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Abstract 
This paper summarizes a Riemann-solver-free spacetime discontinuous Galerkin method devel-
oped for general conservation laws. The method integrates the best features of the spacetime 
Conservation Element/Solution Element (CE/SE) method and the discontinuous Galerkin (DG) 
method. The core idea is to construct a staggered spacetime mesh through alternate cell-centered 
CEs and vertex-centered CEs within each time step. Inside each SE, the solution is approximated 
using high-order spacetime DG basis polynomials. The spacetime flux conservation is enforced in-
side each CE using the DG concept. The unknowns are stored at both vertices and cell centroids of 
the spatial mesh. However, the solutions at vertices and cell centroids are updated at different 
time levels within each time step in an alternate fashion. Thanks to the staggered spacetime for-
mulation, there are no left and right states for the solution at the spacetime interface. Instead, the 
solution available to evaluate the flux is continuous across the interface. Therefore, no (approx-
imate) Riemann solvers are needed to provide a unique numerical flux. The current method can 
be used to solve arbitrary conservation laws including the compressible Euler equations, shallow 
water equations and magnetohydrodynamics (MHD) equations without the need of any form of 
Riemann solvers. A set of benchmark problems of various conservation laws are presented to 
demonstrate the accuracy of the method. 
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1. Introduction 
Traditionally, when solving conservation laws numerically, (approximate) Riemann solvers are used to provide 
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unique interface fluxes in solvers based on the finite volume method, discontinuous Galerkin method and some 
other methods. Numerical methods based on Riemann solvers have achieved tremendous success in solving 
hyperbolic systems, e.g., compressible Euler equations, where the eigenstructure of the system is clearly known, 
in the past several decades. However, when physical processes get more complicated, for example, magnetohy- 
drodynamics (MHD), the success of Riemann-solvers is far from satisfactory. For example, the Roe scheme [1] 
has been modified to solve the MHD system. Roe’s scheme requires eigen-decomposition and becomes very 
complicated in MHD equations. In addition, the Roe averages of quantities are not clearly defined in MHD system. 
Moreover, due to the complexity and non-strict hyperbolicity of the MHD system, the validity of the eigen- 
systems of the MHD system is not unanimously agreed upon among researchers. Therefore, Riemann-solver 
free approaches are highly desirable to avoid the uncertainties caused by imperfect Riemann solvers. 

In recent years, the author has been developing a Riemann-solver-free high order spacetime method for ar- 
bitrary conservation laws [2]-[12]. The method is inspired by the spacetime Conservation Element/Solution 
Element (CE/SE) [13] method and the discontinuous Galerkin (DG) [14] method. The method integrates the best 
features of the two methods, i.e. the Riemann-solver-free feature of the CE/SE method and the high-order ac- 
curacy of the DG method. The core idea of the method is to construct a staggered spacetime mesh through 
alternate cell-centered CEs and vertex-centered CEs (cf. Figure 1 (right)) within each time step. Note that CEs 
at the vertex level are defined via the dual mesh obtained by connecting the surrounding cell centers and face 
centers. The difference between SEs and CEs is that the SE includes the volumeless vertical spike. Inside each 
SE (cf. Figure 1 (left)), the solution is approximated using high-order spacetime DG basis polynomials. The 
spacetime flux conservation is enforced inside each CE using the DG discretization. The unknowns are stored at 
both vertices and cell centroids of the spatial mesh. However, the solutions at vertices and cell centroids are 
updated at different time levels within each time step in an alternate fashion. Due to the alternate cell-vertex 
solution updating strategy and its DG ingredient, the method has been termed as the discontinuous Galerkin cell- 
vertex scheme (DG-CVS) [4]. 

The method offers benefits to both the spacetime CE/SE method and the spacetime DG method. The benefits 
for the spacetime CE/SE method is two fold. First, DG-CVS increases the CE/SE method’s temporal and spatial 
accuracies by employing high-degree polynomial basis functions inside the SE. Second, DG-CVS presents uni- 
versal definitions of CEs and SEs for arbitrary meshes. The CE and SE definitions in DG-CVS are independent 
of the underlying spatial mesh and the same definitions can be easily extended from 1-D (cf. Figure 1) to 
higher-dimensions (cf. Figure 2 and Figure 3) without any ambiguity. 

The benefits for the spacetime DG method are also two-fold. First, DG-CVS provides a Riemann-solver-free 
approach for the DG methods. Second, DG-CVS does not need special treatment for the diffusion terms and thus 
is conceptually simpler than existing traditional DG methods for diffusion equations. 

