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ABSTRACT 

Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. 
The inversion is the iterative minimization of the misfit between observed data and synthetic data obtained by a nu-
merical solution of the wave equation. Two inversion algorithms in combination with the CG method and the BFGS 
method are described respectively. Numerical computations for two models including the benchmark Marmousi model 
with complex structure are implemented. The inversion results show that the BFGS-based algorithm behaves better in 
inversion than the CG-based algorithm does. Moreover, the good inversion result for Marmousi model with the 
BFGS-based algorithm suggests the quasi-Newton methods can provide an important tool for large-scale velocity inver-
sion. More computations demonstrate the correctness and effectives of our inversion algorithms and code. 
 
Keywords: Finite Difference; Acoustic Wave Equation; Full-waveform Inversion; CG Method; BFGS Method;  
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1. Introduction 

The velocity of underground media is an important pa-
rameter for resources exploration. It may indicate the 
structure and position of reservoir. Full-waveform inver-
sion uses travel time, amplitude and phase information 
simultaneously to inverse media velocity. It is a powerful 
way in reconstructing complex velocity structures. The 
inversion can be performed in the time-space domain [1- 
4] or in the frequency-space domain [5-9]. The fre-
quency-domain inversion approach is equivalent to the 
time-domain inversion approach if all of the frequency 
data components are used in the inversion process [9].  

Full-waveform inversion can be formulated as a 
nonlinear optimization problem with an objective func-
tion consisting of the difference between observed and 
synthetic wave field in a suitable norm, usually L2 norm. 
This choice results in least-squares formulation. However, 
solving full-waveform inversion problems using nonlin-
ear optimization methods remains a challenge. This is 
mostly because of mathematical and numerical difficul-
ties, which include multiple minima and ill-posedness. 
The objective function is relatively insensitive to wave 
number components of the model that are shorter than 
wavelength. The eigenvalues of the linearized forward 
operator corresponding to those components are nearly 
zero. Recently, the technique of multifrequency inversion 
of full-waveform has been investigated. For frequency 

domain inversion, the important issue is how to choose 
the various frequencies for inversion [10]. Moreover, the 
wave modeling in the frequency domain requires solving 
a large-scale system at each iteration which is 
time-consuming for large-scale problem. Comparing 
with the frequency-domain inversion methods, the 
time-domain methods have the advantage of high effi-
ciency in forward modeling. 

The algorithms used to solve the optimization problem 
include linearized approximation, the steepest descent 
algorithm, the conjugate gradient (CG) [11] and the 
quasi-Newton methods [12-15]. However, these methods 
behave differently as their own characters and the essen-
tial ill-posedness of the problem. In this paper, we im-
plement full-waveform inversion with the CG method 
which is a typical gradient-based method, and with the 
BFGS method which is a representative of the quasi- 
Newton methods. As to the forward method, the finite- 
difference method is employed as its high efficiency. The 
discretization schemes including the absorbing boundary 
conditions and corner conditions are given. 

2. Theoretical Methods 

2.1. Finite Difference Simulation 

The wave equations can be solved in either the time or 
the frequency domain. The usual numerical methods 
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such as the finite difference method, the finite volume 
method and the finite element method can all be em-
ployed. Here we use the finite difference method for its 
high efficiency. The 2-D acoustic wave equation in the 
time domain can be written as 

2 2 2

2 2 2 2
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where  is the pressure,  is the velocity, ( , , )u x z t ( , )v x z
( )f t  is the source time function, ( , )s sx z  is the source 

location. Usually the initial conditions are zero, i.e. 

( , , 0) 0,  ( , , 0) 0.tu x z t u x z t           (2) 

Let ,  be the pressure at the time  and at the 
spatial position , and ,n m  be the velocity at 

, then the difference scheme of (1) is 
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with the initial conditions 
1 0
, ,0,  0n m n mu u                 (4) 

The numerical stability condition for (3) and (4) is 

min( , ) 2 max( ).x z t    v          (5) 

In the wave simulation, the unsuitable choice of time 
and spatial steps may cause serve dispersion and wave 
distortion. In order to suppress numerical dispersion, it is 
usually required that there are 10 sampling points in a 
wavelength for the second-order difference scheme, i.e., 

max

min( )
min( , ) .

10

v
x z

f
               (6) 

Obviously for the same frequency the numerical dis-
persion increases as the spatial steps rise. However, the 
dispersion can be depressed if the high-order accurate 
computational schemes are used.  

In numerical computations, the computational domain 
is usually truncated to a finite region. So absorbing bound-
ary conditions (ABCs) are required to absorb boundary 
reflections of outgoing waves. A number of ABCs have 
been introduced in wave simulation, for example, the 
paraxial approximation method [16] and the perfectly 
matched layer (PML) method [17]. The PML technique 
was proposed for electromagnetic fields equations, but 
can be applied to other wave equations and can fit ir-
regular boundary.  

Suppose the computational domain is a rectangular 
area 

{( , ),0 ,0 }.x z x X z Z       

We set the boundary condition on surface ( z 0 ) be 
the Dirichlet boundary condition as the data are gathered 
near the surface in our problem. For the boundary condi-
tions of other three sides and four corners, we select the 
following Clayton and Engquist [16] conditions. 

