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ABSTRACT 

A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping do-
main decomposition algorithm is investigated. The boundary conditions and the finite difference discrimination of the 
elastic wave equation are derived. The algorithm of no overlapping domain decomposition method is given. The 
method solves the elastic wave equation by iteratively solving sub problems defined on smaller sub domains. Numerical 
computations both for homogeneous and inhomogeneous media show the effectiveness of the proposed method. This 
method can be used in the full-waveform inversion. 
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1. Introduction 

The numerical solution of wave equations is a very im-
portant problem. The applications can be found in elec-
tromagnetic, acoustic wave propagation, seismic inver-
sion. The wave equations can be solved in either the time 
or the frequency domain. When applying the Fourier 
transformation with respect to time to the acoustic wave 
equation, the Helmholtz equation is obtained. The Helm-
holtz equation has important applications in underwater 
and seismic imaging [1, 2]. In the geophysical fre-
quency-domain inversion one needs to do forward mod-
eling which means solving the Helmholtz equation. Dur-
ing the inversion process, the synthetic model is con-
tinuously updated until a convergence is reached. Thus 
finding an efficient numerical method to solve the 
Helmholtz equation is important. For a finite element or 
finite difference discrimination of the 2D Helmholtz, it is 
necessary to use large number of grid points to handle 
large domains and high wave numbers. Moreover, the 
requirement of ten points per wavelength at least leads to 
very large complex linear systems. In seismic full- 
waveform inversion, the number of grid points grows 
very rapidly in order to maintain good accuracy. The 
error is proportional to 1p pk h , where k is the wave 
number, p is the order of discrimination and h is the grid 
size [3,4]. The linear system becomes extremely large 
and highly indefinite. This makes the problem even 
harder to solve. Direct methods easily suffer from inac-
ceptable computational work. The iterative methods for 

the Helmholtz equation have been an active research 
field since the 1980s. Since then many attempts have 
been spent to develop a powerful iterative method for 
solving it, see, for instance, [2, 5-6]. 

The domain decomposition method (DDM) is an ef-
fective technique for solving large-scale problems [7-10]. 
The idea is to split the computational domain   into 
several smaller m sub domains i ,  and 
solve a sequence of similar sub problems on these sub-
domains. The boundary conditions are adjusted itera-
tively the transmission conditions between adjacent sub-
domains. The number and size of sub domains can now 
be chosen so as to enable direct methods to solve the sub 
problems. Several classes of DDM exist, e.g. multiplica-
tive and additive Schwartz methods [7-10].  

 1, ,i m

Absorbing boundary conditions (ABCs) are required 
in numerical simulations of unbounded problems. They 
are enforced at edges of a computational domain to ab-
sorb outgoing waves and thereby model an unbounded 
region. A number of ABCs have been introduced for use 
in finite-difference simulation of elastic wave propaga-
tion. There exist several ABC methods, for instance, the 
sponge layer method [11], the paraxial approximation 
method [12] and the perfectly matched layer method [13]. 
The approach based on a paraxial approximation of the 
elastic wave equations was introduced by Clayton and 
Engquist [12]. It is often adopted in frequency-domain 
simulation. The most recent advance in ABCs theory is 
the so-called perfectly matched layer (PML) technique 
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proposed by Berenger [13] which offers an almost com-
plete elimination of boundary reflections. The PML 
method has been widely used in wave simulation. 

The DDM solving procedure for the Helmholtz has 
been investigated; for example, see [14-16]. In this paper, 
we focus on the elastic wave simulation in the frequency 
domain rather than the acoustic wave based on the no 
overlapping domain decomposition method. Here we use 
the no overlapping DDM algorithm to solve the elastic 
wave equation in the frequency domain. 

2. Theoretical Methods 

2.1. Finite Difference Discretization 

The 2-D, second-order, frequency-domain elastic wave 
equation in a homogeneous, isotropic, and source-free 
media consists of the two coupled equations 
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where 2 f   is the angular frequency,  is the den- 
sity, and   and   are Lame parameters. The wave- 
field variables  and  are, respectively, the horizon-
tal and vertical components of the Fourier transformed 
displacements. In a more general formulation, one also 
included a source term in the right-hand side of (1) or 
(2). 

u v

We wish to find the solution to system (1)-(2) for a fi- 
nite model domain, , but without reflected energy 
from the domain boundary. For simplicity we use a sim-
ple absorbing boundary condition firstly proposed by 
Clayton and Engquist [11] 
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where n is the direction normal to the absorbing model 
boundary, and 

( 2 ) / ,   /p sv v ,             (4) 

are the velocities of compressive wave and shear wave, 
respectively. The condition (3) is only perfectly absorb- 
ing when the out-going wave impacts the boundary at 
normal incidence. We discredited (1)-(3) using an im-
plicit finite-difference scheme based on the 2nd order 
accurate centered-difference operators. We assume the 
computational domain  is rectangular. A 2D regular 
mesh with constant grid spacing is used for deriving 
computational schemes. The difference schemes for 
(1)-(2) are the following:  
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The difference schemes for the absorbing boundary 
condition (3) can be written as 
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where x  and z  are the spatial steps in x and z di- 
rections respectively. The difference schemes (7)-(10) 
are used at the top, bottom, left and right boundary re- 
spectively. Combining all the difference schemes above, 
we have the following concise form  

111 12

21 22 2
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where A is the known matrix, ijA  can be considered the 
sub matrixes of A , 1  and 2b  are the known vectors. 
They can be obtained based on the difference schemes 
above. For example, the elements of 

b

11A  can be deter- 
mined by the following expressions:  
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  

where 2, , 1xi n  ; 2, , 1zj n  ; r is the grid ratio 
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/r x  z ; x  and z  are the discretiza- 
tion points number in the x and z directions respectively. 
We omit the detail expressions of other ij

n N n M

A  for saving 
space. Solving (11) by a direct method is impractical 
when the system is huge. For this reason, various itera-
tive methods, e.g. the Krylov subspace methods, are the 
interesting alternative. However, Krylov subspace meth-
ods are not competitive without a good preconditioned 
[17]. Here we adopt the preconditioned Bi-conjugate 
gradient stabilized (Bi-CGSTAB) to solve (11). The 
preconditioned is the so-called “shifted Laplace” precon-
ditioner [18]. 

