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Abstract 

We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time 
integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM frame-
work is used to define edge-averaged quantities, which are then used to evaluate numerical flux functions. 
The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al 
in [1]. However, [1] is problematic when it is implemented to certain shock problems. Here we propose sig-
nificant improvements to [1]. The method is fourth order (both in space and time) for smooth flows, and pro-
vides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results 
indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. 
Results also demonstrate the shock capturing ability of the method. 
 
Keywords: Gas Dynamics, Conservation Laws, Spectral Deferred Corrections (SDC) Methods, Piecewise 

Parabolic Method (PPM), Godunov Methods, High Resolution Schemes 

1. Introduction 

In this paper, we present a conservative scheme based on 
the SDC and PPM methods. The integration of the SDC 
method to the PPM method was first carried out by Anita 
et al in [1]. However, [1] is problematic in the sense that 
it is oscillatory when it is applied to certain shock prob-
lems unless complicated extra repair steps are introduced. 
The oscillations are developed around the shocks at ear-
lier times, then spread into entire computational region. 
These oscillations are neutral oscillations (extraneous 
wiggles) that pollute the solution and never disappear. 
The main reason for having such wiggles is that the PPM 
fluxes (without the time averaging in SDC framework) 
are evaluated in a way to obtain sharper discontinuous 
profiles, therefore lack of necessary numerical diffusion 
mechanism. Here, we introduce a strategy that eliminates 
the oscillatory behavior of [1]. 

The SDC-PPM method falls in to the class of higher 
-order high-resolution-schemes. Here, we shall provide a 
short historical perspective to higher-order high-resolu- 
tion-schemes. High resolution schemes are designed to 
solve gas dynamics equations (Gas dynamics equations 

are also referred to as the inviscid Euler equations or the 
conservation laws. Hereafter, we will use all of three 
terminologies interchangeably). In the last several dec-
ades, many numerical schemes were introduced for this 
purpose. Godunov [2] initiated a novel approach that is 
now accepted as one of the main building blocks for 
construction of a high resolution scheme. Godunov sup-
posed that the initial data could be replaced by a piece-
wise constant set of states (i.e, cell averages of the initial 
solution) with discontinuities located at computational 
cell edges (cell faces in 3-D). He then found exact solu-
tions to this simplified problem by locally performing the 
well-known Riemann solution theory. Finally, he re-
placed exact solutions by a set of piecewise constant ap-
proximations (i.e, exact solutions are averaged down to 
the local cells). Godunov’s method revolutionized the 
field of computational gas dynamics, by overcoming 
many of the difficulties that have been persistent for 
many years. However, Godunov’s method was only first 
order accurate. The first major improvement to Godunov’s 
work was made by van Leer [3] who approximated the 
initial data and solutions at each subsequent time level by 
piecewise linear segments allowing discontinuities be-
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tween the segments. Van Leer’s work, also known as the 
MUSCL (Monotonic Upwind Scheme for Conservation 
Laws) scheme, raised the order of accuracy of the Go- 
dunov’s method to two. Later, van Leer’s MUSCL 
scheme was reconsidered or revised by others [4-6]. For 
instance, Colella’s MUSCL scheme [5] defines the 
slopes for the linear reconstruction based on the average 
values as oppose to van Leer [3] treats them as separate 
variables. When the flow is smooth, Colella’s slope defi-
nition corresponds to a fourth order finite difference ap-
proximation to the derivative of a given state variable. 
Colella’s work [5] was another step forward to increase 
the accuracy of the Gudonov’s method. So far the 
Godunov type methods used constant or linear piecewise 
reconstructions. In [7], Colella and Woodward intro-
duced a new method which is based on a piecewise 
parabolic reconstruction of solutions. Their method, fa-
mously known as the Piecewise Parabolic Method (PPM), 
achieves more accurate (fourth order in space) solution 
representations for smooth flows as well as it captures 
steeper shock discontinuities.  

