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Abstract 
This paper presents an application of the spectral homotopy analysis method (SHAM) to solve a 
problem of darcy-forcheimer mixed convection flow in a porous medium in the presence of mag-
netic field, viscous dissipation and thermopherisis. A mathematical model governed the flow is 
analyzed in order to study the effects of chemical reaction, magnetic field, viscous dissipation and 
thermophoresis on mixed convection boundary layer flow of an incompressible, electrically con-
ducting fluid past a heated vertical permeable flat plate embedded in a uniform porous medium. 
The similarity variable is used to transform the governing equations into a boundary valued 
problem of coupled ordinary differential equations which are then solved using spectral homoto-
py Analysis Method. The spatial domains are discretized using Chebyshev-Gauss-Lobatto points 
and numerical computations are carried out for the non-dimensional physical parameters. A pa-
rametric study of selected parameters is conducted and the results for the velocity, temperature 
and concentration are illustrated graphically and physical aspects of the problem are discussed. 
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1. Introduction 
Mixed convective flow and heat transfer in saturated porous media is of practical interest in engineering 
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activities because of its wide applications as seen in porous insulation design, resin transfer modeling, nuclear 
waste disposal, etc. Over the years, the researchers in the field of fluid mechanics have intensified their research 
to unravel the importance of particles deposition technology due to its numerous engineering applications. Most 
of the research efforts as cited in [1]-[4] are concerned about free convection using Darcy’s law, which states 
that the volume-averaged velocity is proportional to the pressure gradient. The Darcy model has shown to be 
valid under conditions of low velocities and small porosity. In many practical situations, the porous medium is 
bounded by an impermeable wall, high flow rates and non uniform porosity distribution in the near-wall region, 
thereby rendering Darcy’s law inappropriate and inadequate. Hence, to model the real physical situations better, 
it is therefore necessary to include the non-Darcian effects in the analysis of convective transport in a porous 
medium.  

The problem of Darcy Forchheimer mixed convection heat and mass transfer in fluid-saturated porous media 
in the presence of thermophoresis was studied by [5]. This phenomenon has been the subject of considerable 
study in the past. In optical fiber synthesis, thermophoresis has been identified as the principal mechanism of 
mass transfer as used in the technique of modified chemical vapor deposition (MCVD) [6]. Thermophoresis is a 
gaseous mixture of active precursors directed over a heated substrate where solid film deposits are located. In 
particular, the mathematical modeling of the deposition of silicon thin films using MCVD methods has been 
accelerated by the quality control measures enforced by the micro-electronics industry. Such topics involve a 
variety of complex fluid dynamical processes including thermophoretic transport of particles deposits, hetero- 
genous/homogenous chemical reactions, homogenous particulate nucleation and coupled heat and energy 
transfer. 

The migration of small particles in the direction of decreasing thermal gradient is called thermophoresis [7]. 
That is, a phenomenon which causes small particles to be driven away from a hot surface and towards a cold one. 
Small particles, such as dust, when suspended in a gas with a temperature gradient, experience a force in the 
direction of the temperature gradient. The velocity acquired by these particles is called thermophoretic velocity, 
and the force experienced by the suspended particles due to the temperature gradient is called thermophoretic 
force. The magnitudes of thermophoretic velocity and thermophoretic force are proportional to the temperature 
gradient and depend on thermal conductivity of aerosol particles, the carrier gas, the heat capacity of the gas, the 
thermophoretic coefficient and the Knudsen number. Due to thermophoresis, small micron sized particles are 
deposited on cold surfaces. In this process, the repulsion of particles from hot objects also takes place, and a 
particle-free layer is observed around hot bodies [8]. 

Thermophoresis is of practical importance in a variety of industrial and engineering applications including 
aerosol collection, nuclear reactor safety, corrosion of heat exchanger, and micro contamination control. The use 
of thermophoretic heaters has led to a reduction in chip failures. In the same vein, there is potential application 
of thermophoresis in removing radioactive aerosols from containment domes in the event of a nuclear reactor 
accident. [9] was one of the first to study the role of thermophoresis in the laminar flow of a viscous and incom- 
pressible fluid. He used the classical problem of flow over a flat plate to calculate deposition rates and showed 
that substantial changes in surface deposition can be obtained by increasing the difference between the surface 
and free stream temperatures. This was later followed by the effect of thermophoresis on particle deposition 
from a mixed convection flow onto a vertical plate by [10] and [11]. Also, [12] discussed the effect of surface 
mass transfer on mixed-convection flow past a heated vertical permeable flat plate with thermophoresis. [13] 
studied the effect of thermophoretic particle deposition in free convection boundary layer from a vertical flat 
plate embedded in a porous medium.  

