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ABSTRACT 

This paper is interested at the Cauchy problem for Laplace’s equation, which is to recover both Dirichlet and Neumann 
conditions on the inaccessible part of the boundary (inner part) of an annular domain from the over specified conditions 
on the accessible one (outer part). This work is an extension of the proposed algorithm for a unit circle [1] to annular 
domain, where, we describe an alternating formulation of the KMF algorithm proposed by Kozlov, Mazya and Fomin, 
and its relationship with the standard formulation. The new KMF algorithm ameliorates the accuracy of the solution and 
reduces the number of iterations required to achieve convergence. In the last part, the discussion of the error estimation 
of solution is presented and some numerical tests, using the software Freefem are given to show the efficiency of the 
proposed method. 
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1. Introduction 

We consider an inverse problem for Laplace equation 
called data completion problem, which aims at recover-
ing missing conditions on some inaccessible part of the 
boundary from the over specified boundary data on the 
remaining part. In this paper, the problem was studied to 
recover both Neumann and Dirichlet data on the inner 
part of the boundary of an annular domain, from meas-
urements in the outer part of the domain. 

This problem arises and can be encountered as chal-
lenge in several areas of engineering, especially in the 
detection of corrosion problem where the completed data 
are used to calculate the Robin coefficient that represent 
the coefficient damage and which is the quotient of these 
extended data, on the inner boundary [2-4]. 

This problem is ill-posed in the sense of Hadamard [5], 
since the existence, uniqueness and stability of the solu-
tion are not always assured [6-8]. Solving this problem 
by direct method is very difficult and leads to unstable 
solutions in the sense that the solution (if it exists) does 
not depend continuously on the data. 

Many performing numerical methods have been de-
veloped to overcome the ill-posed nature of this kind of 
problem. Among them we mention the method of Quasi- 
reversibility introduced by Lattés [9], Thikhonov method 
[10] and the iterative method [11].  

The group of iterative method has the advantage to al-
low any physical constraint to be easily taken into ac-

count directly in the scheme of the iterative algorithm, 
simplicity of the implementation schemes and the simi-
larity of schemes for problems with linear and non linear 
operators. One possible disadvantage of this kind of 
method is the large number of iterations that may be re-
quired in order to achieve convergence. 

Based on these reasons, we have decided in this work 
to consider the KMF algorithm addressed by Kozlov, 
Mazya and Fomin since 1991 [12] (see also [13,14]), also 
called alternating method since it is to solve alternately 
two well-posed problems: the first one permits to com-
plete the Dirichlet condition and the second to complete 
the Neumann condition on the boundary. 

To deal with the large number of iterations required to 
achieve the convergence, we propose in this paper a new 
KMF algorithm to overcome this problem with more 
precision. The main idea of the developed algorithm is to 
divide the boundary of missing data in two parts, and 
then complete the missing data in alternative way in the 
two sub-parts of the inaccessible boundary. 

This algorithm of data completion problems has been 
widely studied in the case of simply connected domains, 
especially on the unit disk [1]. We wish to generalize 
here this method to annular domains. 

The next section is devoted to the presentation of the 
Cauchy problem for Laplace’s equation for annular do-
main. In Section 3, we present a classical KMF algorithm 
which enables one to find an approximate solution to that 
problem; we consider a New KMF algorithm and exhibit 
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the relationship it has with the classical KMF algorithm. 
Finally, Section 4 presents a numerical example showing 
the feasibility of the alternating formulation, its ability to 
find an approximate solution more accurately in less it-
eration.  

2. Mathematical Formulation 

2.1. Robin Inverse Problem 

Let   2 2 2 2 2
1 , 0x y R x y R     �  be a doubly 

connected domain with smooth boundary  
made of two Jordan closed curves  and 

0 1   
10   such 

that  and 0 1  

  
  2 2 2 2

1 , 

2 2 2 2
0 0

1

,x y x y R

x y x y R    �

    �
 

 
 Γ0 

Γ1 
R1

R0 

 
 

We assume that the corrosion only happened on the 
interior boundary of the domain  and the corrosion 
can be described by a non-negative function 


 , called 

coefficient of Robin, in the boundary condition on the 
interior boundary. 

The determination of the coefficient of Robin is an in-
verse problem that consists to: 

Given two functions f and g defined on  or a num-
ber of their pointwise measurements, with , find a 
function 

0
g  0

 , such that a solution u to: 

0

0

0

n

u on

u f in

u g in

  
 
  

               (1) 

also satisfies 

10nu u in                 (2) 

where n  is the normal derivative of u. And u 0   is 
the coefficient of Robin that represents the corrosion 
damage. 

