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Abstract 

Dimension reduction is defined as the processes of projecting high-dimensional data to a much 
lower-dimensional space. Dimension reduction methods variously applied in regression, classifi-
cation, feature analysis and visualization. In this paper, we review in details the last and most new 
version of methods that extensively developed in the past decade. 
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1. Introduction 

Any progresses in efficiently using data processing and storage capacities need control on the number of useful 
variables. Researchers working in domains as diverse as computer science, astronomy, bio-informatics, remote 
sensing, economics, face recognition are always challenged with the reduction of the number of data-variables. 
The original dimensionality of the data is the number of variables that are measured on each observation. 
Especially when signals, processes, images or physical fields are sampled, high-dimensional representations are 
generated. High-dimensional data-sets present many mathematical challenges as well as some opportunities, and 
are bound to give rise to new theoretical developments [1]. 

In many cases, these representations are redundant and the varaibles are correlated, which means that 
eventually only a small sub-space of the original representation space is populated by the sample and by the 
underlying process. This is most probably the case, when very narrow process classes are considered. For the 
purpose of enabling low-dimensional representations with minimal information loss according dimension 
reduction methods are needed.  

Hence, we are reviewing in this paper the most important dimensional reduction methods, including most 
traditional methods, such as principal component analysis (PCA) and non-linear PCA up to current state-of-art 
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methods published in various areas, such as signal processing and statistical machine learning literature. This 
actual survey is organized as follows: Section 2 reviews the linear nature of Principal component analysis and its 
relation with multidimensional scaling (classical scaling) in a comparable way. Section 3 introduces non-linear 
or Kernel PCA (KPCA) using the kernel-trick. Section 4 is about linear discriminant analysis (LDA), and we 
give an optimization model of LDA which is a measuring of a power of this method. In Section 5 we summarize 
another higher-order linear method, namely canonical correlation analysis (CCA)), which finds a low 
dimensional representation maximizing the correlation and of course its optimization-formulation. Section 6 
reviews the relatively new version of PCA, the so-called oriented PCA (OPCA) which is introduced by Kung 
and Diamantaras [2] as a generalization of PCA. It corresponds to the generalized eigenvalue decomposition of a 
pair of covariance matrices, but PCA corresponds to the eigenvalue decomposition of only a single covariance 
matrix. Section 7 introducs principal curves and includes a characterization of these curves with an optimization 
problem which tell us when a given curve can be a principal curve. Section 8 gives a very compact summary 
about non-linear dimensional-reduction methods using neural networks which include the simplest neural 
network which has only three layers: 
1) Input Layer  
2) Hidden Layer (bottleneck)  
3) Output Layer  
and an auto-associative neural network with five layers: 
1) Input Layer  
2) Hidden Layer  
3) Bottleneck  
4) Hidden Layer  
5) Output Layer  

A very nice optimizing formulation is also given. In Section 9, we review the Nystroem method which is a 
very useful and well known method using the numerical solution of an integral equation. In Section 10, we look 
the multidimensional scaling (MDS) from a modern and more exact consideration view of point, specially a 
defined objective stress function arises in this method. Section 11 summarizes locally linear embedding (LLE) 
method which address the problem of nonlinear dimensionality reduction by computing low-dimensional 
neighborhood preserving embedding of high-dimensional data. Section 12 is about one of the most important 
dimensional-reduction method namely Graph-based method. Here we will see how the adjacency matrix good 
works as a powerful tool to obtain a small space which is in fact the eigen-space of this matrix. Section 13 gives 
a summary on Isomap and the most important references about Dijstra algorithm and Floyd’s algorithm are 
given. Section 14 is a review of Hessian eigenmaps method, a most important method in the so called manifold 
embedding. This section needs more mathematical backgrounds. Section 15 reviews most new developed 
methods such as 
• vector quantization  
• genetic and evolutionary algorithms 
• regression 

We have to emphasize here the all of given references in the body of survey are used and they are the most 
important references or original references for the related subject. To obtain more mathematical outline and 
sensation, we give an appendix about the most important backgrounds on the fractal and topological dimension 
definitions which are also important to understand the notion of intrinsic dimension. 

2. Principal Component Analysis (PCA) 

Principal component Analysis (PCA) [3] [4] [5]-[8] is a linear method that it performs dimensionality reduction 
by embedding the data into a linear subspace of lower dimensional. PCA is the most popular unsupervised linear 
method. The result of PCA is a lower dimensional representation from the original data that describes as much 
of the variance in the data as possible. This can be reached by finding a linear basis (possibly orthogonal) of 
reduced dimensionality for the data, in which the amount of variance in the data is maximal. 

In the mathematical language, PCA attempts to find a linear mapping P  that maximizes the cost function 
( )Ttr P AP , where A  is the sample covariance matrix of the zero-mean data. Another words PCA maximizes 
TP AP  with respect to P  under the constraint the norm of each column v  of P  is 1 , i.e., 2 1v = . In fact 
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PCA solves the eigenvalue problem:  
  or  AP P Av vλ λ= =                                 (1.1) 

Why the above optimization Problem is equivalent to the eigenvalue problem (1.1)? consider the convex form 
( )1T Tv Av v vλ+ − , it is a straightforward calculation that the maximum happens when Av vλ= . 