Mixed convection flow occurs frequently in nature. The temperature distribution varies from layer to layer 
and these types of flows have wide applications in industry, agriculture and oceanography. [14] investigated the 
numerical study on MHD mixed convective flow with dispersion and chemical reaction over a vertical plate in 
non-darcy porous medium. Transport processes in porous media play a significant roles in various applications 
such as in geothermal engineering, thermal insulation, energy conservations, chemical catalytic reactors and 
many others. In many transport processes in nature and in industrial applications, heat and mass transfer with 
variable viscosity is a consequence of buoyancy effects caused by diffusion of heat and chemical species. [15] 
investigated the thermophoresis and chemical reaction effects on non-darcy MHD mixed convective heat and 
mass transfer past a porous wedge in the presence of suction/injection. [16] considered coupled heat and mass 
transfer in Darcy-Forchheimer mixed convection from a vertical flat plate embedded in a fluid saturated porous 
medium under the effects of radiation and viscous dissipation. Research on combined heat and mass transfer 
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find application in chemical processing equipment, formation and dispersion of fog, distribution of temperature 
and moisture over agricultural field as well as grooves of fruit trees, damage of crops due to freezing, food 
processing, cooling towers, chemically reactive vapor deposition boundary layers in optical materials processing 
etc. [17] investigated the chemical reaction and radiation effects of surface mass transfer on mixed convection 
flow past a heated vertical flat permeable plate with thermophoresis. [18] investigates the numerical study of 
thermophoresis on aerosol particle deposition from hiemenz flow through porous medium onto a stretching sur- 
face. 

The influence of magnetic field on heat and mass transfer by natural convection from vertical surfaces in 
porous media with Soret and Dufour effects has been carried out by [19]. Analysis of MHD free convection flow 
along a vertical porous plate embedded in a porous medium with magnetic field and heat generation was in- 
vestigated by [20]. Viscous dissipation changes the temperature distributions by playing a role like an energy 
source that leads to affect heat transfer rates. The merits on the effects of viscous dissipation depend on whether 
the plate is being cooled or heated. The work of [21] deals with the effect of the viscous dissipation term along 
with temperature dependent heat source or sink on momentum, heat and mass transfer visco-elastic fluid flow 
over an accelerating surface. [22] investigated the effects of chemical reaction and heat generation on MHD 
boundary layer flow of moving vertical plate with suction and dissipation. Effects of thermophoresis, practical 
deposition and chemical reaction on unsteady MHD mixed convective flow over a porous wedge in the presence 
of temperature dependent viscosity was investigated by [23]. [24] studied the thermophoresis particle deposition 
and variable viscosity effects on non-darcy free convection in fluid saturated porous media with uniform suc- 
tion or injection. [25] investigated on the effectiveness of variable heat and mass fluxes on hydromagnetic free 
convection and mass transfer flow along an inclined permeable stretching surface with thermophoresis. Influence 
of viscous dissipation on free convection in a non-darcy porous medium saturated with Nano-fluid in the pres- 
ence of magnetic field was investigated in [26]. [27] investigated the thermophoresis and viscous dissipation ef- 
fects on Darcy-Forchheimer MHD mixed convection in a fluid saturated porous media.  

The effects of magnetic field on a boundary layer control and on the performance of many systems using 
electrically conducting fluid such as MHD power generators, the cooling of nuclear reactors, plasma studies, 
purification of molten metals from non-metallic inclusion geothermal energy extraction etc.has been discussed 
extensively in some literatures. The laminar boundary layer on a moving continous flat surface in the presence 
of suction and magnetic field was studied by [28]. They observed the effect of magnetic field on boundary layer 
thickness and skin friction at the surface. Boundary layer flow along a flat plate is considered when a magnetic 
field acts perpendicular to the plate. Recently, [29] considered the effect of magnetic field on the boundary layer 
flow, heat and mass transfer of nanofluids over a stretching cylinder. [30] studied the effect of a uniform tran- 
sverse magnetic field on the stagnation point flow over a stretching and vertical sheet. While, [31] studied the 
effect of magnetic field on mixed convection boundary layer flow over an exponentially shrinking vertical sheet 
with suction. 

From the literature survey, the influence of magnetic field,viscous dissipation and thermophoresis on Darcy- 
Forchhemer mixed convection in fluid saturated porous media in the presence of chemical reaction have not 
been investigated so far. Hence,we result to study the influence of magnetic field and thermophoresis on darcy- 
forchhemer mixed convection in fluid saturated porous media with viscous dissipation and chemical reaction is 
investigated using a novel SHAM approach. The transformed governing equations is solved using the spectral 
homotopy analysis method. 