In the thermal framework, f corresponds to the meas-
ured temperature and g to the imposed heat flux on the 
outer boundary of a domain, while   is the Robin ex-
change coefficient to be recovered on the associated in-
ner boundary from the extended data. 

This inverse problem consists to find the unknown co-
efficient   from the Cauchy data f and g on 0 . That 

can be treated by the following steps:  
Step 1: Get the Cauchy data on the interior circle by 

solving the Cauchy problem for Laplace’s equations (1). 
Step 2: Get the impedance   from the Cauchy data on 

the interior circle. 
From the boundary condition 10 innu u    ,   

can be obtained by 1
nu

u



    if 1 0u   . 

2.2. Reconstruction Problem 

In this paper, we consider the problem of the Step 1 to 
complete the missing data which consist to recover both 
Dirichlet and Newman conditions in the inner part of the 
annular domain. 

This problem has a unique solution for compatible 
data f and g which means that the over specified data is 
indeed the trace and normal derivative of the solution of 
a single harmonic function. i.e.  

For  
1
2

0f H   and  
1
2

0g H
  , where  

 
1
2

0H


  is defined as dual space of  
1
2
00 0H   and 

      1
2 2 1
00 0 0 0 1, ,H v L w H w v w 0            

the problem (1) has a unique solution. 

3. Description of the Algorithm 

3.1. KMF Standard Algorithm 

Consider the Cauchy problem (1) with  
1
2

0f H   

and  
1
2

0g H
  . The iterative algorithm proposed by  

Kozlov, Mazya and Fomin (KMF standard Algorithm) 
[12] investigated is based on reducing this ill-posed 
problem to a sequence of mixed well-posed boundary 
value problems and consists of the following steps: 

Step 1. Specify an initial guess  
1
2

0 1u H   

Step 2. Solve the following mixed well-posed bound-
ary value problem: 

 

 

 

0

0
0

0
0

0

n

u on

u u in

u g in



1

  


 

  

            (3) 

To obtain 
 0

0 nv u 1                    (4) 

Step 3. For , solve alternatively the two mixed 
well-posed boundary value problems: 

1n 

 

 

 

2 1

2 1
1

2 1
0

0n

n
n n

n

u on

u v in

u f in










1

  

 




 

           (5) 
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To obtain 
 2 1

1
n

nu u  





                  (6) 

 

 

 

2

2
1

2
0

0n

n
n

n
n

u on

u u in

u g in

   




 

             (7) 

To obtain 
 2

1
n

n nv u                      (8) 

Step 4. Repeat Step 3 from  until a prescribed 
stopping criterion is satisfied. 

1n 

3.2. Observation 

 If the sequence 0( )n nu   defined in Equation (6) con-
verges in  1

1 2 ΓH , then the sequence ( )
0( )n

nu   con- 
verges in  1 ΩH  to the solution  1 Ω  of the 
Cauchy problem (1).  

u H

 The same conclusion is obtained if at the Step 1, we 
specify an initial guess  1

0 1
2 Γ  instead of an 

initial guess for 
v H
 2

0 1
1 Γ , and we modify ac-

cordingly the Steps 2 and 3 of the algorithm.  
u H

 This algorithm provides an approximate solution to 
exact solution in a large number of iterations 

 In order to accelerate the convergence of the iterative 
algorithm, schemes have been developed [15] by in-
troducing a relaxation parameter in the Neumann 
condition obtained after the third step and replacing (8) 
by: 

      2
1 11 ,n n n

n n nv u v n       1

1

      (9) 

where  is a positive relaxation factor   ,n n 
Or in the Dirichlet condition obtained after the third 

step and replacing (6) by: 

      2 1
1 11 ,n n n

n n nu u u n 
     1

1

    (10) 

where  is a positive relaxation factor.   ,n n 
Or in both Dirichlet and Neumann conditions obtained 

after the third step and replacing (6) and (8) by: 

      
      

2 1
1 1

2
1 1

1 ,

1 ,

n n n
n n n

n n n
n n n

u u u n

v u v n

 

 






     

     

1

1
    (11) 

where  are two positives relaxation 
factor.  

   and , 1n n n  

3.3. New KMF Algorithm 

As first work [16], we are studied the influence of data 
problems, particularly; the relationship between the meas- 
ure of the inaccessible part of the boundary and the rate 
of convergence has shown that: 
 The convergence is always guaranteed and it is very 

fast if the measure of the part of the boundary to be 
completed is small (Figure 1). 