It is interesting to see that in fact PCA is identical to the multidimensional scaling (classical scaling) [9]. 
For the given data { } 1

N
i i

x
=

 let ijD d =    be the pairwise Euclidean matrix whose entries ijd  represent the  

Euclidean distance between the high-dimensional data points ix  and ix . multidimensional scaling finds the 
linear mapping P  such that maximizes the cost function:  

( ) ( )22

,
: ,ij i j

i j
Y d y yψ = − −∑                              (1.2) 

in which i jy y−  is the Euclidean distance between the low-dimensional data points iy  and jy , iy  is res- 

tricted to be ix A , with 
2

1jv =  for all column vector jv  of P . It can be shown [10] [11] that the minimum  

of the cost function ( )Yψ  is given by the eigen-decomposition of the Gram matrix TG XX=  where 
[ ]iX x= . Actually we can obtain the Gram matrix by double-centering the pairwise squared Euclidean distance 

matrix, i.e., by computing: 

2 2 2 2
2

,

1 1 1 1 .
2ij ij il jl lm

l l l m
g d d d d

n n n
 

= − − − + 
 

∑ ∑ ∑                      (1.3) 

Now consider the multiplication of principal eigenvectors of the double-centered squared Euclidean distance 
matrix (i.e., the principal eigenvectors of the Gram matrix) with the square-root of their corresponding 
eigenvalues, this gives us exactly the minimum of the cost function in Equation (1.2). 

It is well known that the eigenvectors iu  and iv  of the matrices TX X  and TXX  are related through  

i i iv Xuλ =  [12], it turns out that the similarity of classical scaling to PCA . The connection between PCA and  
classical scaling is described in more detail in, e.g., [11] [13]. PCA may also be viewed upon as a latent variable 
model called probabilistic PCA [14]. This model uses a Gaussian prior over the latent space, and a linear- 
Gaussian noise model. 

The probabilistic formulation of PCA leads to an EM-algorithm that may be computationally more efficient 
for very high-dimensional data. By using Gaussian processes, probabilistic PCA may also be extended to learn 
nonlinear mappings between the high-dimensional and the low-dimensional space [15]. Another extension of 
PCA also includes minor components (i.e., the eigenvectors corresponding to the smallest eigenvalues) in the 
linear mapping, as minor components may be of relevance in classification settings [16]. PCA and classical 
scaling have been successfully applied in a large number of domains such as face recognition [17], coin 
classification [18], and seismic series analysis [19]. 

PCA and classical scaling suffer from two main drawbacks. First, in PCA, the size of the covariance matrix is 
proportional to the dimensionality of the data-points. As a result, the computation of the eigenvectors might be 
infeasible for very high-dimensional data. In data-sets in which <n D , this drawback may be overcome by 
performing classical scaling instead of PCA, because the classical scaling scales with the number of data-points 
instead of with the number of dimensions in the data. Alternatively, iterative techniques such as Simple PCA [20] 
or probabilistic PCA [14] may be employed. Second, the cost function in Equation (1.2) reveals that PCA and 
classical scaling focus mainly on retaining large pairwise distances 2

ijd , instead of focusing on retaining the 
small pairwise distances, which is much more important. 

3. Non-Linear PCA 

Non-linear or Kernel PCA (KPCA) is in fact the reconstruction from linear PCA in a high-dimensional space 
that is constructed using a given kernel function [21]. Recently , such reconstruction from linear techniques 
using the kernel-trick has led to the proposal of successful techniques such as kernel ridge regression and 
Support Vector Machines [22]. Kernel PCA computes the principal eigenvectors of the kernel matrix, rather 
than those of the covariance matrix. The reconstruction from PCA in kernel space is straightforward, since a 
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kernel matrix is similar to the inner product of the data-points in the high-dimensional space that is constructed 
using the kernel function. The application of PCA in the kernel space provides Kernel PCA the property of 
constructing nonlinear mappings. 

Kernel PCA computes the kernel matrix ijK k =    of the data-points ix . The entries in the kernel matrix 
are defined by  

( ): ,ij i jk x xκ=                                        (1.4) 

where κ  is a kernel function [22], which may be any function that gives rise to a positive-semi-definite 
kernel K. Subsequently, the kernel matrix K  is double-centered using the following modification of the entries  

2
,

1 1 1 1 .
2ij ij il jl lm

l l l m
k k k k k

n n n
 

= − − − + 
 

∑ ∑ ∑                            (1.5) 

The centering operation corresponds to subtracting the mean of the features in traditional PCA: it subtracts the 
mean of the data in the feature space defined by the kernel function κ . Hence, the data in the features space 
defined by the kernel function is zero-mean. Subsequently, the principal d eigenvectors iv  of the centered 
kernel matrix are computed. The eigenvectors of the covariance matrix ia  (in the feature space constructed by 
κ ) can now be computed, since they are related to the eigenvectors of the kernel matrix iv  (see, e.g., [12]) 
through  

1
i i

i

a v
λ

=                                         (1.6) 

In order to obtain the low-dimensional data representation, the data is projected onto the eigenvectors of the 
covariance matrix ( )ia . The result of the projection (i.e., the low-dimensional data representation ( )iY y=  is 
given by: 

( ) ( ) ( ) ( )( )11 1, , , ,n nj j
i j i d j ij jy a x x a x xκ κ

= =
= ∑ ∑  

where ( )j
la  indicates the thj  value in the vector la  and κ  is the kernel function that was also used in the 

computation of the kernel matrix. Since Kernel PCA is a kernel-based method, the mapping performed by 
Kernel PCA relies on the choice of the kernel function κ . Possible choices for the kernel function include the 
linear kernel (making Kernel PCA equal to traditional PCA), the polynomial kernel, and the Gaussian kernel 
that is given in [12]. Notice that when the linear kernel is employed, the kernel matrix K is equal to the Gram 
matrix, and the procedure described above is identical to classical scaling (previous section). 