This paper summarizes the author’s work on DG-CVS in recent years. This paper is organized as follows. 
Section 2 describes the current method in detail where the two ingredients of the method, spacetime DG method 
and the alternate cell-vertex solution updating strategy, will be explained. In Section 3, many numerical ex- 
amples are presented to demonstrate the accuracy of the method in solving various conservation laws including 
scalar advection equations, compressible Euler equations, shallow water equations and MHD equations. Finally, 
conclusions will be summarized in Section 4. 
 

 
Figure 1. Solution elements (SEs) and conservation elements (CEs) in the x t−  domain. Left: solution 
elements and right: conservation elements.                                                                   
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Figure 2. Conservation elements (CEs) and solution elements (SEs) for the quadrilateral mesh. 
Top: CEs; bottom: SEs.                                                                   

 

 
Figure 3. Conservation elements (CEs) and solution elements (SEs) for the triangular mesh. 
Top: CEs; bottom: SEs.                                                                   

2. Riemann-Solver Free Spacetime DG Method 
To illustrate the Riemann-solver free discontinuous Galerkin (DG) formulation, we consider the following 
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general one-dimensional time dependent partial differential equation system 

( ),x t
t x

∂ ∂
+ =

∂ ∂
u f r                                         (1) 

that is used to describe many physical processes. Here, u  is the solution vector containing the physical quan- 
tities to be determined. f  is the spatial flux vector. Without loss of generality, a source term r  is also in- 
cluded in Equation (1). Note that f  may contain both advective and diffusive fluxes. Both f  and r  can be 
functions of u  or ∇u  or both. Appropriate initial and boundary conditions must also be provided to solve 
Equation (1). 

2.1. Spacetime Discontinuous Galerkin Formulation 
Following the idea of the DG method, an approximate solution hu  is sought within each spacetime solution 
element (SE), denoted as K . When restricted to the SE, hu  belongs to the finite dimensional space ( )K . 
Assume all the components of the conservative variables inside each SE are approximated by polynomials of the 
same degree, i.e. 

( ) ( )
1

, ,
N

h
j j

j
x t x tφ

=

= ∑u s                                          (2) 

where ( ){ } 1
,

N
j j

x tφ
=

 are some type of spacetime polynomial basis functions defined within the solution element, 

{ } 1

N
j j

s
=

 are the unknowns to be determined and N is the number of basis functions depending on the degree  

of the polynomial function. Using such spacetime DG solution space, the solution approximation can be ar- 
bitrarily high order accurate in both space and time. 

Following the Galerkin orthogonality principle, multiply (1) with each of the basis functions iφ  ( )1,2, ,i N=   
and integrate over a spacetime CE to obtain the following weak form 

d 0,    1,2, ,
K

h h
h

i i N
t x

φ
Ω

 ∂ ∂
+ − Ω = = ∂ ∂ 

∫
u f r 

                         (3) 

where KΩ  is the spacetime conservation element (CE) associated with the solution element K. Note that the 
conservation element is identical to the solution element except for the volumeless vertical spike in the solution 
element as shown in Figure 1. The spacetime flux conservation in weak form as in (3) is for each individual 
spacetime conservation element. Therefore, the current method can be considered as a spacetime discontinuous 
Galerkin method. 

Integrating (3) by parts results in 

d dh h h hi i
i i

K t x
φ φ

φ φ
Ω Γ

∂ ∂ + + Ω = ⋅ Γ ∂ ∂ 
∫ ∫u f r H n                                  (4) 

where 

( ),h h h=H f u                                           (5) 

is the spacetime flux tensor and ( ),x tn n=n  is the outward unit normal of the CE boundary, i.e. KΓ = ∂Ω , of 
the spacetime conservation element (CE) under consideration. Note that the partial integration is also performed 
on the time-dependent term, which is a salient difference between spacetime DG methods and semi-discrete DG 
methods. As can be seen, the formulation in (4) contains both the volume integral and the surface integral. 

2.2. Cell-Vertex Solution Updating Strategy 
The current method inherits the core idea of the CE/SE method using a staggered spacetime mesh to enforce the 
spacetime flux conservation. However, the construction of the staggered spacetime slabs in the current method 
deviates from the CE/SE method. In the current method, unknowns are stored at both vertices and cell centroids 
of the spatial mesh, and the solutions at vertices and cell centroids are updated at different time levels within 
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each time step. At the beginning of each physical time step, the solution is assumed known at the cell centroids 
of the mesh, either given as the initial condition or obtained from the previous time step. Inside each new time 
step, the solution is updated in two successive steps. The first step updates the solution at vertices at the half- 
time level ( )1 2nt +  based on the known cell-centroid solutions at the previous time level ( )nt . The second step 
updates the solution at cell centroids at the new time level ( )1nt +  based on the known vertex solutions at the 
previous half-time level ( )1 2nt + . The same process is repeated for new time steps. 