2. Mathematical Formulation 
Consider a steady mixed convection boundary layer flow over a vertical flat plate of constant temperature wT  
and concentration wC , which is embedded in a fluid-saturated porous medium of ambient temperature T∞  and 
concentration C∞ , respectively. The x-coordinate is measured along the plate from its leading edge and the y- 
coordinate normal to it. Also, it is assumed that there exists a homogeneous first-order chemical reaction with a 
constant rate cK  between the diffusing species and the fluid. It is assumed that the porous medium is homo- 
geneous and present everywhere in local thermodynamic equilibrium. It is to be mentioned that the hole size of 
the porous plate is assumed to be constant. The fluid state properties and that of porous medium are assumed to 
be constant. Allowing both Brownian motion of particles and thermophoretic transport, the governing boundary 
layer equations are  
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The initial conditions at 0y =  are given as  

( ) ( ) ( ) ( ) ( ),0 0 , ,0 0, ,0 , ,0wu x U ax v x T x T C x Cω ω= = = = =                     (5) 

The boundary conditions as y →∞  are:  

( ) ( ) ( ), 0, , , , .u x T x T C x C∞ ∞∞ → ∞ → ∞ →                           (6) 

In Equation (2), the plus sign corresponds to the case where the buoyancy force has a corresponding “aiding 
effect” on the flow and the minus sign correspond to “opposing flow” case. The term TV  in Equation (4) 
following [32] can be defined as:  
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setting 0C∞ =  and following [33], the thermophoretic coefficient *k  is defined as  
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The following relations are now introduced for u, v, ( )θ η  and ( )φ η  as  
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It is well known that boundary layer flows have a predominant flow direction and boundary layer thickness is 
small compared to a typical length in the main flow direction. Boundary layer thickness usually increases with 
increasing downstream distance, the basic equations are transformed in order to make the transformed boundary 
layer thickness a slowly varying function of y, with this objective, the governing partial differential Equations 
(1)-(4) are transformed by following dimensionless variables for the mixed convection regime:  
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Here, ( ),x yψ  is the stream function. The first two mathematical relations of (10) satisfy continuity Equa- 
tion (1). Upon substituting the above transformation (10) into the governing Equations (1)-(4) we obtain the 
following non-dimensional form  

( )2 ,xf f f Ra Nθ φ′′ ′ ′′ ′ ′+ Λ = +                                 (11) 

( )2 2 0,Pr f PrEc f Mfθ θ′′ ′ ′′ ′+ + + =                              (12) 

( ) 0,c cS S fφ τ φθ φ θ φ βφ′′ ′′ ′ ′ ′+ + + − =                              (13) 
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where the prime denote differentiation with respect to η  and the pertinent dimensionless parameters are 
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Also using the above stated similarity transformations, the transformed boundary conditions are:  
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The physical quantities of interest in this problem are Nusselt number and Sherwood number which are de- 
fined respectively as  

Nusselt number:  

( )0xNu Re θ ′= −  

Sherwood number:  

( )0xSh Re φ′= −  

3. Approximate Method 
In this paper, the numerical version of the homotopy analysis method called SHAM is used to solve a set of or- 
dinary differential equations (ODEs) that models the problem of darcy-forcheimer mixed convection flow over a 
vertical plate embedded in a saturated porous medium in the presence of Magnetic field and chemical reaction. 
SHAM is a numerical version of the homotopy analysis method (HAM) that has been widely applied to solve a 
wide variety of nonlinear ordinary and partial differential equation with applications in applied mathematics, 
physics, nonlinear mechanics, finance and engineering. A detailed systematic description of the HAM and its 
applications can be found in two books (and a huge list of references cited therein) ([34] [35]) by S. J. Liao who 
is credited with developing the method.  

In essence, the HAM works by transforming a nonlinear ODE or PDE into an infinite number of linear ODEs 
which should be solvable analytical. The HAM solutions are required to conform to a predefined rule of solution 
expression. The SHAM was introduced in ([36] [37]) and it uses the principles of the traditional HAM and 
combines them with the Chebyshev spectral collocation method which is used in the solution of the transformed 
sequence of ordinary differential equations. One of the main features of the SHAM is the removal of the 
requirement to conform to a particular rule of solution expression. The SHAM also requires that the linear 
operator to be used in the development of the algorithm be selected as the entire linear part of the governing 
differential equation. This often leads to complicated sequence of linear ordinary differential equations which 
can only be solved numerically. Hence, the use of the Chebyshev spectral collocation method. Spectral methods 
are now becoming the preferred tools for solving ordinary and partial differential equations because of their 
elegance and high accuracy in resolving problems with smooth functions ([38] [39]). 