An important weakness of Kernel PCA is that the size of the kernel matrix is proportional to the square of the 
number of instances in the data-set. An approach to resolve this weakness is proposed in [23] [24]. Also, Kernel 
PCA mainly focuses on retaining large pairwise distances (even though these are now measured in feature 
space).  

Kernel PCA has been successfully applied to, e.g., face recognition [25], speech recognition [26], and novelty 
detection [25]. Like Kernel PCA, the Gaussian Process Latent Variable Model (GPLVM) also uses kernel 
functions to construct non-linear variants of (probabilistic) PCA [15]. However, the GPLVM is not simply the 
probabilistic counterpart of Kernel PCA: in the GPLVM, the kernel function is defined over the 
low-dimensional latent space, whereas in Kernel PCA, the kernel function is defined over the high-dimensional 
data space.  

4. Linear Discriminant Analysis (LDA) 

The main Reference here is [27] see also [28]. The LDA is a method to find a linear transformation that maxi- 
mizes class separability in the reduced dimensional space. The criterion in LDA is in fact to maximize between 
class scatter and minimize within-class scatter. The scatters are measured by using scatter matrices. Let we have  
r  class iC  each including in  points i l

jx ∈  and set 1, , l n
rX C C × = ∈ 

 

  , where 1 , ,
i

i i
i nC x x =  


  

and 1
r

iin n
=

= ∑ . Let 1

1 ini i
jj

i

x x
n =

= ∑  and 1

1 n i
ix x

n =
= ∑ .  
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Now we define three scatter matrices: 

The between-class scatter matrix ( )( )1:
Tr i i

b iiS n x x x x
=

= − −∑ , 

The within-class scatter matrix ( )( )1 1: i
Tr n i i i i

w j ji jS x x x x
= =

= − −∑ ∑ , 

The total scatter matrix ( )( )1 1: i Tr n i i
t j ji jS x x x x

= =
= − −∑ ∑ . Actually LDA is a method for the following  

optimization problem:  

arg max
l m

T
b

T
U w

U S U

U S U×∈
 

Hence in this way the dimension is reduced from l  to m  by a linear transformation U  which is the 
solution of above optimization problem. Although we know from Fukunaga (1990), (see [27] and [29]) that the 
eigenvectors corresponding to the 1r −  largest eigenvalues of  

b wS u S uλ=  

form the columns of U as above for LDA.  

5. Canonical Correlation Analysis (CCA) 

CCA is an old method back to the works of Hotelling 1936 [30], recently Sun et al. [31] used CCA as an 
unsupervised feature fusion method for two feature sets describing the same data objects. CCA finds projective 
directions which maximize the correlation between the feature vectors of the two feature sets. 

Let 
1i

n
iX x
=

=  and 
1i

n
iY y
=

=  be two data set of n  points in p
  and q

  respectively, associate with  

them we have two matrices:  

[ ]1 , , p n
X nA x x x x ×= − − ∈  , [ ]1 , , q n

Y nA y y y y ×= − − ∈   

where 1

1 n
iix x

n =
= ∑  and 1

1 n
iiy y

n =
= ∑  are the means of ix  and iy s, respectively. 

Actually CCA is a method for the following optimization problem:  

,
arg max

X Y

T T
X X Y Y

T T T TU U
X X X X Y Y Y Y

U A A U

U A A U U A A U
 

which can be modified as  

,
arg max

X Y

T T
X X Y YU U

U A A U , 1T T
X X X XU A A U = , 1T T

Y Y Y YU A A U =  

Assume the pair of projective directions ( )* *,X yU U  be the solution of above optimization problem, we can  

find another pair of projective directions by solving  

,
arg max

X Y

T T
X X Y YU U

U A A U , * * * * 0T T T T
X X X X Y Y Y YU A A U U A A U= = , 1T T T T

X X X X Y Y Y YU A A U U A A U= =  

repeating the above process 1m −  times we obtain a m -dimensional specs of linear combination of these vec- 
tor-solutions. 

In fact we can obtain this m -dimensional space with solving of the paired eigenvalue problem:  

( ) 1T T T
X Y Y Y X X X XA A A A U A A Uλ

−
= , ( ) 1T T T

Y X X X Y Y Y yA A A A U A A Uλ
−

=  

and the eigenvectors ( ) ( )( ), , 1, ,i i
X YU U i m=   corresponding to the m  largest eigenvalues are the pairs of  

projective directions for CCA see [31]. Hence  
( ){ }, 1, ,i T
X XU A i m=   and ( ){ }, 1, ,i T

Y YU A i m=   
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compose the feature sets extracted from XA  and YA  by CCA. It turns out that the number m  is determined 
as the number of nonzero eigenvalue.  