For the top boundary: 

 , 0, 0u x z t .               (7) 

For the bottom boundary: 
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For the left boundary: 
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For the right boundary: 
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The absorbing conditions for four corners can be de-
rived through the 45°rotation of the ABCs above. The 
results are the following: 

For the left-upper corner: 

2
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For the right-upper corner: 
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For the left-down corner: 
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For the right-down corner: 
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The difference schemes for the absorbing boundary 
condition (7)-(10) can also be obtained by the second- 
order central finite difference method, i.e., 

1
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where   and   are the forward and backward differ-
ence ope ators with first-order accuracy respectively, r 0  
is th ral rence operator with second-
curacy, 

e cent  diffe order ac-
x  and z  are the spatial steps in x and 

directions respectively. Similarly, the difference schemes 
rs 

z 

for four corne conditions (12)-(15) can be obtained in 
the following: 
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For the left-down corner: 
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For the right-down corner: 
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nversion Algorithms 

Full-waveform inversion is minimization of the follow-
ing objective function 

  (24) 

2.2. Two Full-waveform I

2 2
1 1

( ) || || || || ,
2 2obs calf v u u u         (25) 

n form 

the

where obsu  is the observed wave field and calu  is the 
synthetic data. The functional (25) can be written the 
following discriminatio

2, )} ,n (26) 
0 0 0

( )   { ( , , ) ( ; , ,
s t r

s t

N N N

obs t s cal r r t s
n n nr

f v u r n n u v n m n
  

   

where  number of spatial points is x zM N N＝ , 
which is also the dimension of unknown velocity v. As-
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number is sN  
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be written as 
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Different choices of k  lead to different conjugate 
gradient methods. For example, the FR method [11], the 
HS method [18] and the PRP method [19, 20]: 
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The gradient g is a vector with dimension M , which 
can  as be written  

.Tg J u                (32) 

For the line search method we may use the Ai
gorithm [21] or the strong Wolfe algorithm [22, 23]. The 
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where 1 (0,1)b   and we select 1 0.001b  in compu-
tations. And the strong Wolfe algorithm requires the fol-
lowing condition besides condition (33) above 
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|| || stopg  . Set itera-stopping condition of the gradient: 
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which can improve convergence [24]. CG method is 
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each iteration. 

3. merica

ary conditions are used. Figure 2 is the 
 1 but the ABCs are 
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 The 
ly linearly co rgent while t
rlinear convergent but requires solving a system at 

 Nu l Computations 

First of all, we test the validity of the finite difference 
method for wave modeling. Figure 1 is the wave filed 
received near the surface for a fixed source. The bound-
ary reflections are very serious in Figure 1 since only 
Dirichlet bound
wave field corresponding to Figure
used. We can see the serious bou
Figure 1 are eliminated obviously in Figure 2.  
 

 

Figure 1. Wavefield received near the surface by the finite 
difference method with Dirichlet boundary conditions. 
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Next we test two inversion algorithms for a simple 
model shown in Figure 3. The model has a homogene-
ous background media with velocity 2000 m/s and two 
square areas with greater abnormal velocity. The left 
square media has velocity 2600 m/s and the right square 
media has the velocity 2100 m/s. The configuration of 
sources and receivers are shown in Figure 4. There are 
16 sources totally and 31 receivers for each source. The 
source step is 10 m and the receiver step is 5 m. The 
source line and receiver line are 10 m and 5 m below the 
surface respectively. The spatial discretization points are 

 and . The spatial steps are 17xN  33zN  x z     
5m . The parameter stop  is  The maxi

a is 200. The initial velocit

 

710 . mum num-
y 0v  is ber of iter

2000m/s. 
tions maxk  

 

Figure 2. Wavefield received near the surface by the finite 
difference method with absorbing boundary conditions. 
 

 

Figure 3. True model for testing two inversion algorithms. 

re-
lt after 20 iterations and Figure 6 is that after 200 it-

erations. For the BFGS-based algorithm the inversion 
results are shown in Figures 7-9, which are the results 
after 20 iterations, 100 iterations and 200 iterations, re-
spectively. Comparing Figures 7-9 with Figures 5 and 6, 
we can see that the BFGS-based algorithm has higher 
inverse accuracy than the CG-based algorithm. In order 
to test the ability of the BFGS-based algorithm further, 
we inverse the Marmousi model next. 

The Marmousi model is a benchmark model for testing 
the ability of migration or inversion methods [25]. The 
velocity model is shown in Figure 10. We can see it has 
many complex structures. The synthetic data is also gen-
erated by the finite difference code. The following com-
putations parameters are adopted: 

The inversion results with the CG-based algorithm are 
shown in Figures 5 and 6. Figure 5 is the inversion 
su

493xN   249zN  ,  
 

 

Figure 4. The configuration of sources and receivers for 
full-waveform inversion. 
 

 

Figure 5. Inversion result after 20 iterations with the CG- 
ased Algorithm 1. b
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Figure 6. Inversion result after 200 iterations with the CG-
based Algorithm 1. 

 

 

 

Figure 7. Inversion result after 20 iterations with the BFGS- 
based Algorithm 2. 
 

 

Figure 8. Inversion result after 100 iterations with th
BFGS-based Algorithm 2. 

e 

 

Figure 9. Inversion result after 200 iterations with the 
BFGS-based Algorithm 2. 
 

 

Figure 10. Marmousi model with complex structures. 
 

 

Figure 11. Initial velocity model for inversion. 
 

6x z m    , 0.6t ms  , 3501N  . t  is 
initial model and Figure 12 is the inversion resu

Figure 11
lt 

fter 200 iterations. This result clearly shows that BFGS- 
based algorithm has obtained very good inversion accu-
racy. 

t
a
he 
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Figure
FGS-

tic data. The algorithm is independent of the 
mensionality of the problem. Two full-waveform inver-
sion algorithms based on the CG method and BFGS
method are proposed. Numerical computations for two
models including complicated Marmousi model sh
that the BFGS-based method has higher inversion accu-
racy than the CG-based algorithm because the later uses
the second-order derivative information in computations.
The good inversion results for complicated Marm
model show that the BFGS-based algorithm can be ex- 
pected to inverse real data in the future. 
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