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Abstract 
The present problem is considered as a coupled boundary value problem and is analyzed using a 
semi analytic method. A series method is used to obtain the solution and region of validity is ex-
tended by suitable techniques. In this case of series solution the results obtained are better than 
pure numerical findings up to moderately large Reynolds numbers. The variation of physical pa-
rameters is discussed in detail. 
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1. Introduction 
The flow between porous discs has been studied by several authors. As in the case of porous pipes and porous 
channels, the governing equation reduces to a set of nonlinear ordinary differential equations. This problem was 
first studied by Batchelor [1] who generalized the solution of Von Karman [2]. Further this problem was ana-
lyzed by Stewartson [3] who obtained perturbation solution for the small Reynolds number. Flow between a ro-
tating and a stationary disc has been studied by Phan-Thein and Bush [4]. The problem of suction of viscous in 
incompressible fluid through a rotating porous disc onto a rotating co-axial disc was studied by C. Y. Wang [5]. 
Here we view this problem as a coupled nonlinear boundary value problem. 

In the present paper we have used semianalytical numerical technique to understand the effect of suction 
represented by a pair of nonlinear differential equations. For simple geometrics the semianalytical numerical 
methods proposed here provide better results. Van Dyke [6] and his associates have successfully used these se-
ries methods in unveiling important features of various types of fluid flows. Bujurke and Pai [7] has discussed 
similar geometrical problem with injection at the discs. 

Recently in the analysis of flow in pipe, Pai and Katagi [8] have used series analysis satisfactorily. The phys-
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ical problem considered in this paper is of great importance in Fluid Dynamics. The present study is a possible 
extension work of Wang [5]. The problem is solved using a special type of series. The series so generated has 
limited utility due to presence of a singularity and its region of validity is extended by analytic continuation. 

2. Mathematical Formulation 
As shown in the Figure 1 we denote the spacing between the discs by z L= ±  and rotating with the same an-
gular velocity Ω. Fluid is withdrawn from both discs with velocity W. We shall assume the gap with 2L is small 
compared to diameter of the discs. So that end effects can be neglected. The flow field is symmetric about the 

0z = . 
The governing equations are 
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∂∂ ∂
, and u, v, w are velocity components. The boundary conditions are at  z L= ± , 

0u = , v r= Ω , w W= ± . 
For similarity transformation we consider Wang [5] 
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where z
d

η =  and A is constant. Now the equations take the form 

 

 
Figure 1. The co-ordinate system. 
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( )2 2 12f ff g A f
R

′ ′′ ′′′− − = +  

or 
( )2 ivR ff gg f′′′ ′− + =                                 (1.6) 

( )2R f g fg g′ ′ ′′− =                                  (1.7) 

( ) 2 22 2 .fP f W W B
L

η ν
′ = − − + 

 
                           (1.8) 

Here WdR
ν

=  is Reynolds number. The boundary conditions are 

( ) ( ) ( ) ( ) 11 0 0 0,     1 ,
2

f f f f′ ′′= = = = −                         (1.9) 

( ) ( )0 0,     1 .Lg g
W

βΩ′ = = =                             (1.10) 

3. Method of Solution 
We assume the solution of (1.6) and (1.7) in the forms 

( ) ( ) ( )0
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f f R fη η η
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Substituting (3.1), (3.2) in (1.6) and (1.7) and comparing powers of R one can get 
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The relevant boundary conditions are 

( ) ( ) ( ) ( )0 0 0
11 0,      0 0 0,     1 ,
2

f f f f′ ′′= = = = −  

( ) ( )0 0 0,     1 ,g g β′ = =  

( ) ( ) ( ) ( )1 0,     0 0,     0 0,     1 0,n n n nf f f f′ ′′= = = =  

( ) ( )1 0 ,  1 0,      1, 2,3 .n ng g n′ = = =   

The solutions are 
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8 6 4 2
2

3 1 111 253 3183 .
2240 80 3360 560 6720

g β η η η η− = + − − + 
 

 

The slow convergence of series (3.1), (3.2) requires large number of terms for obtaining the approximate sum. 
For higher order approximations we proceed by the following scheme. 

We propose a systematic scheme for this purpose, we consider nf  and ng  to be of the forms 
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We substitute (3.5), (3.6) in (3.3), (3.4) respectively and equate various powers of η  on both sides to get 
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where 4m n= − , 4l r j= + , 4t m j= − , 4 2nk n k= − − , iP , iQ , iT ’s are functions of k and 1k . 
For the radial velocity profile, 
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Figure 2. Domb sykes plot. 
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Table 1. Comparison of values for ( )0f ′ . 

R β  ( )0f ′  (numerical) Series method 

40.812 3.00 --------- –0.34121 

20.345 3.6648 –0.54398 –0.54398 

0.13151 0.68501 –0.74150 –0.74150 

–39.0691 0.98224 -0.6550 –0.65511 

–60.000 0.98204 -------- –0.41511 

 
Table 2. Comparison of values for ( )0f ′′′ . 

R β  ( )0f ′′′  (numerical) Series method 

40.812 3.00 -------- 0.0000 

20.345 3.6648 0.0069 0.00688 

8.5679 0.000 0.24870 0.24871 

0.13151 0.68501 1.37862 1.37862 

–4.39563 0.43440 2.24572 2.24571 

–39.0691 0.98224 0.00156 0.00156 

–60.000 0.98204 -------- 0.00000 

 
And we have 

( ) ( ) ( ) ( ) ( )( )( ) ( )( )( )
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4. Conclusions 
A new type of series is presented for studying the problems of flow between the two discs using recurrences (3.7) 
and (3.8). In this process we generate universal coefficients ( )n kC , 1, ,30η =  , 4 1k n= + . 

These coefficients in turn give universal coefficients for ( )( )1,2, ,30nf nη =  . The series (3.9) and (3.10) 
give ( )0f ′  and ( )0f ′′′  respectively using Domb-sykes plot (Figure 2), and we locate the position of singu-
larities for 0β =  at 17.89. The series (3.9) and (3.10) are summed using Pade-approximants. Earlier numerical 
results were from  20R =  to −39. We are able to go upto  40R =  to −60 using Pade-approximants. The results 
are in close agreement with numerical findings of Wang [5] which are shown in the Table 1 and Table 2. 
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