6. Oriented PCA (OPCA) 

Oriented PCA is introduced by Kung and Diamantaras [2] as a generalization of PCA. It corresponds to the 
generalized eigenvalue decomposition of a pair of covariance matrices in the same way that PCA corresponds to 
the eigenvalue decomposition of a single covariance matrix. For the given pair of vectors u  and v  the 
objective function maximized by OPCA is given as follows:  

( )
( )

2

2arg max
T T

u
Tw T

v

E w u w A w
w A wE w v

=  

where ( ): T
uA E uu= , ( ): T

vA E vv= . A solution 1w∗  of above optimization problem is called Principal 
oriented component and it is the generalized eigenvector of matrix pair [ ],u vA A  corresponding to maximum 
generalized eigenvalue 1λ . Since uA  and vA  are symmetric all the generalized eigenvalues are real and thus 
they can be arranged in decreasing order, as with ordinary PCA. Hence we will obtain the rest generalized 
eigenvectors * * *

2 3, , , mw w w , as second , third, ⋅⋅⋅, thm  oriented principal components. All of these solutions are 
the solutions under the orthogonality constraint:  

* * * 0,  for  T T
i u j i v jw A w w A w i j= = ≠  

7. Principal Curves and Surfaces 

By the definition, principal curves are smooth curves that pass through the middle of multidimensional data sets, 
see [32]-[34] as main references and also [35] and [36]. 

Given the n -dimensional random vector ( )1, , n
nx x x= ∈   with probability density function ( )p x . Let 

: n→ f  be the given smooth curve which can be parametrized by a real value θ  (actually we can choose 

[ ]0,1θ ∈ ). Hence we have ( ) ( ) ( )( )1 , , nf fθ θ θ= f . 

We can associate to the curve f  the projection index : nΘ → f  geometrically as the value of θ   
corresponding to the point on the curve f  that under Euclidean metric is the closet point to x .  

We say f  is self-consistent if each point ( )θf  is the mean of all points in the support of density function 
p  that are projected on θ , i.e.,  

( ) ( ).E x x θ θ Θ = = f f  

It is shown in [32] that the set of principal curves do not intersect themselves and they are self-consistent. 
Most important fact about principal curves which proved in [32] is a characterization of these curves with an 
optimization Problem:  

Theorem 1 A curve f  is a principal curve (associate with the data set ( ){ }
1

Ni

i
x

=
) iff it solves fallowing 

optimization problem  

( ) ( )( )( ) 2

, 1
,min

N
i i

i
x x

=

−∑
Θ

Θ
f

f
f

f                             (1.7) 

Of course to solve (or even estimate) minimization (0.7) is a complex problem, to estimate f  and θ  in  
[32] an iterative algorithm has given. It started with ( ) ( ) 1,E xθ θ= +f u , where 1u  is the first eigenvector of  
covariance matrix of x  and ( )f xθ = Θ . Then it iterates the two steps:  
• For a fixed θ , minimize ( )x θ− f  by setting  

( ) ( )   for each  j jE x x jθ θ = Θ = ff  
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• Fix f  and set ( )x θΘ =f  for each x  until the change in ( )x θ− f  is less than a threshold.  
One can find in [37] another formulation of the principal curves, along with a generalized EM algorithm for 

its estimation under Gaussian pdf ( )p x . Unfortunately except for a few special cases, it is an open problem for 
what type of distributions do principal curves exist, how many principal curves there exist and which properties 
the have see [36]. in recent years the concept of principal curves has been extended to higher dimensional 
principal surfaces, but of course the estimation algorithms are not smooth as the curves.  

8. Non-Linear Methods Using Neural Networks 

Given Input variables { }1 2, , , Nx x x , neural networks getting this input and gives output variables 

{ }1 2, , , my y y  with  

( ), , 1, ,j jy y x w j m= =   

where the weights w  are determined by training the neural network using a set of given instances and a cost 
function see [38]. Over the last two decades there are several developments based on a ring architectures and 
learning algorithms of dimensional reduction techniques could be implemented using neural networks, see [35] 
[36] [38]-[40]. Consider the simplest neural network which has only three layers:  
1) Input Layer  
2) Hidden Layer (bottleneck)  
3) Output Layer  
there are two steps here: 
• In order to obtain the data at node k  of the hidden layer, we have to consider any inputs ix  in 

combination with their associated weight’s ikw  along with a threshold term (or called bias in some 
references) kρ , Now they are ready passing through to the corresponding activation kϕ , hence we are  
building up the expression ( )k k ik iiw xϕ ρ +∑ . 