In applying the spectral-homotopy analysis method, it is convenient to first transform the domain of the  
problem from [ ]0,1  to [ ]1,1−  and make the governing boundary conditions homogeneous by using the trans- 
formations  
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Substituting (15)-(16) in the governing equation and boundary conditions (11)-(14) gives  

( )1 2 12 ,x xf f f a f a f Ra Ra N Hθ φ η′′ ′ ′′ ′ ′′ ′ ′+ Λ + Λ + Λ − − =                     (17) 
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And 
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The initial approximation is taken to be the solution of the nonhomogeneous linear part of the governing Equa- 
tions (17)-(19) given by  
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subject to  
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We use the Chebyshev pseudospectral method to solve (25)-(28). The unknown function ( )lf ξ , ( )lθ ξ  and 

( )lφ ξ  are approximated as a truncated series of Chebyshev polynomials of the form:  
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where kT  is the kth Chebyshev polynomial, k̂f , k̂θ  and k̂φ  are coefficients and 0 1, , , Nξ ξ ξ  are Gauss- 
Lobatto collocation points (see [28]) defined by  
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where r is the order of differentiation and D  is the Chebyshev spectral differentiation matrix. Substituting the 
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above expressions in (25)-(28) yields  
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1, 2,3, 4,5.i =  In the above definitions, the superscript T denotes transpose, diag is a diagonal matrix and I is 
an identity matrix of size ( ) ( )1 1N N+ × +  To implement the boundary conditions (33), we delete the first and  
the last rows and columns of A and delete the first and last rows of ( )lf ξ , ( )lθ ξ , ( )lφ ξ  and G . The boun- 
dary conditions (33) are imposed on the resulting first and last rows of the modified matrix A and setting the 
resulting first and last rows of the modified matrix G  to be zero. The values of  
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To find the SHAM solutions of (17)-(19), we begin by defining the following linear operator:  

( ) ( ) ( ) 1 2; , ; , ; ,f x xL f q q q f a f a f Ra Ra Nη θ η φ η θ φ  ′′ ′ ′′ ′ ′= + Λ + Λ − −                 (35) 
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( ) ( ) ( ) 1 2 3 4; , ; , ; ,L f q q q b Pr b Prf b PrEcf b Mfθ η θ η φ η θ θ  ′′ ′ ′′ ′= + + + +               (36) 
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[ ]0,1q∈  is an embedding parameter and ( ),f qη , ( ), qθ η  and ( ), qφ η  are the unknown functions. The 
zeroth order deformation is given as  

( ) ( ) ( ) ( ) ( ) ( ) ( )01 ; ; , ; , ; ,
ff f fq L f q f q H N f q q qη η η η θ η φ η   − − =   

              (38) 

( ) ( ) ( ) ( ) ( ) ( )01 ; ( ) ; , ; , ; ,q L q q H N f q q q
θθ θ θθ η θ η η η θ η φ η  − − =   

               (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( )01 ; ; , ; , ; .q L q q H N f q q q
φφ φ φφ η φ η η η θ η φ η  − − =   

               (40) 

where f , θ  and φ  are the nonzero convergence controlling auxiliary parameters and 
f

N


, N
θ

 and 

N
φ

 are nonlinear operators given by  

( ) ( ) ( ) 1 2; , ; , ; 2 ,
f x xN f q q q f f f a f a f Ra Ra Nη θ η φ η θ φ  ′′ ′ ′′ ′ ′′ ′ ′= + Λ + Λ + Λ − − 

          (41) 

( ) ( ) ( ) 2
1 2

2
3 4

; , ; , ;

,

N f q q q Pr f b Pr b Prf PrEcf

b PrEcf Mf b Mf
θ

η θ η φ η θ θ θ  ′′ ′ ′ ′′= + + + + 
′′ ′ ′+ + +

                (42) 

( ) ( ) ( ) 1 2 3

4 4 5

; , ; , ;

.

c c c c c

c c c c

N f q q q S c S c S S c S

c S S f c S f c S
φ

η θ η φ η φ τφθ τφ τθ τφ θ τφ

τθ φ φ βφ

  ′′ ′′ ′′ ′ ′ ′= − − − − − 
′ ′ ′− + + + −

           (43) 

Differentiating (38)-(40) m times with respect to q and then setting 0q =  and finally dividing the resulting 
equations by !m  yields the mth order deformation equations:  

( ) ( ) ( ) ( )1 ,f
m m mf f fL f f H Rξ χ ξ ξ ξ− − =                            (44) 

