow is limited to 0y > . Two equal and opposite forces are applied along x-axis, as a 
result the wall is stretched keeping the origin fixed. The effect of these forces causes a symmetric boundary at 
the centre (the origin as shown in the Figure 1) of the porous medium. 

For two-dimensional flow, the velocity field is considered as 

( ) ( ), , , ,0V u x y v x y=                                       (1) 

where u and v are the velocity components in x and y directions respectively. The governing equations of conti-
nuity [23], momentum [19] [24] and energy [23] [25] are 

0u v
x y
∂ ∂

+ =
∂ ∂

                                         (2) 

2

2

u u uu u
x y ky

νν∂ ∂ ∂
+ = −

∂ ∂ ∂
                                     (3) 

2

2
p

T T Tu v
x y c y

κ
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
                                     (4) 

where ρ represents the fluid density (assumed constant), 
µν
ρ

=  is the kinematic viscosity, pc  is the specific 

heat, μ is the coefficient of fluid viscosity, κ  is the thermal conductivity. 

2.2. Boundary Conditions 
The appropriate boundary conditions for the problem are 

( ) ( )
0, , , wq xTaty u U v V x

y κ
∂

= = = − = −
∂

                               (5) 

, 0, 0asy u T→∞ → →                                      (6) 

Here, 0e
Nx
LU U=  is the stretching velocity [26], ( ) e

2

Nx
O L

w wo O
U

q x q T
Lν

=  is the variable surface heat flux 

[27], 0U  is the reference velocity, woq  is the heat flux and OT  is the temperature.  
 

 
Figure 1. Geometrical representation of the problem.                              
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( ) 0e
Nx
LV x V=  is a particular type of velocity at the wall is assumed [28]. where 0V  is constant, ( ) 0V x <  

is the velocity of blowing and ( ) 0V x >  is the velocity of suction. 0e
Nx
Lk k=  is the non-uniform permeability 

of the medium. Where 0k  is a constant, which gives the initial permeability and N is the exponential parame-
ter. 

However, for the sake of comparison, we shall consider the same case as discuss by Mandal [16] of pre-
scribed surface temperature (PST), at 0wT T y= = . 

Introducing the similarity variable as 

e
2

Nx
O LU

y
L

η
ν

=                                           (7a) 

( )0e
Nx
Lu U f η′=                                          (7b) 

( ) ( ){ }e
2

Nx
O LU

v N f f
L

ν
η η η′= − +                                 (7c) 

( )e
Nx

wo L
O

q
T T θ η

κ
=                                        (7d) 

and by substituting (7a)-(7d) in Equations (3) and (4), we obtain  
2

12 0f Nff Nf K f′′ ′ ′ ′+ − − =                                      (8) 

( )Pr 0Nf Nfθ θ θ′′ ′ ′+ − =                                       (9) 

And the boundary conditions become as: 
at 0, 1, , 1f f Sη θ′ ′= = = = −                                    (10) 

and as , 0, 0fη θ′→ ∞ → →                                    (11) 

where the prime represents differentiation with respect to η , ( )0 or 0

2

O

O

V
S

U
L

ν
= < >  is the blowing (or suc-

tion) parameter, Pr pcµ
κ

=  is the Prandtl number and 1
2

O O

LK
U
ν

κ
=  is the permeability parameter. 

3. Homotopy Analysis Method  
3.1. Basic Idea 
Assume the following non-linear differential equation in the form of 

( ) 0A g t =                                             (12) 

where A  is a non-linear operator and ( )g t  is the solution of equation. By defining the function ( ),t pϕ   
such as  

( ) ( )0
lim , o tp

t p gϕ
→

=                                        (13) 

where [ ]0,1p  and ( )o tg  is the initial approximation that satisfy initial or boundary conditions and 

( ) ( )1
lim , tp

t p gϕ
→

=                                        (14) 

Then by applying the generalized homotopy method, known as zero-order deformation Equation (12) is 

( ) ( ) ( ) ( ) [ ]1 , ,op t p g t p t A t pϕ− − =                                (15) 
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where   is the auxiliary parameter called control parameter. ( )t  is the auxiliary function,   is the linear 
operator. It is noticed that there is a great independency for choosing the initial guess ( )og t , the auxiliary linear 
operator  , the auxiliary parameter   and the auxiliary function ( )t . The discussed independency has a 
significant role in the strong flexibility and validity of HAM as presented in this paper. 