• Here we have to repeat step (1) with changing original data ix  with new one namely ( )k k ik iiw xϕ ρ +∑ , of  

course according the threshold jρ  and possibly new output function outϕ . Hence we have:  

.j out j kj k k ik i
k i

y w w xϕ ρ ϕ ρ
  = + +  

  
∑ ∑  

We observe that the first part of network reduces the input data into the lower-dimensional space just as same 
as a linear PCA, but the second part decodes the reduced data into the original domain [36] [35]. Note that only 
by adding two more hidden layers with nonlinear activation functions, one between the input and the bottleneck, 
the other between the bottleneck and the output layer, the PCA network can be generalized to obtain non-linear 
PCA. One can extend this idea from the feed-forward neural implementation of PCA extending to include 
non-linear activation function in the hidden layers [41],. In this framework, the non-linear PCA network can be 
considered of as an auto-associative neural network with five layers:   
1) Input Layer  
2) Hidden Layer  
3) Bottleneck  
4) Hidden Layer  
5) Output Layer  

If : n l→Θ  f  be the function modeled by layers (1) , (2)  and (3) , and : l n→ f  be the modeled  
function by layers (3) , (4)  and (5) , in [35] have been shown that weights of the non-linear PCA network are 
determined such that the following optimization Problem solved:  

( )( ) 2

, 1
,min

N

i i
i

x x
=

−∑
Θ

Θ
f

f
f

f  

As we have seen in the last section the function f  must be Principal curve(surface). In the thesis [42], one 
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can find comparison between PCA, Vector Quantization and five layer neural networks, for reducing the 
dimension of images.  

9. Nystroem Method 

The Nystroem Method is a well known technique for finding numerical approximations of generic integral 
equation and specially to eigenfunction problems of the following form: 

( ) ( ) ( ), d
b

a
W x y f y y f xλ=∫  

We can divide the interval [ ],a b  into n  points 1, , nθ θ  where  

1i i iθ θ+ = + ∆  and 
b a

n
−

∆ = , 1 aθ = , n bθ = . 

Now consider the simple quadrature rule:  

( ) ( ) ( )
1

,
n

j j
j

b a W x f f x
n

θ θ λ
=

−
=∑                                (1.8) 

which f  approximates f , for ix θ=  we obtain a system of n  equations:  

( ) ( ) ( )
1

, , 1, ,
n

i j j i i
j

b a W f f i n
n

θ θ θ λ θ
=

−
= =∑  

  

without loss of generality we can shift interval [ ],a b  to unit interval [ ]0,1  and change the above system of 
equations to the following eigenvalue problem:  

( )A f nD= f                                        (1.9) 

where ( ),i jA W θ θ =   , ( )1, , nf f=  

f  and ( )1diag , , nD λ λ=  , substituting back into 0.8 yields the  

Nstroem extension for each if :  

( ) ( ) ( )
1

1 ,
n

i j i j
ji

f x W x f
n

θ θ
λ =

= ∑   

We can extend above arguments for nx∈  and > 1n , see [42]. 
Motivated from 0.9 our main question is if A  be a given n n×  real symmetric matrix with small rank r , 

i.e., r n , can we approximate the eigenvectors and eigenvalues of A using those of a small sub-matrix of A?  
Nystroem method gives a positive answer to this question. Actually we can assume that the r  randomly 

chosen samples come first and the n r−  samples come next. Hence the matrix A  in 0.9 can have following 
form:  

T

E B
A

B C
 

=  
 

 

Hence E  represents the sub-block of weights among the random samples, B  contains the weights from 
the random samples to the rest of samples and C contains the weights between all of remaining samples. Since 
r n , C  must be a large matrix. Let U  denote the approximate eigenvectors of A , the Nystroem 
extension method gives:  

1T

U
U

B UD−

 
=  
 

 

where U  and D  are eigenvectors and diagonal matrix associate with E , i.e., TE U DU= . Now the 
associated approximation of A , which we denote it with A , then we have:  

( ) ( )1 1
1 11    

T
T T T

T T T TT T

U E B EUDU B
A UDU D U D U B E A B

B UD B B E B BB B E B
− −

− −−

      
= = = = =      

      
  

The last equation is called “bottleneck” form. There is a very interesting application of this form in Spectral 



A. Sarveniazi 
 

 
63 

Grouping which it was possible to construct the exact eigen-decomposition of A  using the eigen- 
decomposition of smaller matrix rank r . Also Fowlkes et al have given an application of the Nystroem method 
t NCut Problem, see [43].  

10. Multidimensional Scaling (MDS) 

Given N  point { }1 2: , , , n
NX x x x= ⊂   and build up the distance matrix ijd ∆ =    where ij i jd x x= − , 

( or in general ( ),ij i jd d x x= for some metric which defined )d  MDS (  better to say a m -dimensional 

MDS )  is a technique that produces output points { }1 2, , , m
Ny y y ⊂   such that the distances ijd  are as  

close as possible to a function f  of the corresponding proximity's ( )ijf d . From [36], whether this function 
φ  is linear or non-linear, MDS is called either metric or non-metric. Define an objective stress function  

MDS-PROCEDURE:  
• Define an objective stress function and stress factor α , that it depends on ( )2

, iji j f d∑  or on 2
, iji jd∑   

( )
( )( )2

,, , :
ij ij

i jf
S

f d d
X f

α

−
Φ ∆ =

∑
                              (1.10) 

• Now if for a given X  as above, find *f  that minimize 0.10, i.e., 

( ) ( )*, , min , ,f
S Sf

X f X fΦ ∆ = Φ ∆  

• Determine the optimal data set X  by  

( ) ( )* *, , min , ,f
S SX

X f X fΦ ∆ = Φ ∆  

If we use Euclidean distance and take f id=  in Equation (1.10) the produced output data set should be 
coincide to the Principal component of cov(X)( without re-scaling to correlation), hence in this special case 
MDS and PCA are coincide (see [44]) There exist an alternative method to MDS, namely Fast Map see[45] [46].  