( ) ( ) ( ) ( )1 ,m m mL H Rθ
θ θ θθ ξ χ θ ξ ξ ξ− − =                            (45) 

( ) ( ) ( ) ( )1 .m m mL H Rφ
φ φ φφ ξ χ φ ξ ξ ξ− − =                            (46) 

Subject to  

( ) ( ) ( )
( ) ( ) ( )

1 0, 1 0, 1 1,

1 0, 1 0, 1 0.
m m m

m m m

f

f

θ φ

θ φ

− = − = − =

′ = = =
                           (47) 

where  

( ) ( )( )
1

1 1 1 2 1 1 1 1 1
1

2 1 ,
m

f
m m m m x m x m n m n m

n
R f a f a f Ra Ra N f f Hξ θ φ η χ

−

− − − − − − −
=

′′ ′ ′′ ′ ′ ′ ′′= + Λ + Λ − − + Λ − −∑        (48) 

( )

( )( )

1 1 1 2 1 3 1 4 1

1

1 1 1 2
1

1 ,

m m m m m m

m

n m n n m n n m n m
n

R b Pr b Prf b PrEcf b Mf

Pr f PrEcf f Mf f H

θ ξ θ θ

θ η χ

− − − − −

−

− − − − −
=

′′ ′ ′′ ′= + + + +

 ′ ′′ ′′ ′ ′ + + + − − ∑
                (49) 

( )

( )( )

1 1 1 2 1 3 1 4 1 5 1 1

1

4 1 1 1 3
1

1 .

m m c m c m c m c m c m m

m

c m c n m n c n m n m
n

R c S c S c S c S f c S

c S S S H

φ ξ φ τφ τθ τφ φ βφ

τθ τφ θ τθ φ η χ

− − − − − − −

−

− − − −
=

′′ ′′ ′ ′= + + + + + −

′ ′′ ′ ′ + + + − − ∑
              (50) 

And  

0 when 0,
1 when > 1.m

m
m

χ
≤

= 


                                   (51) 
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Applying the Chebyshev pseudospectral transformation on (44)-(46) gives  

( ) ( )1 11 f
m m m m mf f ff f Pχ χ− −= + − − +A A G                             (52) 

( ) ( )1 11m m m m mPθ
θ θ θθ χ θ χ− −= + − − +A A G                             (53) 

( ) ( )1 11m m m m mPφ
φ φ φφ χ φ χ− −= + − − +A A G                             (54) 

Subject to  

( ) ( ) ( )0
=0

0, 0, 0,
N

m N k m k m N
k

f fξ ξ θ ξ= = =∑D  

( ) ( ) ( )0 00, 0, 0m m N mθ ξ φ ξ φ ξ= = =  

where A  and G , are as defined above and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T

0 1 0 1 0 1, , , , , , , , , , ,m m m m N m m m N m m m Nf f fξ ξ ξ θ ξ θ ξ θ ξ φ ξ φ ξ φ ξ =  F     

( )( )
1

2
1 1

0
2

m
f

m n m n
n

P f f
−

− − −
=

 = Λ ∑ D D                                (55) 

( )( ) ( )( ) ( )( )
1

2 2
1 1 1 1

0

m

m n m n n m n n m n
n

P Pr f PrEc f f M f fθ θ
−

− − − − − − −
=

 = + + ∑ D D D D D                (56) 

( )( ) ( )( ) ( )( )
1

2
1 1 1 1

0

m

m c n m n c n m n c n m n
n

P S S S fφ τ φ φ τ θ φ φ
−

− − − − − − −
=

 = + + ∑ D D D D                 (57) 

To implement the boundary conditions above we delete the first and last rows of 1
f

mP − , 1mPθ
− , 1mPφ

−  and G   
and delete the first and last rows and first and last columns of A  in 52, 53 and 54. The boundary conditions 
(54a) are imposed on the first and last row of the modified A  matrix on the left side of the equal sign in 52, 53 
and 54. The first and last rows of the modified A  matrix on the right of the equal sign in 52, 53 and 54 are the 
set to be zero. This results in the following recursive formulas  

( ) ( )1 1
1 1 1 ,f

m m m m mf ff f Pχ χ− −
− −

 = + + − − A A A G                        (58) 

( ) ( )1 1
1 1 1 ,m m m m mPθ

θ θθ χ θ χ− −
− −

 = + + − − A A A G                        (59) 

( ) ( )1 1
1 1 1 ,m m m m mPφ

φ φφ χ φ χ− −
− −

 = + + − − A A A G                        (60) 

Thus, starting from the initial approximation,obtain from (34), higher-order approximations ( )mf ξ , ( )mθ ξ , 

( )mφ ξ  for 1m ≥  can be obtained through the recursive formula (58)-(60). 