The solution updating at the cell level or the vertex level is based on the key equation (4). To evaluate the 
integrals in (4), first divide the conservation element into the following portions: 

• The interior volume KΩ  where the solution is associated with the spacetime node at the new time level. 
• The top surface topΓ  where the solution is also associated with the spacetime node at the new time level. 
• The side surfaces sideΓ  where the solution is associated with the spacetime node at the previous time level. 
• The bottom surfaces bottΓ  where the solution is also associated with the spacetime node at the previous 

time level. 
Correspondingly, Equation (4) can be rearranged to yield 

top side bott
d d d d ,    1,2, ,

K

h h h h h hi i
i i i i i N

t x
φ φ

φ φ φ φ
Ω Γ Γ Γ

∂ ∂ + + Ω− ⋅ Γ = ⋅ Γ + ⋅ Γ = ∂ ∂ 
∫ ∫ ∫ ∫u f r H n H n H n 

 (6) 

where the left hand side contains the unknowns and the right hand side contains the known information. 
Since the top and the bottom surface of the CE are horizontal, which leads to h h⋅ =H n u  on the top face and 
h h⋅ = −H n u  on the bottom face, Equation (6) can be simplified to 

top side bott
d d d d ,    1,2, ,

K

h h h h h hi i
i i i i i N

t x
φ φ

φ φ φ φ
Ω Γ Γ Γ

∂ ∂ + + Ω− Γ = ⋅ Γ − Γ = ∂ ∂ 
∫ ∫ ∫ ∫u f r u H n u 

       (7) 

Equation (7) is a nonlinear equation system for each spacetime node which can be solved by the Newton- 
Raphson iterative method. 

To further illustrate the idea of enforcing the spacetime flux conservation, consider the conservation element  

shown in Figure 4. Suppose the solution at the spacetime node 
1 1,
2 2

m n + + 
 

 is to be determined. Here, m   

and n  represents the spatial and the temporal locations of the spacetime node, respectively. The boundaries of  

the CE associated with the spacetime node 
1 1,
2 2

m n + + 
 

 is divided into five sections 1Γ , 2Γ , 3Γ , 4Γ  and  

5Γ , as shown in Figure 4. Among these sections, 1Γ  belongs to the SE associated with node 
1 1,
2 2

m n + + 
 

  

where the solution is to be determined, 2Γ  and 3Γ  the SE associated with node ( ),m n  and 4Γ  and 5Γ  the 
SE associated with node ( )1,m n+ . The interior volume of the conservation element is also associated with  

node 
1 1,
2 2

m n + + 
 

 where the solution is to be found. 

Due to the cell-vertex solution updating strategy and its DG ingredient, the current method has been termed as 
the DG-CVS method [4]. 

Conventional DG methods use some type of Riemann solvers to provide numerical fluxes across element  
 

 
Figure 4. Illustration of spacetime flux conservation on a 1-D 
cell-level CE.                                          
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interfaces. Thanks to the above explained staggered space-time formulation, there is no “left” and “right” states 
for the solution at the spacetime interface. Instead, the solution available to evaluate the flux is continuous 
across the interface. Therefore, no (approximate) Riemann solvers are needed to provide a unique numerical flux. 
The Riemann-solver-free feature is highly desirable for systems where the eigenstructure of the underlying 
system is not readily known and for the purpose of avoiding some pathological behaviors (e.g., carbuncle 
problem) associated with some Riemann solvers. 

Note that in the CE/SE method [13], the time derivative of the solution is obtained from the spatial derivative 
of the solution using the original governing equation. By contrast, in the current method, the time derivative of the 
solution is treated as an independent unknown and handled in the same way as that for the spatial derivative of the 
solution. Therefore, even for the same second-order version, the current method deviates from the CE/SE method. 
Figure 5 compares the solutions obtained from the CE/SE method and the current method for the sinusoidal wave 
advection problem. It can be seen that the current method exhibits invisible phase error after 100 periods, which is 
an outstanding feature in contrast to the CE/SE solution where significant phase error can be observed. 

2.3. Quadrature-Free Implementation 
If the underlying spatial mesh is unstructured (cf. Figure 5), the vertex-level CEs are general polygonal 
cylinders containing general polygonal bases where the Gaussian quadrature rule cannot be directly applied. 
Therefore, it is desired that the volume integral in Equation (7) is evaluated using a quadrature-free approach. In 
addition, quadrature-free approaches help to significantly improve the efficiency of the method. 

To allow the quadrature-free implementation, the flux and source vectors must be expanded in terms of the 
basis polynomials similar to those used to expand the conservative variables, namely, for two-dimensional cases 

1 1 1
,    ,    and   .

