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Abstract 
The paper first introduces two-dimensional convection-diffusion equation with boundary value 
condition, later uses the finite difference method to discretize the equation and analyzes positive 
definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the 
paper uses fixed point methods and Krylov subspace methods to solve the linear system and com-
pare the convergence speed of these two methods. 
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1. Introduction 
In the case of a linear system Ax b= , the two main classes of iterative methods are the stationary iterative me-
thods (fixed point methods) [1]-[3], and the more general Krylov subspace methods [4]-[13]. When these two 
classical iterative methods suffer from slow convergence for problems which arise from typical applications 
such as fluid dynamics or electronic device simulation, preconditioning [14]-[16] is a key ingredient for the 
success of the convergent process. 

The goal of this paper is to find an efficient iterative method combined with preconditioning for the solution 
of the linear system Ax b=  which is related to the following two-dimensional boundary value problem (BVP) 
[17]: 
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For parameter 0,16,64γ = , we use finite difference method to discretize the Equation (1). Take 2n +  
points in both the x- and y-direction and number the related degrees of freedom first left-right and next bottom- 

top. Now, we take 32n = , thus the grid size 1 1
2 1 33

x y h
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∆ = ∆ = = =
+ −

. For 0γ = , the convection term 

equals to 0, using central difference method to the diffusion term, we get the discretization matrix of the Equa-
tion (1) 
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For 16γ = , the diffusion term use a central difference and for the convection term use central differences 
scheme as the following: 
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we obtain the discretization matrix of the Equation (1) 
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For 64γ = , the diffusion term use a central difference and for the convection term use upwind differences 
scheme as the following: 
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we obtain the discretization matrix of the Equation (1) 
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2. Properties of the Discretization Matrix 
In this section, we would first compute the eigenvalues of the discretization matrices 0A , 1A  and 2A  of Equ-
ation (1), later analyze positive definite, diagonally dominant and symmetric properties of these matrices. 

2.1. Eigenvalues 
Using MATLAB, the eigenvalues of the discretization matrices 0A , 1A  and 2A  of Equation (1) are the fol-
lowing: 
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2.2. Definite Positiveness 

Matrix A is positive definite if and only if the symmetric part of A i.e. 
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we have all the eigenvalues of 
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Therefore ( )i S
A  (i = 0, 1, 2) is positive definite, which means the discretization matrices 0A , 1A  and 2A  

of Equation (1) are positive definite. 

2.3. Diagonal Dominance 
For all the discretization matrices 0A , 1A  and 2A  of Equation (1),  
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Therefore, the discretization matrices 0A , 1A  and 2A  of Equation (1) are diagonally dominant. 

2.4. Symmetriness 
It is easy to see that only 0A  is symmetric. 

3. Stationary Iteration Methods and Krylov Subspace Methods 
The goal of this section is to find an efficient iterative method for the solution of the linear system 

, 0,1,2iA x b i= = . Since ( )0,1,2iA i =  are positive definite and diagonally dominant, we would use fixed point 
methods and Krylov subspace methods. In this section, first find the suitable convergence tolerance, later use 
numerical experiments to compare the convergence speed of various iteration methods. 

3.1. Convergence Tolerance 
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In order to achieve 3
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10ix x −− ≤  in the numerical experiments, we would set convergence tolerance 
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3.2. Numerical Experiments 
Computational results using fixed point methods such as Jacobi, Gauss-Seidel, SOR etc. and projection methods 
such as PCG, BICG, BICGSTAB, CGS, GMRES and QMR are listed out in figures (Figures 1-21), for all three 
different γ  values ( )0,16,64γ = . The projection methods are performed with different preconditioning me-
thods such as Jacobi preconditioning, luinc and cholinc preconditioning. 

The tables (Table 1 and Table 2) containing relevant computational details are also given below. 

4. Conclusions 
From the figures (Figures 1-21) and tables (Table 1 and Table 2), we obtain the following conclusions: 

• The convergence speeds of SOR, Backward SOR and SSOR are faster than that of GS and Backward GS; 
while GS and Backward GS are faster than Jacobi; 

• If matrix A is symmetric ( )0γ = , the convergence speeds of SOR, Backward SOR and SSOR are the same; 
otherwise ( )16,64γ = , SSOR is faster than Backward SOR and SOR; 

• The convergence speeds of SOR and Backward SOR are the same, also for GS and Backward GS; 
• From Table 2, the iteration steps and the time for all fixed point methods of the case in which 64γ =  are 

less than the case in which 16γ = , and also the case in which 16γ =  are less than the case in which 0γ = ; 
• The upwind difference method is more suitable to be applied to convection dominant problem than the cen- 
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Figure 1. Comparison of convergence speed using fixed point 
methods when = 0γ .                                  

 

 
Figure 2. Comparison of convergence speed using fixed point 
methods when = 16γ .                                 

 

 
Figure 3. Comparison of convergence speed using fixed point 
methods when = 64γ .                                 
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Figure 4. PCG with different preconditionings when = 0γ .       

 

 
Figure 5. BICG with different preconditionings when = 0γ .      