So, as p takes values from 0 to 1, the solution ( ),t pϕ   changes among the initial guess ( )og t  to the solu-
tion ( )g t . For ( ),t pϕ  , the Taylor’s series expansion with respect to p is given by 

( ) ( ) ( )1, m
mo t mt p g g t pϕ ∞

=
= +∑                                 (16) 

and  

[ ] ( ) ( )
0

,m
m

o m
p

t p
g t

p
ϕ

=

∂
=

∂
                                   (17) 

where [ ]m
og  is known as the mth order of deformation, that leads to 

( )
[ ] ( )

0

,1
.! !

mm
o

m m
p

t pg
g t

m m p
ϕ

=

∂
= =

∂
                               (18) 

By defining the vector of  

{ }1 2, , , ,o mm g g g g=g                                     (19) 

By the definition in Equation (17), the governing equation and the corresponding initial conditions of ( )g t  
can be obtained from zero order deformation Equation (12). Differentiating Equation (12) mth-times with re-
spect to p and considering p = 0 and finally dividing by !m , we get the mth-order deformation equation in this 
form  

( ) ( ) ( ) ( )1 1m m m mg t g t t R gχ − −− =                                 (20) 

where 

( ) ( )
( )1

11
0

,1
1 !

m

mm
p

A t p
R

m p
ϕ−

−−

=

∂   =
− ∂

g                               (21) 

And 

0, 1,
1, 1m

m
m

χ
≤

=  >
                                          (22) 

As we apply inverse operator 1−  to both sides of the Equation (20), we get  

( ) ( ) ( ) ( )1
1 1m m m mg t g t t R gχ −
− −= +                                  (23) 

In this way, we can easily solve the Equation (12) to obtained mg  for 1m ≥  at mth-order, we have 

( ) ( )1
M

mmg t g t
=

= ∑                                          (24) 

By using the initial or boundary conditions we find the constant(s). 
As M → +∞ , we obtain a precise approximation of the Equation (12). The convergence of the above method 

is discussed in detail by Liao [2]. If Equation (12) has a unique solution, then HAM will produce the unique so-
lution, otherwise the HAM will produce a solution between many other (possible) solutions. 

3.2. The Solution of the Problem by Means of HAM  
3.2.1. Zero-Order Deformation Problem 
To find the series solution, ( )f η  and ( )θ η  can be written by the set of base functions 

{ }, 0n nη ≥                                            (25) 



A. Ali et al. 
 

 
229 

( ) 0
n

nnf aη η∞

=
= ∑                                         (26) 

( ) 0
n

nn bθ η η∞

=
= ∑                                         (27) 

where , ,andn n n na b  are coefficients. 
For the problem under discussion, the initial guesses and the auxiliary linear operators has to be chosen as  

( ) ( )1 eof S ηη −= + −                                        (28) 

( ) eO
ηθ η −=                                             (29) 

( )( )
3 2

1 3 2

d d
d d

f ff
f

η
η

= +                                       (30) 

( )( )
2

2 2

d d
dd

θ θθ η
ηη

= +                                       (31) 

With  

( )1 1 2 3e 0C C C ηη −+ + =                                     (32) 

( )2 4 5e 0C C η−+ + =                                       (33) 

And ( )1, ,5iC i =   are the orbitrary constants.  
For the probem, the zero-order deformation is 

( ) ( ) ( ) [ ]1 1 11 , ( , )op t p f t p A t pϕ ϕ− − =                                 (34) 

( ) ( )
0

,
0, , 1

p
p S

η

ϕ η
ϕ

η
=

∂
= =

∂
                                     (35) 