2.2. Nonoverlapping Domain Decomposition 

In no overlapping domain decomposition methods, the 
computational domain   is decomposed into  sub- 
domains k , , which are no overlapped. The 
basic idea of DDM is to find a solution in  by solving 
the sub domain problems in k

K
 1,k  , K


  and then ex- changing 

solutions in the interface between two neighbor- ing do-
mains. Let us consider a trivial case where  is split 
into two sub domains 1 and 2 see Figure 1(a). We 
denote by 1u , 1  and 2u , 2   restrictions of (1) on 
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interface conditions on 1 d 2
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where i  is the exterior normal to i . However, the 
conditions (17) may cause ill-posed problem. We pro- 
pose to use the following equivalent boundary condi- 
tions: 
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The sub problem on 1  or 2  together with condi- 
tion (18) or (19) is now well posed. We describe the 
general domain decomposition algorithm in the follow- 
ing. The idea is to adjust iteratively the boundary condi- 
tions at the interface between sub domains to obtain the 
transmission conditions of the type (3) and (17). Initial-
ize ,  for all  then iterating for , 
where n is the iterative number:  
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2) Solve the following interface equations for ( , )x z   

k : 
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and for ( , ) j kx z   : 
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where j  and k  denote the th and kth subdo-
mains respectively. 
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4) Set 1,n n   return to step (1) to start the next it-
eration until the solutions convergence. 

3. Numerical Computations 

Numerical tests are performed on a homogeneous model 
and a three-layered model. The source function is set to 
be a point source. First we consider a homogeneous 
model with 3000pv   m/s and  m/s. The 
frequency is 100 Hz. The convergent solutions are shown 
in Figures 2 and 3. In Figure 2, the strategy of two no 
overlapping sub domains is adopted. Figure 2(a) is the 
horizontal displacement and Figure 2(b) is vertical 
component. In Figure 3, the strategy of three nonover- 
lapping subdomains is used. Figure 3(a) is the horizontal  

2000sv 

 

    
(a)                       (b) 

Figure 1. Sketch map of domain decomposition. The 
computational domain is decomposed into no overlapping 
(a) two subdomains and (b) three subdomains. 
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(a) 

 
(b) 

Figure 2. Horizontal (a) and vertical (b) displacements for a 
homogeneous model. The solutions are obtained based on 
the nonoverlapping DDM with two subdomains. The 
frequency in computations is 100Hz. 
 
displacement and Figure 3(b) is the vertical component. 
The waveform is correct through verification. The solu- 
tions on the common interface are almost same and we 
conclude that the solutions convergence. 

Next we consider an inhomogeneous model with 
three-layered media shown in Figure 4. From top to bot- 
tom in Figure 4, the velocities of compressive wave are 
2000 m/s, 3000 m/s and 4500 m/s respectively, and the 
velocities of shear wave are 1500 m/s, 2000 m/s and 
2500 m/s respectively. The solutions are shown in Fig-
ure 5. Figure 5(a) is the horizontal displacement and 
Figure 5(b) is the vertical displacement. The frequency 
is still 100 Hz. In computations the strategy of two no 
overlapping subdomains is adopted. We also present the 
contours of waveform. The contours corresponding to 
Figures 5(a) and (b) are shown in Figures 6(a) and (b) 
respectively. Figure 7 are the solutions with a high fre- 
quency 200Hz. Figure 7(a) is the horizontal displace- 

ment and Figure 7(b) is the vertical displacement. Com- 
paring Figure 7 with Figure 6, we see that the waves at 
high frequency have more oscillation which coincides 
with the law of physics. 
 

 
(a) 

 
(b) 

Figure 3. Horizontal (a) and vertical (b) displacements for a 
homogeneous model. The solutions are obtained base on the 
nonoverlapping DDM with three subdomains. The frequency 
in computations is 100Hz. 
 

 

Figure 4. A three-layered velocity model. 
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(a) 

 
(b) 

Figure 5. Horizontal (a) and vertical (b) displacements for a 
three-layered model. The solutions are obtained based on 
the nonoverlapping DDM with two subdomains. The fre- 
quency in computations is 100Hz. 
 

 
(a) 

 
(b) 

Figure 6. Waveform contours of horizontal (a) and vertical 
(b) displacements for a three-layered model. The solutions 
are obtained based on the nonoverlapping DDM with two 
subdomains. The frequency in computations is 100Hz. 
 

 
(a) 

 
(b) 

Figure 7. Waveform contours of horizontal (a) and vertical 
displacements for a three-layered model. The solutions are 
obtained based on the nonoverlapping DDM with two 
subdomains. The frequency in computations is 200Hz. 
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4. Conclusions 

A new wave simulation technique for the elastic wave 
equation in the frequency domain is investigated. It is 
based on the no overlapping domain decomposition 
method. The computational difference schemes and the 
corresponding algorithm of domain decomposition are 
presented. The numerical computations both for a ho-
mogeneous model and a three-layered model show the 
effectiveness of our proposed method. This method can 
be used in the full-waveform inversion. It can sometimes 
reduce the computational complexity. 
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