11. Locally Linear Embedding (LLE) 

Locally linear embedding is an approach which address the problem of nonlinear dimensionality reduction by 
computing low-dimensional neighborhood preserving embedding of high-dimensional data. A data set of 
dimensionality n , which is assumed to lie on or near a smooth nonlinear manifold of dimensionality m n , is 
mapped into a single global  coordinate system of lower-dimensionality m . The global nonlinear structure is 
recovered by locally linear fits.As usual given a Data set of N  points on a n -dimensional points { } 1

N
i i

x
=

 
from some underlying manifold. Without loss of generality we can assume each data point and its neighbors lie 
on are close to a locally linear sub-manifold. By a linear transform, consisting of a translation, rotation and 
rescaling, the high-dimensional coordinates of each neighborhood can be mapped to global internal coordinates 
on the manifold. In order to map the high-dimensional data to the single global coordinate system of the 
manifold such that the relationships between neighboring points are preserved. This proceeds in three steps:   
• Identify neighbors of each data point ix . this can be done by finding the K  nearest neighbors, or choosing 

all points within some fixed radius ε .  
• Compute the weights ijw    that best linearly reconstruct ix  from its neighbors.  
• Find the low-dimensional embedding vector iy  which is the best reconstructed by the weights determined 

in the previous step.  
After finding the nearest neighbors in the first step, the second step must compute a local geometry for each 

locally linear sub-manifold. This geometry is characterized by linear coefficients that reconstruct each data point 
from its neighbors. 

( )

2

1 1
min

i j

n K

i ij Nw i j
x w x

= =

−∑ ∑                                 (1.11) 

where ( )iN j  is the index of the thj  neighbor of the point. It then selects code vectors so as to preserve the 
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reconstruction weights by solving  

( )

2

1 1
min

i j

n K

i ij NY i j
y w y

= =

−∑ ∑                                (1.12) 

This objective can be restate as  

( )min T

Y
Tra Y YL                                   (1.13) 

where ( ) ( )L I W T I w= − − . 
The solution for Y  can have an arbitrary origin and orientation. In order to make the problem well-posed,  

those two degree of freedom must be removed. Requiring the coordinates to be centered on origin ( 1 0ii y
=

=∑ , 

and constructing the embedding vectors to have unit covariance ( )TY Y I= , removes the first and second  

degrees of freedom respectively. The cost function can be optimized initially by the second of those two 
constraints. Under this constraint, the cost is minimized when the column of TY  (rows of Y) are the 
eigenvectors with the lowest eigenvalues of L . Discarding the eigenvector associated with eigenvalue 0  
satisfies the first constraint. 

12. Graph-Based Dimensionality Reduction 

As before given a data set X  include N  points in n
 , i.e., { }1 2, , , NX x x x=  , we associate to X  a 

weighted undirected graph with N  vertices and use the Laplacian matrix which defined see [47]. In order to 
define an undirected graph we need define a pair ( );V E  of sets, V  the set of vertices and E  the set of 
edges. we follows here the method introduced in [48]. 

we say iv V∈  if ix X∈  and ( ),i jv v E∈  iff ix  and jx  are close . But what it means to be close ? 
there are two variations define it:   
• ε -neighborhoods, which ε  is a positive small real number.  

ix  and jx  are close  iff 
2

i jx x ε− ≤ , where the norm is as usual the Euclidean norm in n
 . 

• K  nearest neighbors. Here K  is a natural number.  
ix  and jx  are close  iff ix  is among K  nearest neighbors of jx  or jx  is among K  near-es 

neighbors of ix . that means this relation is a symmetric relation. 
To associate the weights to edges, as well, there is two variations:  

• Heat kernel, which γ  is a real number.  
2

exp if    and    are  close

0                             otherwise

i j
i j

ij

x x
x x

w γ

  −  −  = 
 



，

，

 

• Simple adjacency with parameter γ = ∞ . 

1 if   and   are close

0 otherwise
i j

ij

x x
w

= 


，

，
 

We assume our graph, defined as above, is connected, otherwise proceed following for each connected 
component. Set 1

N
ii ijjd w

=
= ∑  and 0ijd =  if i j≠ , ijD d =   , ijW w =   . L D W= −  is the Laplacian 

matrix of the  
graph, which is a symmetric, positive sewmi-definite matrix, so can be thought of as an operator on the space of 
real functions defined on the vertices set V  of Graph. 

Compute eigenvalues and eigenvectors for the generalized eigenvector problem:  

L Dλ=f f  

Let 0 1 1, , , N −f f f  be the solutions of the above eigenvalue problem, ordered acording to their eigenvalues,  
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0 0

1 1

1 1

0 1 10
N N

N

L D
L D

L D

λ
λ

λ
λ λ λ
− −

−

=

=

=

= ≤ ≤ ≤

f f
f f

f f




 

We leave out the eigenvector (trivial eigenfuntion) corresponding to eigenvalue o, which is a vector with all 
component equal to 1  and use next m  eigenvectors for embedding in m -dimensional Euclidean space:  

( ) ( )( )1 , ,i i
i mx  f f  

which ( )if  means thi  component of the vector f . This called the Laplacian Eigenmap embedding by Bel- 
kin and Niogi, see [48]. 