( ),
0

p

η

ϕ η
η

=∞

∂
=

∂
                                        (36) 

( ) ( ) ( ) ( ) ( )2 2 21 , , , ,op t p t p A t p t pψ θ ϕ ψ− − =                               (37) 

( ) ( )
0

,
, 0, 1

p
p

η

ψ η
ψ

η
=

∂
∞ = = −

∂
                                (38) 

[ ] ( ) ( ) ( ) ( ) ( )23 2

1 13 2

, , , ,
( , ) , 2

p p p p
A t p N p N K

ϕ η ϕ η ϕ η ϕ η
ϕ ϕ η

η ηη η
∂ ∂ ∂ ∂ 

= + − − 
∂ ∂∂ ∂  

           (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2

, , ,
, , , Pr , ,

p p p
A t p t p N t p N t p

ψ η ψ η ϕ η
ϕ ψ ϕ ψ

η ηη
∂ ∂ ∂ 

= + −     ∂ ∂∂  
         (40) 

where [ ]( )0,1p ∫  and ( )1,2i i≠ =  are the respective embedding and auxiliary parameter such that  

( ) ( ),0 ofφ η η= , ( ) ( ),1 fφ η η=  and ( ) ( )0,0ψ η θ η= , ( ) ( ),1ψ η θ η= . Obviouslywhen p varies from 0 to 1, 

( ), pφ η  changes from the initial guess ( )of η  to exact solution ( )f η  and ( ), pψ η  from ( )0θ η  to 

( )θ η . By Taylor’s series, we have  

( ) ( ) ( )1, m
o mmp f f pφ τ τ τ∞

=
= +∑                              (41) 

( ) ( ) ( )1, m
o mmp pψ τ θ τ θ τ∞

=
= +∑                              (42) 
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( ) ( )
0,

,1
!

m

m m
p

p
f

m p
φ τ

τ
=

∂
=

∂
                                (43) 

( ) ( )
0,

,1
!

m

m m
p

p
m p

ψ τ
θ τ

=

∂
=

∂
                                (44) 

3.2.2. Higher-Order Deformation Problem 
The mth-order deformation problem are 

( ) ( ) ( )1 1 1 1 1m m m m mf f R fτ χ τ− −− =                                (45) 

( ) ( ) ( )0 1, 0, 0m m mf f f S′ ′= ∞ = =                                (46) 

( ) ( ) ( )2 1 2 2 1, 1m m m m m mR fθ τ χ θ τ θ− − −− =                               (47) 

( ) ( )0 1, 0m mθ θ′ = − ∞ =                                   (48) 

where  

( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 1 1 1 10 2m
m m m n m n n m n mnR f f Nf f Nf f K fη η η η η−

− − − − − − −=
′′′ ′′ ′ ′ ′= + − −  ∑            (49) 

( ) ( ) ( ) ( ) ( ) ( )1
2 1 1 1 1 10, Pr m

m m m m n m n n m nnR f Nf Nfθ θ η η θ η η θ η−
− − − − − − −=

′′ ′ ′= + −  ∑             (50) 

And 
0, 1,
1, 1m

m
m

χ
≤

=  >
                                       (51) 

The general soluton of the Equations (45)-(48) is 

( ) ( )*
1 2 3 em m m

m mf f C C C ηη η η −= + + +                              (52) 

( ) ( )*
4 5 em m

m m C C ηθ η θ η −= + +                                (53) 

In which ( )*
mf η  and ( )*

mθ η  represent the special solution of Equations (45) and (47) and the integral 

constants ( )1 5iC i = −  can be computed by empolying the boundary conditions (46) and (48) as: 

( ) ( ) ( )* '* '*
1 3 2 3 20 , 0 ,m m m m m

m m mC C f C C f C f+ = − = = ∞                       (54) 

( ) ( )* '*
4 5, 0m m

m mC Cθ θ= ∞ =                                  (55) 

thus, it is convenient to find the solution of Equations (44)-(47), continuously in the order m = 1, 2, 3, ∙∙∙ , in 
particular by using the symbolic computation software Mathematica. 