 The convergence requires much more iterations if the 
inaccessible part is greater. 

In this study we extend to the annular domain, the New 
KMF algorithm in order to improve the rate of conver-
gence of the iterative algorithm described. 

The main idea of the proposed algorithm proposed is 
based on the use of the previous results and the KMF 
standard algorithm by completing the missing data in 
alternative way to the two sub-parts of the inaccessible 
boundary. The inaccessible part is subdivided in two parts, 
and the KMF standard algorithm is used to complete the 
data in the first part, then to complete the data in the 
second part in an alternative way.  

For this, we consider 1 1,1 1,Γ Γ Γ 2   such that  

1,1 1,2Γ Γ   and    1,1 1,2Γ Γmes mes  

 

 
(a) 

 
(b) 

Figure 1. The numerical results obtained for eu (a) and ev (b) 
for different choice of θ. 
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The algorithm consists of the following steps: 

Step 1. Specify an initial guess  
1
2

0 1u H    

Step 2. Solve the well-posed problem  

 

 

 

0

0
0 1 1.1

0
0

0 on

in

inn

u

u u

u g

   
     

  

1.2           (12) 

To obtain 

 0
1,0 1,1nv u    and  0

2,0 1,2nv u        (13) 

Step 3. For  solve the two well-posed problems 1n 
 

 

 

 

2 1

2 1
1, 1 1.1

2 1
2, 1 1.2

2 1
0

0 on

in

in

in

n

n
n n

n
n n

n

u

u v

u v

u f











  

  

  


 



              (14) 

To obtain 

 2 1
1, 1,1

n
nu u                           (15) 

and  
 

 

 

 

2 1

2 1
1, 1.1

2 1
2, 1 1.2

2 1
0

0 on

in

in

in

n

n
n

n
n n

n

v

v u

v v

v f










  

  

  


 



              (16) 

To obtain 

 2 1
2, 1,2

n
nu v                         (17) 

Step 4. Solve the two well-posed problems 

 

 

 

 

2

2
1, 1.1

2
2, 1.2

2
0

0 on

in

in

in

n

n
n

n
n

n
n

u

u u

u u

u g

   

  


 

  

                  (18) 

To obtain 

 2
1, 1,1

n
n nv u                          (19) 

And 

 

 

 

 

2

2
1, 1.1

2
2, 1.2

2
0

0 on

in

in

in

n

n
n n

n
n

n
n

v

v v

v u

v g

   

  


 

  

                  (20) 

To obtain 

 2
2, 1,2

n
n nv v                          (21) 

Step 5. Repeat Steps 3 and 4. From  until a pre-
scribed stopping criterion is satisfied. 

1n 

3.4. Remarks 

 If we consider every iteration to consist of solving the 
four mixed well-posed problems from the Step 3 and 
4 of the algorithm, then for every 1n   the follow-
ing approximations are obtained at the iteration num-
ber n: 

1,nu
u

 for the Dirichlet condition on the . 1,1Γ
Γ2,n

v
 for the Dirichlet condition on the . 1,2

 for the Neumann condition on the boundary . 1,n

v
1,1Γ
Γ2,n

It should be noted that: 
 for the Neumann condition on the boundary . 1,2

 The KMF developed algorithm can be seen as two 
parallel problems of KMF standard algorithm. These 
two problems are initialized with the same initial data. 
Each problem allows to obtain approximation in each 
subpart 1,Γ 1,2iou i   (for the approximation in 1,1  
the two well-posed problems (14) and (18), for the 
approximation in 1,2Γ  the two well-posed problems 
(16) and (20). 

Γ

 Each solved problem allows an approximation in one 
of the inaccessible subparts that can be introduced in 
the other well-posed problems.  

 The missing Dirichlet condition in the part 1  can be 
obtained from the problem (16) since the condition 

 2 1
1, 1,1

n
nu u    obtained from (14) is introduced in 

(16) which also provides  2 1
2, 1,2

n
nu v   . 

 The missing Neumann condition in the part 1  can be 
obtained from the problem (20), since the condition 

 2
1, 1,1

n
n nv u    obtained from (18) is introduced in 

(20) which also provides  2
2, 1,2

n
n nv v   .  

4. Numerical Results 

In order to present the performance of the numerical 
method proposed, we solve the Cauchy problem for Lap- 
lace equation for annular domain with R1 = 0.5 and R0 = 1. 