N N N
h h h

j j j j j j
j j j

φ φ φ
= = =

= = =∑ ∑ ∑f g rf s g s r s
  

                          (8) 

where N  is the number of basis polynomials of one degree higher than those to expand the conservative 
variables as in Equation (2). The requirement of using basis polynomials of degree 1p +  for flux and source 
term expansions is necessary to ensure the accuracy of the scheme. 

The method based on the Cauchy-Kovalewski (CK) procedure [15] [16] is especially suitable for this purpose. 
In the current method, the conservative variables are expanded using the Taylor polynomials. With the Taylor 
polynomials, the spatial and temporal derivatives of the solution are explicitly available. Using the CK proce- 
dure, the spacetime derivatives of the flux vectors can be obtained using the spacetime derivatives of the con- 
servative variables. 

With Taylor polynomials, the integrand of the volume integral has the following general form for two- 
dimensional cases 

( ), , l m nq x y t x y t= ∆ ∆ ∆                                    (9) 

which results from the products between Taylor polynomials. In (9), , l m  and n  are integer exponents. The  
 

 
Figure 5. Comparison of the solutions of sinusoidal wave advection after 100 periods. Left: CE/SE. right: 
current method (second-order version).                                                                   
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idea is to use the divergence theorem explained in [17] to reduce the volume integral to surface integrals and 
further to line integrals. The detailed procedure has been described in [4] and will not be repeated here. 

3. Numerical Examples 
In this section, various numerical cases are presented to demonstrate that current Riemann-solver free DG 
method is able to solve many different types of conservation laws without using any Riemann-solvers. 

3.1. Scalar Equations 
3.1.1. Linear Scalar Advection Equation 
We first consider the following linear scalar advection equation: 

0,    1 1u u x
t x

∂ ∂
+ = − ≤ ≤

∂ ∂
                                      (10) 

with the initial condition given as follows [18]: 

( )

( ) ( ) ( )( )

( )

( ) ( ) ( )( )

1 , , , , 4 , , , 0.8 0.6;
6
1, 0.4 0.2;
1 10 0.1 0 0.2;,0
1 , , , , 4 , , , 0.4 0.6;
6
0, otherwise.

G x b G x b G x b x

x
x xu x

E x a E x a E x a x

β δ β δ β

α δ α δ α

 − + + + − ≤ ≤ −


− ≤ ≤ −
 − − ≤ ≤= 

 − + + + ≤ ≤



           (11) 

where 0.5a = , 0.7b = − , 0.005δ = , 10α =  and ( )2log2 36β δ= . G  and E  are Gaussian and ellip- 
tical function, respectively, where 

( ) ( ) ( ) ( )( )2 22, , e and , , max 1 ,0x bG x b E x a x aββ α α− −= = − −  

It is clear that this problem is about the advection of mixed Gaussian, square, triangle and elliptical waves. 
Periodic boundary conditions are assumed at the ends of the domain. 

The computational domain is discretized by 200 evenly spaced cells which is a pretty coarse mesh for this 
case. The time step used in all simulations is 0.0025tδ =  corresponding to the Courant number 0.25σ = . To 
resolve discontinuities, the limiting procedure described in [3] is used. Figure 6 shows the limited solutions at 

8.0t =  using 1p  (second order) and 3p  (fourth order) basis polynomials, respectively. As can be seen, both 
the discontinuities and smooth regions are better captured with higher p . With increasing p , the transition of 
discontinuities is steeper. The second order run is not able to resolve the Gaussian wave which is steep and 
smooth. Another feature of the solution which is worthy of mentioning is that the wave profiles are symmetric, 
which indicates the phase error of the current method is very small. 

3.1.2. Burgers Equation 
Here, the following 2-D viscous Burgers equation is solved. 

2 2

2 2 0,    0 ,  25u u u u uu u x y
t x y x y

ν
 ∂ ∂ ∂ ∂ ∂

+ + − + = ≤ ≤ ∂ ∂ ∂ ∂ ∂ 
                     (12) 

with the analytical solution given as 

( )exact 2

2, ,
e 1

c cx x y y tu x y t
ν

− + − −=

+

 

where ( ) ( ), 0,0c cx y =  is a constant location. 
The 1-D version of this case was presented in [19]. This case is constructed such that the original wave is 

propagated without changing shape under the effect of both nonlinear advection and linear diffusion. The initial  
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Figure 6. Linear advection of mixed waves. Limited solution at 8.0t = . The computational domain consists 
of 200 uniform elements. Thick solid line: exact solution; circles and thin colorful solid lines: current 
numerical solutions; and stars: oscillation indicators.                                                     

 
solution at 0t =  and the boundary conditions on all four boundaries are provided by the analytical solution. 
Therefore the boundary conditions are time dependent. 