4. Convergence of the Series Solutions 
For HAM solution, the rate of convergence of approximation strongly depends on auxiliary parameter ħ, which 
has big effect on the region of convergence. Due to the region of convergence and rate of convergence of a se-
ries are essentially determined by the base functions, its convergence is guaranteed.  

We observe that the series solutions (24) and (25) contain the non-zero auxilary parameter 1  and 2 . The 
suitable values for 1  and 2  can be compute by  -curve. Figure 2(a) shows the variation of ( )0f ′′  with 

1  using the 12th order of HAM approximation. Figure 2(a) describes that convergent result can be find out by 
taking a value of 1  from the range [ ]–1.5,0 . To find the proper value for 1 , we take the same case as 
discussed by Mandal [16] for permeability parameter 1 1K =  and the three values of suction/injection 
parameter S = −1, 0, 1 in Figure 3(a). Also for exponentail parameter N = 1 and for the same three values of 
suction/injection parameter S = −1, 0, 1 in Figure 3(b). We tried different values of 1  in the range [ ]–1.5,0   
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(a) 

 
(b) 

Figure 2. (a) 1 -curve are plotted for 12th order of approximation when 1K  = 0, N 
= 1, S = 0 and Pr = 1; (b) 2 -curve are plotted for 12th order of approximation when 

1K  = 0, N = 1, S = 0 and Pr = 1.                                              
 

 
(a) 
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(b) 

Figure 3. (a) Skin-friction coeficient ( )0f ′′  against exponential exponent N for 

three values of suction/injection parameter S. 1K  = 1; (b) Skin-friction coeficient 

( )0f ′′  against permeability parameter 1K  for three values of suction/injection 
parameter S. N = 1.                                                          

 
for Figure 3(a) and Figure 3(b) and compared with results obtained by Mandal [16], which shows that the best 
value for 1  is −0.01. Figure 2(b). represents the range for the admisible values for 2  is also [ ]–1.5,0 . For  
finding the suitable value of 2 , we consider the same case as considered by Mandal [16] shown in Figure 
4(b), Figure 5(b), Figure 6(b), Figure 6(d) and Figure 7. We tried different values of 2  in the range 
[ ]–1.5,0  and compared with results obtained by Mandal [16], which shows that the best value for 2  is 
−0.01 ,-0.1 and −0.11. 

5. Table, Graphical Results and Discussion 
In this paper, we consider the same study as discussed by Mandal [16]. Solution of Equations (8) and (9) with the 
boundary conditions (10) and (11) are find out by means of HAM. For the varification of accuracy of the results 
obtained by HAM a comparison is made with the results, obtained by Mandal [16], Magyari and Keller [26], 
Bidin and Nazar [23], El-Aziz [29] and Ishak [25], for prescribed surface temperature (PST) instead of variable 
surface heat flux. For this comparison, we also consider the boundary conditions for temprature as follows: 

At 0, wy T T= =  and as , 0y T→∞ →  where 2e
Nx

L
OT T=  is the temprature at the sheet. 

At last, the boundary conditions take the given form: 
At 0, 1η θ= =  and as , 0η θ→∞ →  (PST). 
A comparison is made for the obtained results for precribed surface temprature (PST) coresponding to the 

values of heat transfer coefficient ( )0θ ′−    for different values of parandal number with N = 1, 1 0K = , N = 1 
and S = 0 (i.e. for non-porous medium and in the absence of suction/blowing at the boundary) with the available 
published results of Magyari and Keller [26], Bidin and Nazar [23], El-Aziz [29], Ishak [25] and Mandal [16] 
are presented in Table 1. The obtained results show an excellent agreement. These results are computed by dif-
ferent values of 1  and 2  from their intervals of convergence respectively, for different orders of approxi-
mations.  