13. Isomap 

Like LLE the Isomap algorithm proceeds in three steps:  
• Find the neighbors of each data point in high-dimensional data space.  
• Compute the geodesic pairwise distances between all points.  
• Embed the data via MDS so as preserve those distances  

Again like LLE, the first, the first step can be performed by identifying the K -nearest neighbors, or by 
choosing all points within some fixed radius, ε . These neighborhood relations are represented by graph G  in 
which each data point is connected to its nearest neighbors, with edges of weights ( ),Xd i j  between neighbors. 

The geodesic distances ( ),Xd i j  between all pairs of points on the manifold M  are then estimated in the 
second step. Isomap approximates ( ),Md i j  as the shortest path distance ( ),Gd i j  in the graph G . This can 
be done in different ways including Dijstra algorithm [49] and Floyd's algorithm [50]  

14. Hessian Eigenmaps Method 

High dimensional data sets arise in many real-world applications. These data points may lie approximately on a 
low dimensional manifold embedded in a high dimensional space. Dimensionality reduction (or as in this case, 
called manifold learning) is to recover a set of low-dimensional parametric representations for the 
high-dimensional data points, which may be used for further processing of the data. More precisely consider a 
d-dimensional parametrized manifold   embedded in n

  where ( )<d n  characterized by a nonlinear  
map : d nψ ⊂    , where   is a compact and connected subset of d

 . Here n
  is the high-  

dimensional data space with ( )ψ=   being the manifold containing data points and d  is the low-  
dimensional parameter space. Suppose we have a set of data points 1 2, , , Nx x x  sampled from the manifold 
  with  

( ) , 1, 2, , ,i ix y i Nψ= =   

for some iy ∈ . Then the dimensionality reduction problem is to recover the parameter points iy s and the 
map ψ  from iy s.  

Of course, this problem is not well defined for a general nonlinear map ψ . However, as is shown by Donoho 
and Grimes in the derivation of the Hessian Eigenmaps method [51], if ψ  is a local isometric map, then 

( )1y xψ −=  is uniquely determined up to a rigid motion and hence captures the geometric structure of the data 
set. 

Given that the map ψ  defined as above, is a local isometric embedding, the map 1 : n dφ ψ −= ⊂      
provides a locally) isometric coordinate system for  . Each component of φ  is a function defined on   
that provides one coordinate. The main idea of the Hessian Eigenmaps is to introduce a Hessian operator and a 
functional called the  -functional defined for functions on  , for which the null space consists of the d  
coordinate functions and the constant function. Let :f    be a function defined on   and let 0x  be 

an interior point of manifold  . We can define a function :g    as ( ) ( )( )g y f yψ= , where 
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( ) dφ= ⊂    and [ ]T1 2, , , dy y y y h= ∈ ⋅   is called a pullback of f  to  . Let ( )0 0y xφ= . We  

call the Hessian matrix of g  at 0y  the Hessian matrix of function f  at 0x  in the isometric coordinate and  

we denote it by ( )0
iso
fH x . Then ( ) ( ) ( )2

0
0,

iso
f i j

i j

g y
H f x

y y
∂

=
∂ ∂

. From the Hessian matrix, we define a  - 

functional of f  in isometric coordinates, denoted by iso
f , as  

( )
2

d ,iso iso
f f F

H f x x= ∫                           (1.14) 

where dx  is a probability measure on   which has strictly positive density everywhere on the interior of  
 . It is clear that iso

f  of the d  component functions of φ  are zero as their pullbacks to   are linear 

functions. Indeed, ( )iso
f ⋅  has a ( )1d + -dimensional null space, consisting of the span of the constant func-  

tions and the d component functions of φ ; see [51] (Corollary 4). The Hessian matrix and the  -functional in 
isometric coordinates introduced above are unfortunately not computable without knowing the isometric 
coordinate system φ  first. To obtain a functional with the same property but independent of the isometric 
coordinate system φ , a Hessian matrix and the  -functional in local tangent coordinate systems are 
introduced in [51]. Qiang Ye and Weifeng Zhi [52] developed a discrete version of the Hessian Eigenmaps me- 
thod of Donoho ad Grims.  

15. Miscellaneous 

15.1. Vector Quantization 

The main references for vector quantization are [40] and [53]. In [53] it is introduced a hybrid non-linear 
dimension reduction method based on combining vector quantization for first clustering the data, after cons- 
tructing the Voronoi cell clusters, applying PCA on them. In [40] both non-linear method i.e., vector quanti- 
zation and non-linear PCA (using a five layer neural network) on the image data set have been used. It turns out 
that the vector quantization achieved much better results than non-linear PCA.  

15.2. Genetic and Evolutionary Algorithms 

These algorithms introduced in [54] are in fact optimization algorithms based on Darwinian theory of evolution 
which uses natural selection and genetics to find the optimized solution among members of competing popu- 
lation. There are several references for genetic and evolutionary algorithms [55], see [56] for more detail. An 
evolutionary algorithm for optimization is different from classical optimization methods in several ways:  
• Random Versus Deterministic Operation  
• Population Versus Single Best Solution  
• Creating New Solutions Through Mutation  
• Combining Solutions Through Crossover  
• Selecting Solutions Via “Survival of the Fittest” 
• Drawbacks of Evolutionary Algorithms  

In [55] using genetic and evolutionary and algorithms combine with a k-nearest neighbor classifier to reduce 
the dimension of feature set. Here Input is population matrices which are in fact random transformation matrices 
{ }( )im NW × , then algorithms will find output m NY ×  so that the k-nearest neighbor classifier using the new fea- 
tures m r m N N rB Y X× × ×=  classifies the training data most accurately.  