4. Results and Discussion 
For the problem under investigation, numerical computations are carried out for different flow parameters such 
as inertia parameter Λ , thermal rayleigh number xRa , buoyancy ratio N, Schmidt number Sc, thermophoretic 
parameter τ , Eckert number Ec, Chemical reaction parameter β , Magnetic parameter M and the results are 
reported in graphs and tables. This is done to illustrate special features of the numerical solutions. In this com-  
putation except otherwise stated, we used prandtl number Pr = 0.73, Schmidt number 0.62Sc = , 1Λ = , 2N = , 

0.5fh h hθ φ= = = − , 0.01Ec = , 0.5M = , 0.8xRa = , 0.5β =  and 0.01τ = . In addition the boundary 
condition η →∞  is approximated by max 20η = ; which is sufficiently large for the velocity to approach the 
relevant stream velocity. 

Figures 1-8 illustrate the effects of the various pertinent parameters on the dimensionless velocity ( )f η′ , 

temperature ( )θ η  and concentration ( )φ η . Figures 1(a)-(c) show the effect of the mixed convection  
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(a) 

 
(b) 

 
(c) 

Figure 1. Effect of thermal rayleigh number xRa  on velocity, temperature 
and concentration profiles. (a) Velocity profile; (b) Temperature profile; (c) 
Concentration profile.                                                 
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(a) 

 
(b) 

 
(c) 

Figure 2. Effect of Eckert number i.e. viscous dissipation term Ec  on ve-
locity, temperature and concentration profiles. (a) Velocity profile; (b) Tem-
perature profile; (c) Concentration profile.                                 



A. I. Fagbade et al. 
 

 
29 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Effect of thermophoresis parameter τ  on velocity, temperature 
and concentration profiles. (a) Velocity profile; (b) Temperature profile; (c) 
Concentration profile.                                                
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(a) 

 
(b) 

 
(c) 

Figure 4. Effect of bouyancy ratio parameter N on velocity, temperature and 
concentration profiles. (a) Velocity profile; (b) Temperature profile; (c) Con- 
centration profile.                                                  
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(a) 

 
(b) 

 
(c) 

Figure 5. Effect of magnetic parameter M on velocity, temperature and con- 
centration profiles. (a) Velocity profile; (b) Temperature profile; (c) Concen- 
tration profile.                                                     
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(a) 

 
(b) 

 
(c) 

Figure 6. Effect of inertial parameter Λ  on velocity, temperature and con- 
centration profiles. (a) Velocity profile; (b) Temperature profile; (c) Con- 
centration profile.                                                   



A. I. Fagbade et al. 
 

 
33 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Effect of chemical reaction parameter β  on velocity, temperature 
and concentration profiles. (a) Velocity profile; (b) Temperature profile; (c) 
Concentration profile.                                                



A. I. Fagbade et al. 
 

 
34 

 
Figure 8. Comparison of velocity profiles of the fluid with the model solved 
by Kishan [37]. Velocity profile.                                        

 
parameter xRa  on the dimensionless velocity,temperature and concentration profiles of the flow.We note that 
when 1xRa  , the flow is dominated by natural convection, while when 1xRa  , forced convection 
dominates the flow regime. Hence, when 1xRa = , the effects of natural convection and forced convection 
achieve equal importance and flow is dominated by mixed convection conditions. Figure 1(a) shows that 
velocity of the flow within the boundary layer increases as thermal rayleigh number xRa  increase due to the 
effect of buoyancy force. When the free stream and the boundary force are in opposite direction, the bouyancy 
force retard the fluid on the boundary layer acting somewhat like an adverse pressure gradient. From Figure 1(b) 
and Figure 1(c), we observed that the temperature and concentration profile of the flow decrease with increasing 
value of xRa . 

Figures 2(a)-(c) illustrate the influence of Eckert number Ec, a viscous dissipation term on the velocity, 
temperature and concentration distribution. It is observed from these figures that Ec have quite opposite effects 
on the velocity and the associated thermal boundary layer thickness. That is, velocity and temperature profile of 
the flow increase with increase in the the viscous dissipation term. This further establishes the fact that Eckert 
number Ec enhances temperature distribution in a mixed convective flow. Whereas, concentration profile de- 
creases more quickly for an increasing value of Ec. Figures 3(a)-(c) show the influence of thermophoresis 
parameter τ  on the dimensionless velocity, dimensionless temperature and concentration in the presence of 
viscous dissipation. In Figure 3(a), as a result of viscous dissipation effect which acts as source of internal heat 
to the flow,the velocity profile increase as a result of increase in thermophoresis parameter. This is accompanied 
by a slight increase in fluid temperature and concentration as seen in Figure 3(b) and Figure 3(c) respectively. 
Figure 3(c) illustrates the influence of the thermophoretic parameter on the concentration profiles. It is seen that 
concentration of the fluid increases with an increase of the thermophoretic parameter τ . So, thermophoretic 
parameter is expected to alter the concentration boundary layer significantly. 