The analytical solution obtained by HAM has a high order of accuracy with a few iterations. 
In order to analyze the effect of various parameters on the flow and temperature profile, analytical computa-

tions have been carried out for variable surface heat flux(VHF) using the HAM consider the same case as de-
scribed by Mandal [16]. To see the effect of different parameters of interest on the velocity and tempprature 
profile, we have plotted the Figures 3(b)-7. 

Let us first discuus with the existence of suction at the wall the effect of exponential parameter N on velocity 
and temprature profile. 
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(a) 

 
(b) 

Figure 4. (a) Variation of velocity ( )f η′  with η  for different values of 

exponential parameter N, 1K  = 1, S = 0; (b) Variation of temprature ( )θ η  with η  

for different values of exponential parameter N, 1K  = 1, S = 0 and Pr = 1.            
 

 
(a) 
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(b) 

Figure 5. (a) Variation of velocity ( )f η′  with η  for different values of 

Suction/blowing parameter S, 1K  = 1, N = 1; (b) Variation of velocity ( )θ η  with 

η  for different values of Suction/blowing parameter S, 1K  = 1, N = 1, and Pr = 1.     
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. (a) Variation of velocity ( )f η′  with𝜂𝜂 for different values of permeability parameter 1K  

in the absent of suction. N = 1, S = 0; (b) Variation of velocity ( )θ η  with η  for differentvalues of 

permeability parameter 1K  in the absence of suction. N = 1, pr = 1, S = 1; (c) Variation of velocity 

( )f η′  with η  for different values of permeability parameter 1K  in the presence of suction. N = 1, 

S = 1; (d) Variation of temprature ( )θ η  with η  for different values of permeability parameter 1K  
in the presence of suction. Pr = 1, N = 1, S = 1.                                              

 

 
Figure 7. Variation of temprature ( )g η  with η  for differentvalues of prandtl number Pr. 1K  = 1, 
N = 1, S = 1.                                                                            
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Table 1. Comparison of the present analytical results with available numerical results for ( ) ( )0 PSTθ′−    for several val-
ues of Prandal number.                                                                                    

Pr 
Magyari and   
Keller [26] 

 

Bidin and 
Nazar [23] 

El-Aziz 
[29] 

Ishak 
[25] 

Mandal 
[16] HAM Order of  

approximation 1  2  

1 0.9548 0.9547 0.9548 0.9548 0.9547 0.9547 14 −0.2 −0.2 

2  1.4714  1.4715 1.4714 1.4714 11 −0.3 −0.3 

3 1.8691 1.8691 1.8691 1.8691 1.8691 1.8691 19 −0.4 −0.4 

5 2.5001  2.5001 2.5001 2.5001 2.5001 32 −0.2 −0.2 

10 3.6604  3.6604 3.6604 3.6603 3.6607 23 −0.00002 −0.1 

 
We consider the same case as discussed by Mandal [16]. Figure 4(a) and Figure 4(b) present the effect of 

exponential parameter N with variable surface heat flux on velocity and temprature profile. Both velocity and 
temprature decreases with increasing in N due to decreasing behaviour of the momentum and thermal boundary 
layer thickness. From these figures, it is intresting to mention that the wall temprature decreses for positive value 
of Nthroughout in the boundary layer. 

for exponentially streaching sheet, to see the effect of suction/blowing parameter S on velocity and temprature 
profile are presented in Figure 5(a) and Figure 5(b) respectively. It is noticed that by increasing suction 
velocity dereases significantly whereas with increse in blowing fluid velocity is found to increase (Figure 5(a)). 
It is notice that for the wall suction (S > 0) the boundary layer thikness decreases and the velocity field is 
reduced. The case of non-porous sretching sheet is represent by S = 0. Noted opposite behaviour for blowing (S < 
0). If stronger blowing is consideredthe heated fluid is pushed far from the wall where the flow is accelerated 
due to less influence of the viscosity. This behaviour increases maximum velocity in the boundary layer. In case 
of suction the same rule is working but in opposite direction. Figure 5(b) represents the temprature profile for 
variable suction/blowing parameter S with surface heat flux. By increasing suction it is observerd that decreases 
whereas temprature increases due to blowing (Figure 5(b)). Actually, the effect of suction more uniform within 
the boundary layer. At the surface, imposition of fluid suction has the tendency to reduce both the thermal 
thickness and hydrodynamic of the boundary layer where viscous effect domminate. Due to this effect both the 
fluid velocity and temnprature are reduced. Alternatively, with injection the thermal boundary layer thickness 
increase due to which rate of heat transfer decreases. 