In this test, a medium wave corresponding to 1=/νδx  is simulated using the present method. Figure 7 plots 
the 1p  solution along the diagonal line 0x y− =  together with the exact solution. The 3p  solution is not 
shown since no much visual difference can be seen between the 3p  solution and the 1p  solution. As can be 
seen, the wave has been captured accurately in terms of both location and magnitude. Figure 7 also compares 
the computed solution gradients ( xu  or yu ) with the exact solution. As can be seen, the 3p  solution is 
superior to the 1p  solution in resolving the local sharp extremum of the solution gradient. This case demonstrate 
that the current method is able to solve diffusion problems without any special tricks for diffusion terms as 
required by many other DG methods. Note that the treatment of diffusion terms in traditional semi-discrete DG 
methods are non-trivial because of the so-called “variational crime”. More test cases on diffusion problems have 
been presented in [7]. 

3.1.3. Level Set Equation 
The level set method introduced by Osher and Sethian [20] has been widely used to solve interface problems 
emerging in applications such as the two-phase fluid dynamics, image segmentation, computer vision and com- 
putational geometry etc. The biggest advantages of the level set method is that it naturally allows the interface to 
have topological changes due to the interface breaking and merging. 

In the level set method, the interface is represented by the zero level set ( ) ( ){ }, 0t tψ= =x x  of a level set 
function ( ), tψ x . ψ  is often taken to be the signed distance function to the interface. The level set equation 
can be expressed as 

0tψ ψ+ ⋅∇ =v                                      (13) 

where ( ),u v=v  is the velocity field which evolves the interface. Equation (13) can be rewritten in conser- 
vative form 

( )t vψ ψ ψ+∇⋅ = ∇ ⋅v                                   (14) 

Here, the DG-CVS method is used to solve Equation (14). In the two examples presented here, the com- 
putational domain size is [ ] [ ]0,1 0,1× . The interface is represented by the zero level set of the signed distance 
field. Since the interface evolution often occurs within a narrow band, the initial signed distance field is nar- 
rowed by the following 

, if ;
, if ;

, if .

ψ
ψ ψ ψ

ψ

− < −
= − ≤ ≤
 >

 
 

 
 

where   is chosen to be 0.1. 



S. Z. Tu 
 

 
63 

 
Figure 7. Solution of 2-D viscous Burgers equation along the diagonal line 0x y− =  at 20T = . Left: u , middle: 1p  

xu  and yu , and right: 3p  xu  and yu .                                                                     
 

The first well known example is the rigid rotation of the Zalesak disk [21]. The initial interface is a circle 
centered at ( )0.5,0.75  with a notch of width and depth 0.05 and 0.25, respectively. The velocity field is 

( )2π 0.5u y= −  and ( )2π 0.5v x= − − . The initial level set function is initialized as the signed distance to the 
disk (Figure 8). The computational mesh contains 50 50×  rectangular cells. The time step in the simulation is 

0.00125tδ = . 800 time steps were finish one revolution. Figure 9 shows the fourth order ( )3p  solution. Com- 
pared to the exact solution, the smearing is very small which indicates the small numerical dissipation of this 
high order scheme. 

Another example is to simulate the deformation of a circular bubble of radius 015 centered at ( )0.5,0.75 . 
The circle is deformed due to the following velocity field [22]: 

( ) ( ) ( ) ( ) ( ) ( )2 2sin 2π sin π cos π ,    and   sin 2π sin π cos πu y x t T v x y t T= − =     (15) 

which are obtained from ( ),y x−∂Ψ ∂ ∂Ψ ∂  where Ψ  is the following stream function 

( ) ( )2 21 sin π sin π
π

x yΨ =  

proposed in [22]. The time dependent term in (15) was proposed in [23] to control the magnitude and direction 
of the velocity. At 2t T= , the velocity starts to reverse direction and at time t T= , the original circle is ex- 
pected to be restored. 

The velocity field given by (15) represents a vortex which stretch the circular fluid body into a thin filament 
toward the vortex center. The simulation is performed on a relatively coarse 40 40×  mesh. Here 4T = . 
Figure 10 shows the fourth order ( )3p  evolution of the signed distance field and the zero level set at various 
times. At 0.5 2t T= = , the bubble starts to restore its shape. At 4.0t = , the bubble recovers its original cir- 
cular shape. The comparison with the exact solution shows the accuracy of the current method. Note that 
reinitialization is not needed with the current high order method in this case. 