In this section, we illustrate the numerical results ob-
tained using the alternating KMF algorithm described in 
Section 3. In addition, we investigate the convergence 
and the accuracy of the solution with respect the number 
of iterations. 

We assume that the boundary 1  of the solution do-
main is divided into two disjointed parts , 
namely; 


1,1 1,2and 

      
      

2
1,1 1 1

2
1,2 1 1

, cos , sin ,0 π

, cos , sin ,π 2π

x y x R t y R t t

x y x R t y R t t

      

     

�

� 

 

The analytical function to be retrieved is given by: 

 , coxu x y e y s              (22) 
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For the implementation of the iterative algorithm we 
use the software FreeFem, and solve the well-posed prob-
lems in the algorithm by the finite element method. In 
this example, we use a finite element method with con-
tinuous piecewise linear polynomials to provide simulta-
neously the unspecified boundaries Dirichlet and Neu-
mann. 

The following stopping criterion was adopted 

1
1 0,n nE u u  

                   (23) 

where   is a small positive number. 
The convergence of the algorithm may be investigated 

by evaluating at every iteration the error:  

1 10, 0,u n ex v n n exe u u and e v u
 

        (24) 

where the approximation n  is obtained for the function 
on the boundary 1  after n iterations and ex  is the 
exact solution of the problem of the problem (1). How-
ever, in practical applications the error ue  cannot be 
evaluated since the analytical solution is not known and 
therefore the error E has to be used. 

u
u

The Figure 2 presents the function u obtained after 
convergence (u_iter final), the function u with the initial 
guess considered (u_iter 0) and the exact solution 
(u_exact). You can see that; from a given initial data not 
very close to exact solution, we obtained a very satisfac-
tory approximation of the solution of problems in an ac-
ceptable number of iterations. 

Figure 3 presents the error u  and v  obtained for 
different number of boundary elements used for discre-
tising the inner part of the boundary . 

e e

1

Figure 4 presents a comparison between the numerical 
results u  and v  obtained with the KMF standard 
algorithm and the New KMF algorithm. It can be seen 
that the algorithm proposed decreases considerably the 
number of iteration necessary to achieve the convergence 
that can be reduced, and present a more accurate ap-
proximations for both Dirichlet and Neumann missing 
data. In addition, we can notice that after the number of 
iterations is sufficiently increased, the error become 
small for the new algorithm; this shows that the numeri-
cal solution is accurate and consistent with the number of 
iterations. 



e e

Figure 5 shows the numerical results obtained in ap-
proximating the function u in the part of the boundary 

1 , indicating that from a choice of an initial data, we 
obtain satisfying results for both algorithms (stand and 
New). However, the New KMF algorithm requires less 
iteration to achieve more accurate convergence. 



5. Conclusions 

In this paper, we have presented a fast data completion 
algorithm solving the Cauchy problem for the Laplace  

 
u_iter 0 

 

 
u_iter final 

 

 
u_exact 

Figure 2. The reconstruction function u with the new algo-
rithm (u_iter final) in comparison with (u_exact) and u ob-
tained with the initian guess (u_iter 0) for R1 = 0.5 and R0 = 
 and N0 = N1 = 40. 1    
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(a)                                                               (b) 

Figure 3. The error eu and ev as a function of the number of iterations obtained for KMF developed algorithm with N = 40, 80, 
120. 
 

  

Figure 4. The error eu and ev as a function of the number of iterations obtained for KMF developed algorithm (New) in com-
parison with classical algorithm (Stand). 
 

equation in an annular domain. The main goal was to 
compute accurately the extended data on the inaccessible 
inner part from the over specified data in the accessible 
outer part. These data can be used to calculate the coeffi-
cient data representing the corrosion damage on the inner 
part of the boundary. 

 

The comparison of numerical results with those ob-
tained by the KMF standard algorithm show that the 
proposed algorithm significantly reduces the number of 
iterations needed to achieve the convergence and pro-
duces more accurate results. In addition, it can be con-
cluded that the proposed algorithm is very efficient to 
reduce the rate of convergence. When perturbations are 
introduced into the given date problem the results are 
stable. Overall, it can be concluded that the new iterative 
algorithm proposed produces a convergent, stable and 
accurate numerical solution. 

Figure 5. The numerical results for the function u on the 
boundary Γ1 obtained with KMF developed algorithm 
(unew) in comparison with the analytical solution (uexact) 
and the solution with KMF standard algorithm (ustand). 
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