For the case S = 0, the influence of permeabikity parameter 1K  on velocity and temprature are exhibited in 
Figure 6(a) and Figure 6(b) repectivelly. It is clear that in the presence of a porous medium the fluid flow 
hashigher restrictionthat, in turn, slows in motion. consequently, at the surface the shear stress increases [20]. 
Therefore, with increases in permiability parameter, increases the resistance to the fluid motion. With this effect 
the fluid velocity decreases (Figure 6(a)) and due to which in the boundary layer there is rise in temprature 
(Figure 6(b)) which implyes that the heat transfer rate improves by Darcian body force. It can thus be infered 
that an increase in permiability parameter derease the boundary layer thickniss and consequenctly increases in 
the rate of heat transfer.  

In the presence of suction, Figure 4(c) and Figure 4(d) show the effect of the permiability parameter on the 
velocity and temprature profiles respectivelly. In the presnce of suction, fluid velocity is suppressed a bit more 
(compare to S = 0 case) with increasing permiiability parameter 1K  (Figure 6(c)). In this case, a little bit 
temprature is found to increase (Figure 6(d)) due to combined effect of permiability parameter and suction. 

Figure 7 presents the effect of prandtl number Pr on the temprature profile. In presence of variable heat flux, 
the temprature decreases with the Pr. The thermal bundary layer thicness is reduced due to increase in Pr. In 
heat transfer problem, the relative thickneing of the momentum and thermul boundary layeris controlled by the 
prandtl number Pr. With a small Prandtl number Pr, heat diffuses fastly compared to the velocity ( momentum), 
that is for liquid metals, the thickness of the boundary layer is much bigger than momentum boundary layer. 
That fluids whichhave higher thermal conductivity with lower Prandtl number (and thicker thermal boundary 
layer structures) can diffuse from the sheet faster as compared to that fluid which have higher Pr fluids (thinner 
htermal boundary layers). Thus, Prandtl increases the rate of cooling in conducting flows [20]. 

Figure 6(a) shows the behaviour of skin-friction coefficient with exponential parameter N for three different 
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values of suction/blowing parameter S. It is observed that skin-friction coefficient ( )0f ′′−    increase with N. 
The skin-friction coefficient it is higher for suction than that of blowing. 

It is observed from = Figure 3(a) that at the wall stress is negative, negative sign of ( )0f ′′  physically 
indicates that surface exerts a drugging force on the fluid and positive sign indicates the opposite. 

Figure 3(b) diplays against the permeability parameter 1K  the nature of skin-friction coefficient. By 

increasing permiability parameter the Skin-friction coefficient ( )0f ′′−    increase.Due to increase of permiabi-  

lity parameter 1K  the skin-friction alsoincrease. An additional shear stress on the boundary is introduced by 
the permeability parameter 1K . 

6. Conclusion 
In this paper, the homotopy analysis method is used to obtain the analytical solutions of a non linear Ordinary 
differential equations related to the boundary layer flow and heat transfer flow of a viscous and incompressible 
fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium. The conver-
gence of the HAM solution is discussed in detail. Definitely, the HAM gives us a simple way to control the 
convergence of series. That is the fundamental difference between the HAM and other analytical methods. The 
effect of the emerging parameters is discussed and the results are presented graphically. The results obtained by 
HAM are compared with the numerical results as discussed in the literature and with other stated available 
results. The comparision shows acceptable agreement between analytical and numerical solutions. 
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