Figure 4(a) displays the effects of the ratio of buoyancy parameter N on the velocity, temperature and con- 
centration profile of the fluid. The effects of the ratio of the buoyancy parameter are similar to that of a local 
buoyancy parameter in a qualitative way. We noticed that the fluid velocity increases more rapidly in the case of 
increasing buoyancy parameter. It is observed that velocity increases in the presence of aiding flows ( )0N > . 
This is because the practical effect of buoyancy ratio N is to enhance the rate of surface heat transfer. Increase in 
the ratio of the buoyancy parameter correspond to a decrease in the temperature and concentration as observed 
in Figure 4(b) and Figure 4(c) respectively.  

In Figure 5(a), the velocity of the flow increases with increase in magnetic force acting on the the particles of 
the fluid. This is because the variation of M leads to the variation of Lorentz force due to the magnetic field, and 
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the Lorentz force produces more resistance to the transport phenomena. Therefore, the momentum boundary 
layer thickness becomes larger, and the separation of the boundary layer occurs earlier. In Figure 5(b), the fluid 
temperature increases with an increase in the Magnetic strength. That is, for increasing M it means that magnetic 
field actually influenced flow system by increasing the values of temperature in the flow field and then de- 
creasing the gradient at the wall and increases thickness of the thermal boundary layer. While in Figure 5(c), the 
concentration profile of the flow decreases with increase in the Magnetic parameter M.  

The influence of inertia parameter Λ  is illustrated on the velocity, temperature and concentration profiles of 
the flow as shown in Figures 6(a)-(c). It is observed that an increase in the value of inertia parameter Λ  
caused a reduction in the maximum velocity attained by the flow. This occurs as a result of increase in the for- 
mation of drag within the porous medium when the inertia effect is included. While in Figure 6(b) and Figure 
6(c), the temperature and concentration profiles in the boundary layer increase as a result of increase in the 
inertia parameter and consequently, the thermal and momentum boundary layers become thicker. Figure 7(c) 
shows the variation of the concentration distribution across the boundary layer for various values of the che- 
mical reaction parameter β . It is seen that the effect of increasing values of the chemical reaction parameter 
result to reduction in the velocity, temperature and concentration distribution across the boundary layer. The 
reason being that chemical reaction increases the rate of interfacial mass transfer. Figure 8 compared the ve- 
locity profile of the flow analyzed by [27] and the present study in the absence of magnetic field, chemical re- 
action and magnetic field. It is observed that the solution obtained by SHAM is in good agreement with Quasi- 
linearization technique used by [27]. 

The effects of thermophoresis, chemical reaction, Hartmann number, on heat flux and mass flux are presented 
in Tables 1-3 respectively. 

As defined previously in the initial/boundary conditions (14), the velocity, temperature and concentration 
distributions decay as η  tends to infinity. The numerical results in Table 1 compared solutions obtained from 
present model with the one analyzed by [27] on the local heat transfer rate and sherwood number. It is observed 
that both local heat transfer rate and sherwood number increase as the thermophoresis paramter increases in the 
flow domain. This further established the accuracy of our results when compared with the earlier work of [27].  

 
Table 1. Computational values for local heat transfer rate ( )( )0θ′−  and sherwood number ( )( )0φ′−  at varoius values of 

thermophoretic parameter τ  when 0.73, 0.01, 0.8, 1, 0.62, 1, 0, 0, 0.5x c fPr Ec Ra S N M θ φβ= = = Λ = = = = = = = = −   . 

Parameter Present study N. Kishan [27] when 0Ha =  

τ  ( )0θ ′−  ( )0φ′−  ( )0θ ′−  ( )0φ′−  

0.0 0.44698 0.40591 0.44632 0.40305 

0.05 0.44996 0.41663 0.44578 0.41264 

0.1 0.44583 0.42201 0.44515 0.42234 

0.5 0.44308 0.49971 0.44062 0.50022 

1.0 0.43552 0.5906 0.43525 0.59970 

 
Table 2. SHAM solution for different values of chemical reaction parameter β  when  

0.73, 0.01, 0.8, 1, 0.62, 1, 0.5, 0.5, 0.5x c fPr Ec Ra S N M θ φτ= = = Λ = = = = = = = = −   .                             