 

 
Figure 6. BICGSTAB with different preconditionings when = 0γ . 
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Figure 7. CGS with different preconditionings when = 0γ .       

 

 
Figure 8. GMRES with different preconditionings when = 0γ .    

 

 
Figure 9. QMR with different preconditionings when = 0γ .      
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Figure 10. PCG with different preconditionings when = 16γ .      

 

 
Figure 11. BICG with different preconditionings when = 16γ .     

 

 
Figure 12. BICGSTAB with different preconditionings when = 16γ . 
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Figure 13. CGS with different preconditionings when = 16γ .     

 

 
Figure 14. GMRES with different preconditionings when = 16γ .   

 

 
Figure 15. QMR with different preconditionings when = 16γ .     
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Figure 16. PCG with different preconditionings when = 64γ .     

 

 
Figure 17. Bicg with different preconditionings when = 64γ .     

 

 
Figure 18. BICGSTAB with different preconditionings when = 64γ . 
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Figure 19. CGS with different preconditionings when = 64γ .     

 

 
Figure 20. GMRES with different preconditionings when = 64γ .  

 

 
Figure 21. QMR with different preconditionings when = 64γ .     
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Table 1. Computational details of different projection methods with different preconditioning.                             

Gamma Function Preconditioning flag No. of iterations Relres Delta (tol) 

0 

PCG 

jacobi 0 52 1.31E−06 1.55E−06 

luinc 0 23 1.38E−06  
cholinc 0 25 9.05E−07  

BICG 

jacobi 0 52 1.31E−06  
luinc 0 23 1.38E−06  

cholinc 0 25 9.05E−07  

BICGSTAB 

jacobi 0 40.5 1.42E−06  
luinc 0 15.5 9.36E−07  

cholinc 0 16 1.54E−06  

CGS 

jacobi 0 43 1.20E−06  
luinc 0 16 8.27E−07  

cholinc 0 16 1.18E−06  

GMRES 

jacobi 0 49 1.32E−06  
luinc 0 23 9.01E−07  

cholinc 0 24 1.21E−06  

QMR 

jacobi 0 52 1.05E−06  
luinc 0 23 1.12E−06  

cholinc 0 24 1.37E−06  

16 

PCG 

jacobi 1 4 0.483607757 1.14E−05 

luinc 1 2 0.312145391  
cholinc 1 2 0.38563672  

bicg 

jacobi 0 89 7.33E−06  
luinc 0 25 1.11E−05  

cholinc 0 35 4.37E−06  

BICGSTAB 

jacobi 0 56.5 1.03E−05  
luinc 0 16.5 6.30E−06  

cholinc 0 23.5 3.98E−06  

CGS 

jacobi 0 61 6.61E−06  
luinc 0 20 1.01E−08  

cholinc 0 27 5.29E−06  

GMRES 

jacobi 0 68 9.70E−06  
luinc 0 22 7.08E−06  

cholinc 0 30 1.10E−05  

QMR 

jacobi 0 89 6.43E−06  
luinc 0 25 2.64E−06  

cholinc 0 33 9.57E−06  
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Continued  

64 

PCG 

jacobi 1 1 0.710978037 4.13E−05 

luinc 1 1 0.547110057  
cholinc 1 1 0.660611555  

BICG 

jacobi 0 70 3.15E−05  
luinc 0 21 1.21E−05  

cholinc 0 44 3.47E−05  

BICGSTAB 

jacobi 0 59.5 2.12E−05  
luinc 0 16.5 5.27E−06  

cholinc 0 27.5 1.60E−05  

CGS 

jacobi 1 87 0.000123357  
luinc 0 19 6.36E−07  

cholinc 0 35 3.14E−06  

GMRES 

jacobi 0 63 2.66E−05  
luinc 0 19 2.50E−05  

cholinc 0 37 3.11E−05  

QMR 

jacobi 0 69 3.56E−05  
luinc 0 21 1.25E−05  

cholinc 0 45 3.31E−05  
 
Table 2. Computational details of different fixed point methods.                                                       

 The fixed point method No. of iterations 

Gamma = 0 Jacobi 2246 

 Gauss-Seidel 1124 

 SOR 370 

 Backward Gauss-Seidel 1124 

 Backward SOR 370 

 SSOR 370 

Gamma = 16 Jacobi 459 

 Gauss-Seidel 231 

 SOR 68 

 Backward Gauss-Seidel 231 

 Backward SOR 68 

 SSOR 42 

Gamma = 64 Jacobi 191 

 Gauss-Seidel 97 

 SOR 54 

 Backward Gauss-Seidel 97 

 Backward SOR 54 

 SSOR 20 



X. J. Wang 
 

 
126 

tral difference method; 
• The convergence speed of the six projection methods including PCG, BICG, BICGSTAB, CGS, GMRES 

and QMR under luinc preconditioning are faster than under cholinc preconditioning, while under cholinc pre-
conditioning are faster than Jacobi preconditioning; 

• The six projection methods under Jacobi, luinc and cholinc are convergent when 0γ = , however, for 
16,64γ = , the PCG method are not convergent and also the CGS method under Jacobi preconditioning are not 

convergent when 64γ = . 
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