3.2. Compressible Euler Equations 
The two-dimensional compressible Euler equations can be written in the following vector form: 

0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
u f g                                           (16) 

where 

2

2,    ,    and   

u v
u u p uv
v vu v p
E Hu Hv

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

     
     +     = = =
     +
     
     

u f g                        (17) 

are the conservative state vector, flux vectors in x -and y -directions, respectively. In (17), ρ , u , v , p , E , 
and H  are density, x - and y -components of the velocity, pressure and the total energy, and the total enthalpy, 
respectively. Here 
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Figure 8. Zalesak disk. Initial level set is the signed distance 
to the disk.                                               

 

 
Figure 9. Rotation of Zalesak disk. The locations of the disk at several instants within one revolution. The image order is 
from left to right and from top to bottom.                                                                      
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(a)                                   (b)                              (c) 

 
(d)                                   (e)                              (f) 

 
(g)                                   (h)                              (i) 

Figure 10. 3p  solution of the shearing of a circular bubble by a vortex on a 40 40×  mesh. 4T = . (a) t = 0.0; (b) t = 0.5; 
(c) t = 1.0; (d) t = 1.5; (e) t = 2.0 ; (f) t = 2.5; (g) t = 3.0; (h) t = 3.5; (i) t = 4.0.                                                
 

( )1 ep γ ρ= −  

( )2 21e
2

E u v= + +  

( )2 21e
2

pH E u vγ
ρ

= + = + +  

where e  is the specific internal energy and γ  is the ratio of specific heats. 
This first Euler equation case is the classic Sod’s shocktube problem. The initial conditions are a high- 

pressure region on the left and a low-pressure region on the right separated by a diaphragm located at 0.5x = . 
At time 0t = , the diaphragm is broken, a shock wave will propagate to the right and an expansion wave pro- 
pagate to the left. There is a contact discontinuity in between across which the density and entropy are dis- 
continuous while the pressure and velocity are continuous. The spatial domain is discretized into 100 equally 
spaced elements. Figure 11 shows the comparison of 1p  numerical solution with exact solution at time  
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Figure 11. 1p  solutions of Sod’s shocktube problem. Left: pressure, middle: density, and right: velocity.                        
 

0.2t = . The good agreement in both wave location and sharpness demonstrates the accuracy of curren 
Riemann-solver free method. 

The second case is a supersonic flow with 3=M  flowing through a channel of length 3 and height 1. A step 
of height 0.2 stands at location 0.6 downstream of the inlet. The step acts as an obstacle to the supersonic inflow. 
A transient detached shock wave will be formed and hit the top wall. The shock wave will reflect from the top 
wall and further hit the bottom wall and reflect again. The flow expands rapidly at the singularity corner. In the 
present simulation, a rectangular mesh of 1 40x yδ δ= =  is used. The linear basis polynomials ( )1p  is 
employed in this test. Figure 12 shows the density field at 4.0t = . As can be seen, the main features including 
the detached bow shock, the Mach stem below the top wall, slip line, reflected shock waves are well captured. 
Here, no any type of boundary conditions is applied at the singularity corner and no numerical difficulty was en- 
countered. No expansion shocks are seen around the corner. In addition, the present method does not exhibit the 
so-called carbuncle problem in the subsonic region behind the bow shock. 

To illustrate the mesh flexibility of the current method, a simulation about a nearly incompressible subsonic 
flow with Mach number 0.1M =  passing around a circular cylinder with radius 0.5R =  on an overset 
Cartesian/quadrilateral mesh is presented. Figure 13 shows the near-body pressure field at the steady state with 
the background overset mesh also displayed. Indeed, the current method works for arbitrarily unstructured 
meshes. 

3.3. Shallow Water Equations 
The shallow water equations (SWE) are widely used as the mathematical model to numerically simulate the dam 
break, river inundation, failure of levees and tide of ocean in coastal and civil engineering. The frictionless 
shallow water equation can be expressed in the following conservative form 

( )
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
u f g r u                                          (18) 

in which the conservative vector, flux vectors and source vector are 

2 2
0

2 2
0

0
,    2 ,    ,    and   

2
x

y

H Hu Hv
Hu Hu gH Huv gHS
Hv Huv Hv gH gHS

      
      = = + = =       
      +       

u f g r  

respectively. Here, the total water depth ( ) ( ) ( ), ,H t t dζ= +x x x  where ( ), tζ x  is the free-surface elevation 
and ( )d x  is the still water depth. u  and v  are the x - and y -component of the depth-averaged velocity. 
g  is the acceleration due to gravity. 0xS  and 0 yS  are the bottom slopes in x - and y -directions, respec- 
tively. If the bottom has zero slope, the source terms in Equation (18) would be absent. 