β  ( )0θ ′−  ( )0φ′−  

0 0.43842 0.49973 

0.5 0.41945 0.88663 

1 0.41004 1.14647 

1.5 0.40398 1.35534 

2.0 0.39954 1.53512 



A. I. Fagbade et al. 
 

 
36 

Table 3. SHAM solution for different values of magnetic parameter M when  
0.73, 0.01, 0.8, 1, 0.62, 1, 0.5, 0.5, 0.5x c fPr Ec Ra S N θ φτ β= = = Λ = = = = = = = = −   .                              

M  ( )0θ ′−  ( )0φ′−  

0 0.39951 1.53512 

0.2 0.42056 0.88687 

0.4 0.41988 0.88673 

0.6 0.41905 0.88655 

0.8 0.41834 0.88632 

1.0 0.41755 0.88611 

 
Table 2 illustrates the influence of chemical reaction parameter β  on the flow field. It can be seen clearly 

that local heat transfer rate reduces for every increment in the chemical reaction parameter whereas sherwood 
number increases with increase in the chemical reaction parametr. Obviously, thermophoresis has direct impact 
on the concentration profile rather than on the flow velocity and temperature distributions as shown in Table 2. 
As the chemical reaction species in the flow are multiplied, higher fluid composition can be flushed away from 
the surface as given in Table 2. Based on Table 3, it can be concluded that as the Hartmann number increases, 
the Lorentz force due to electromagnetism increases ,leading to increment in internal heat transfer rate. 

5. Conclusions 
In this paper, we have used the spectral homotopy analysis method (SHAM) to solve a second-order nonlinear 
boundary value problem that governs the two-dimensional steady darcy-forcheimer mixed convection flow in 
fluid saturated porous media in the presence of chemical reaction and viscous dissipation. The non-linear mo- 
mentum, energy and species boundary layer equations are transformed into ordinary differential equations using 
suitable similarity variables.The transformed boundary layer equations are solved using SHAM. We have dis- 
cussed the effects of magnetic field,chemical reaction,viscous dissipation and thermophoresis on the flow pro- 
files. The main observations are as follows:   
 Due to stronger magnetic field the dimensioless velocity decreases whereas, temperature and concentration 

distributions increase.  
 An increase in the ratio of the buoyancy parameter N corresponds to an increase in velocity profile ( )f η′  

but lead to decrease in the temperature ( )θ η  and concentration ( )φ η  distributions. 
 The fluid velocity and temperature rise with an increase in Eckert number Ec, a viscous dissipation term but 

caused a reduction the concentration profile.  
 The influence of thermophoresis parameter on the local heat transfer rate is very significant when compared 

with the sherwood number.  
 Using magnetic field we can control the heat and mass transfer flow characteristics.  
 The species concentration profiles increases significantly for the increasing chemical reaction parameter β  

and but opposite trend is observed by the influence of thermophoretic parameter τ  on the local heat transfer.  
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Nomenclature 

English Symbols 

( )wU x  stretching velocity of the plate 

T∞  free stream temperature of the surrounding fluid 

u, v velocity components in x- and y-respectively 

g gravitational force due to acceleration 

mD  coefficient of mass diffusivity 

pC  the specific heat at constant pressure 

mT  reference temperature 

1K  Darcy permeability 

*k  thermophoretic coefficient 

M Magnetic parameter 

xRa  thermal Rayleigh number 

N buoyancy ratio 

rP  Prandtl number 

cS  Schmidtl number 

1C  Cunningham correction factor 

Kn  Knudsen number 

mC  real constant 

sC  real constant 

tC  real constant 

fC  skin-friction coefficient 

f  dimensionless stream function 

Nu Nusselt number 

Sh Sherwood number 

wf  suction/injection parameter 

C∞  free stream concentration 

T fluid temperature 

C fluid concentration 

Greek Symbols 

µ  dynamic viscosity 

ρ  density 

tβ  volumetric coefficient of thermal expansion 

cβ  volumetric coefficient of expansion 

α  thermal diffusivity 

oβ  magnetic field of constant strength 
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Continued 
*σ  electrical conductivity 

ν  kinematic viscosity 

gλ  thermal conductivity of the fluid 

pλ  thermal conductivity of the diffused particle 

φ  dimensionless concentration 

η  similarity variable 

ψ  stream function 

θ  dimensionless temperature 

β  chemical reaction parameter 

Λ  inertial parameter 

τ  thermophoretic parameter 
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