15.3. Regression 

We can use Regression methods for dimension reduction when we are looking for a variable function  
( )1, , ny f x x=   for a given data set variables { }ix . Under assumption that the ix s are uncorrelated and  

relevant to expanding the variation in y . Of course in modern data mining applications however such as- 
sumptions rarely hold. Hence we need a dimension reduction for such a case. We can list well-known dimension 
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reduction methods as follows:  
• The Wrapper method in machine learning community [57]  
• Projection pursuit regression [36] [58] 
• Generalized linear models [59] [60]  
• Adaptive models [61]  
• Neural network models and sliced regression and Principal hessian direction [62]  
• Dimension reduction for conditional mean in regression [63]  
• Principal manifolds and non-linear dimension reduction [64]  
• Sliced regression for dimension reduction [65]  
• Canonical correlation [66]  
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Appendix. Fractal and Topological Dimension 

The main Reference for this appendix is [67]. Local (or topological) Methods (1): The definition of topological 
dimension was given by Brouwer in 1913: A. Heyting, H. Freudenthal, Collected Works of L.E.J Brouwer, 
North Holland Elsevier, 1975. 

To begin at the very beginning: How can we best define the dimension of a closed bounded set dΩ ⊂  , say? 
• When Ω  is a manifold then the value of the dimension is an integer which coincides with the usual notion 

of dimension;  
• For more general sets Ω  we can have fractional dimensional  
• Points, and countable unions of points, have zero dimension.  

Local (or topological) Methods (2): The earliest attempt to define the dimension:  
Definition 1 We can define the Topological dimension ( )dimTΩ  by induction. We say that Ω  has zero 

dimension if for every point x∈Ω  every sufficiently small ball about x  has boundary not intersecting Ω . 
We say that Ω  has dimension d  if for every point x∈Ω  every sufficiently small ball about x  has 
boundary intersecting Ω  in a set of dimension 1d − .  

Local (or topological) Methods (3): 
Definition 2 Given 0> , let ( )N   be the smallest number of  -balls needed to cover Ω . The Box 

dimension is  

( )
0

log
dim : limsup

1log
B

N
→

Ω =
 
 
 







 

Example 1 For { }1 : 1 0n
n

 Ω = ≥ 
 

   

1dim
2B Ω =  

Local (or topological) Methods (4): The Hausdorff dimension dimH Ω  for a closed bounded set dΩ ⊂   is 
defined as follows: 

Definition 3 Consider a cover { }iU=  for Ω  by open sets. For > 0δ  we can define  

( ) ( )inf diam i
i

H U δδ  Ω =  
 
∑ 

 

where the infimum is taken over all open covers { }iU=  such that ( )diam iU ≤  .Then  
( ) ( )0limH Hδ δ

→Ω = Ω   and finally,  

( ){ }dim : inf : 0H H δδΩ = Ω =  

• Fact1: For any countable set Ω  we have dim 0H Ω =   
• Fact2: dim dimH BΩ ≤ Ω   

Local (or topological) Methods (4) as shown in Figure 1.  
Local (or to pological) Methods (5): 
Example 2 (von Koch curve: [ ] The von Koch curve is a standard fractal construction. Starting from  

[ ]0 0,1Ω = , we associate to each piecewise linear curve nΩ  in the plane ( which is a union of 4n  segments of 
length 3 n− ) a new one 1n+Ω .This is done by replacing the middle third of each line segment by the other two 
sides of an equilateral triangle bases there. Alternatively, one can start from an equilateral triangle and apply this 
iterative procedure to each of the sides one gets a snowflake curve.  

For Ω  = von Koch curve, both the box dimension and Hausdorff dimension are equal in fact, as shown in 
Figure 2: 

 ( ) ( ) log 4
dim dim

log3H B= =
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Example 3 (Ω : the Middle third Cantor set 2E ,  This is the set of closed set  
of points in the unit interval whose triadic expansion does not contain any occurrence of the digit 1 : 

{ }
1

: : 0, 2
3

k
kk

k

i
i

∞

=

 Ω = ∈ 
 
∑  

For the middle third Cantor set both the Box dimension and the Hausdorf dimension are log 2 0.690
log 3

=   

The set 2E  is the set of points whose continued fraction expansion contains only the terms 1  and 2 . 
Unlike the Middle third Cantor set, the dimension of this set is not explicitly known in a closed form and can 
only be numerically estimated to the desired level of accuracy. as shown in Figure 3, For the Sierpinski car-  

pet both the Box dimension and the Hausdorff dimension are equal to log8 1.892
log3

=   

 

 
                    Figure 1. (I) Cocer by balls, (II) Cover by open sets.                   

 
                             Figure 2. The construction of von Koch-curve.      
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            Figure 3. The construction Sierpinski Carpet.                                         
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