The first shallow water case is a two-dimensional shocktube problem which is analogous to the shocktube 
problem used to verify a compressible Euler solver. The computational domain is a [ ] [ ]5,5 5,5− × −  rectangular 
region. At 0t = , the lower left corner [ ] [ ]5,0 5,0− × −  of the domain is filled with water of height 4 3.0h = , 
and the rest of the domain is filled with water of height 1 0.03h = . Symmetry conditions are assumed on the left 
and the bottom boundaries of the domain. The domain is discretized into 99 99×  evenly distributed rectangular 
cells. The simulation is run till 2.0t =  at which the shock is still within the domain. The solutions along the  
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Figure 12. Density field of a supersonic ( )3M =  flow through a channel with a forward-facing step at 

4.0t = .                                                                                                    
 

 
Figure 13. Steady pressure field of the inviscid flow ( )0.1M =  passing around a circular cylinder. The 
overset Cartesian and quadrilateral mesh is displayed at background.                                   

 
symmetry boundaries are identical to those in the 1-D case. Therefore, the available analytical solutions [24] ca 
be used to verify the present numerical solution. 

Figure 14 shows the 1p  solutions along the bottom symmetry boundary. The analytical solutions are also 
shown for comparison purpose. As can be seen, the shock location and strength have been captured very well. 
This is in contrast to the results reported in [25] showing that the least-square finite element method is not able 
to capture the strong shock in the right location. 

The second case is another classical benchmark problem widely used to verify shallow water equation solvers 
[26]. Figure 15 (left) depicts the domain geometry. Initially, two reservoirs are separated by a lock gate which is 
of 75 meters wide. The water levels are 10 meters and 5 meters, respectively. The reservoir on the left has higher  
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Figure 14. Shallow water shocktube problem.                                                                       
 

 
Figure 15. 2-D dam break problem. Left: geometry, right: carpet view of the water elevation at 7.2 st = .                 
 
water level. The resolution of the computational mesh is 2.5 meters. At 0t = , the lock gate is opened. Figure 
15 shows the carpet view of the water level at 7.2t =  seconds. The 1p  solution qualitatively compares well 
with that in [26] where a Riemann-solver-based method is used. 

3.4. MHD Equations 
3.4.1. 3 3×  MHD Model Equations 
The present Riemann-solver-free method is first applied to solve the following 3 3×  MHD model system in the 
phase space which exactly preserves the MHD singularities [27]: 

t x xx+ =u f du                                          (19) 

with 
2 2 2 0 0

,    2 ,    and   0
2 0

u cu v w
v uv
w uw

µ
η χ
χ η

 + +   
    = = = −    

        

u f d  

where the longitudinal viscosity µ  and the magnetic resistivity η  are the dissipative coefficients, and the 
Hall coefficient χ  is a dispersive coefficient. The above quantities are related to the MHD system via 
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2

1,    ,    ,    and   1y z

a x x

B Bau v w c
c B B

γ
 

= − = = = + 
 

 

where a pγ ρ=  is the acoustic wave speed, a xc Bρ=  is the Alfven wave speed, p  is the pressure, ρ  
is the density and γ  is the ratio of specific heats. The model system (19) generates three wave families which 
are the Alfven wave, the slow and the fast MHD waves. This model system has been investigated by several 
authors [27] [28] to provide insights to improve Godunov-typed numerical schemes for MHD equations. 

The test case presented here is taken from Ref. [28] where conventional and modified Roe’s scheme were 
used to solve the system. In this case, 3c =  and the computational domain [ ]0,1  is evenly divided into 150 
cells. The dissipative term on the right hand side of (19) is assumed to be zero. 

The initial discontinuity is an entropy-violating shock defined as ( )0.44,2.4,0L R= − = −u u . The final time is 
0.0376506024t = . 150 time steps have been run to reach the final time. Figure 16 shows u  vs. x  and v  vs. 

x  solutions from the second order simulation along with the analytical solutions. The agreement is very well 
and the overshoots/undershoots around the discontinuity region have been suppressed using a slope limiter. 

3.4.2. Ideal Compressible MHD Equations 
The ideal compressible MHD equations combines the Euler equations of gas dynamics with Maxwell equations 
of electromagnetics for problems in which viscous, resistive and relativistic effects can be neglected. The ideal 
MHD equations contain a set of nonlinear hyperbolic equations as shown in the following conservative form: 

( ) 0tρ ρ∂ +∇ ⋅ =v                                          (20) 

( ) 2

0 0 0

1 1 1
2t pρ ρ
µ µ µ

  
∂ +∇ ⋅ + + − = − ∇ ⋅  

   
v vv B I BB B B                      (21) 

( ) ( ) ( )2

0 0 0

1 1 1
2t E E pρ ρ
µ µ µ

  
∂ +∇ ⋅ + + − ⋅ = − ⋅ ∇ ⋅  

   
B v B v B v B B                      (22) 

( )t∂ +∇ ⋅ − = − ∇ ⋅B vB Bv v B                              (23) 

Here, ρ , v , E , P , 0µ  and ( )T
, ,x y zB B B=B  represent the mass density, the velocity vector, the total 

energy, the hydrodynamic pressure, permeability of vacuum and the magnetic field. In addition to satisfying the 
induction equation (Equation (23) above), the magnetic field is also divergence free, i.e. 0∇⋅ =B  which can 
be considered as an extra constraint. Note that in Equations (20)-(23), the so-called Powell approach [29] is 
followed to deal with 0∇⋅ =B  by adding source terms proportional to ∇⋅B  to the equations. 

The first MHD case presented here is known as the Brio-Wu case [30] which is a one-dimensional MHD  
 

 
Figure 16. Solutions of the Myong case. ( )0.44,2.4,0L R= − = −u u  at 0.0376506024t = .                                      
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Riemann problem on the computational domain [ ]1,1− . The initial states are given in the form of primitive  
variables T

, , , , , ,y zu v w p B Bρ =  q  separated at 0x =  

( ) ( )T T1.000,0,0,0,1.0,1.0,0.0 ,    and   0.125,0,0,0,0.1, 1.0,0.0L R= = −q q  

with 0.75xB =  and 2γ = . 
Figure 17 shows the simulated solution at 0.2t = . As can be seen, the complex MHD waves including the 

compound wave, the shock wave, contact discontinuity and rarefaction waves can be captured by the present 
Riemann-solver free method. However, the unlimited solutions exhibit some non-physical overshoots and 
undershoots near discontinuities. 
 

 
Figure 17. Solutions of the Brio-Wu case. 0.75xB = . 0.2t = .                                                   
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Finally, preliminary results of a 2-D MHD vortex advection problem are presented. The case is about a vortex 
advected with the magnetic field diagonally in a square [ ] [ ]5,5 5,5− × −  domain. Periodic boundary conditions 
are assumed. The computational domain is discretized by a 32 32×  rectangular mesh. The solution is initialized 
as follows [31]: 

( ) ( )

( )

( )
( ) ( )

( )

2

2

2

2

2

0.5 1
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−

−

−

−

=

= + −

= +

=
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where 2 2 2r x y= + . 
Figure 18 shows the magnetic field and velocity magnitude field at 0.0T =  and 10.0T = . It can seen that 

the solution fields have been preserved well after one period’s advection. 

4. Conclusions 
This paper summarizes a Riemann-solver free spacetime discontinuous Galerkin method for general hyperbolic 
conservation laws. Numerical examples demonstrate that the method is able to accurately solve various con- 
servation laws including the scalar advection equations, compressible Euler equations, shallow water equations 
and magnetohydrodynamics equations without using any Riemann solvers. To summarize, the method has the 
following features: 

• Based on space-time formulation. Therefore, the current method automatically satisfies the Geometric 
Conservation Law (GCL) for moving mesh problems [10] without special care as needed by ALE-based 
methods. 

• High-order accuracy in both space and time for smooth problems. Space and time are handled in a unified 
way based on space-time flux conservation and high-order space-time discontinuous basis functions. This is in 
contrast to semi-discrete methods where the temporal order of accuracy is limited by the order of Backward Dif- 
ference Formula (BDF) or the multi-step Runge-Kutta method. 

• Riemann-solver free. DG-CVS does not need (approximate) Riemann solvers to provide numerical fluxes as 
needed in finite volume or traditional DG methods. The Riemann-solver-free feature is highly desirable for 
systems where the eigenstructure of the underlying system is not readily known and for the purpose of avoiding 
some pathological behaviors associated with Riemann solvers. 

• Reconstruction free. DG-CVS solves for the solution and its all spatial and temporal derivatives simul- 
taneously at each spacetime node, thus eliminating the need of reconstruction. 

• Suitable for arbitrary spatial meshes. The CE and SE definitions in DG-CVS are independent of the under- 
lying spatial mesh and the same definitions can be easily extended from 1-D to 2-D arbitrarily unstructured 
meshes without any ambiguity. 

• Highly compact regardless of order of accuracy. Only information at the immediate neighboring nodes will 
be needed to update the solution at the new time level. Compactness eases the parallelization of the flow solver. 

• Also accurately solves time-dependent diffusion equations. In the current method, the inclusion of diffusion 
terms is straightforward and simple in exactly the same way how advection terms are handled by simply in- 
corporating the diffusive flux into the space-time flux. No extra reconstruction or recovery or ad hoc penalty and 
coupling terms are needed to ensure the consistency of the variational form for diffusive terms. 

The future work remains to further improve the efficiency of the method and the robustness of the method  
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(a) Bx-field. Left t = 0.0, right t = 10.0 

 
(b) By-field. Left t = 0.0, right t = 10.0 

 
(c) Velocity magnitude field. Left t = 0.0, right t = 10.0 

Figure 18. MHD vortex advection problem.                                                            
 
when high order polynomials are used for nonsmooth problems. 
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