The MUSCL schemes [4-6] or the PPM method [7] 
are the few examples of higher order high-resolution- 
schemes. There exists number of other high-resolution 
schemes such as ENO[8], WENO[9], TVD[10], FCT[11], 
PHM[12], and LLR[13,14] methods. In several instances, 
comprehensive studies have been carried out to compare 
the performance of these schemes [15-19]. We remark 
that these above cited studies mostly favor the PPM 
method. A particularly attractive feature of PPM method 
is that it can produce fourth order accurate calculations 
as long as the solutions stay smooth. We exploited this 
aspect when we studied zero Mach number flow prob-
lems (our collaborated work with M. Minion in [20]). 
The drawbacks of the PPM method reveal mostly when it 
is applied to shock problems. For instance, the PPM 
method [7] needs several external repairs in order to 
produce discontinuous solutions without spurious oscil-
lations. The oscillatory behavior is associated with the 
method not having enough numerical diffusion (dissipa-
tion). In order to add appropriate numerical diffusion, the 
fluxing steps are modified in a way that the so-called 
smoothening and flattening algorithms have to be per-
formed. We note that the implementation of these addi-
tional steps can be complicated. In our work, we avoid 
these external fixes by using a rather simple approach 
which will be explained next. 

The SDC method is based on a number of deferred 
corrections of a low order provisional solution, which is 
predicted by forward or backward (depending on the 
stiffness of the problem) Euler method in order to 
achieve higher order of accuracy in time. In our case, we 
perform three deferred corrections to obtain fourth order 

accurate solutions. The SDC-PPM method of [1] uses the 
PPM fluxing procedure to evaluate the numerical flux 
functions and employs the SDC method to integrate so-
lutions in time. We observed that the SDC-PPM method 
develops neutrally stable oscillations at the prediction 
step and maintains these oscillations during the deferred 
correction iterations. The main reason for this behavior 
(as mentioned above) is that the higher order flux evalua- 
tion at the prediction step lacks of necessary numerical 
diffusion so as the correction steps leading to unwanted 
oscillations around discontinuities. We fix this behavior 
with the following strategy. We know from our observa-
tion that one has to use more diffusive fluxes at the pre-
diction step to avoid potential oscillations. Thus instead 
of full PPM fluxing, we employ an up-winding proce-
dure that is naturally more diffusive. On the other hand, 
we let the correction iterations include the higher order 
PPM fluxing. With this strategy, we found out that solu-
tions from the prediction step have enough numerical 
diffusion so that potential oscillations that might come 
from the correction steps are killed off. One question 
about this strategy is that does the up-winding procedure 
excessively smear the discontinuities? Our finding indi-
cates that although the shocks are smeared at the predic-
tion step, the correction iterations sharpen them back. In 
fact, we have obtained the same sharpness (and same 
shock amplitudes in that matter) as the full PPM would 
predict. We remark that the full PPM method [7] as well 
as the SDC-PPM method [1] has to make use of the 
smoothening, flattening, and artificial diffusion steps in 
order to keep solutions oscillation free. We avoid all of 
these extra steps in our approach. 

The organization of this paper is as follows. In Section 
2, the governing equations are presented. In Section 3, 
some notational conventions and the numerical algorithm 
are described. In Section 4, the computational results are 
presented. In Section 5, our concluding remarks are 
given. 

2. Governing Equations 

The in viscid Euler partial differential equations are 
widely used to model gas dynamics problems. These 
equations describe the physical evolution of conserved 
quantities such as mass, momentum, and total energy in 
space and time. Therefore, they are often referred to as 
the conservation laws. The conservation laws fall into 
class of the hyperbolic partial equations that admit dis-
continuous solutions such as shock waves. Therefore 
these equations are the best model for a gas problem in 
which shock waves frequently occur. 

We consider the following two dimensional conserva-
tion equations, 
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where U is the vector of conserved quantities, and F(U) 
and G(U) are the flux functions in x- and y-directions. For 
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where  and E denote density, velocity, pres-
sure, and the total energy. E satisfies 
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This equation is called the equation of state for an ideal 
polytropic gas. An ideal gas obeying (2) is also referred to 
as the gamma-law gas with   denoting the specific heat 
ratio. Under ordinary circumstances air is composed 
primarily of 2  and 2 , so N O 1.4  . We will use 

1.4   in all of our computations. 

3. Numerical Algorithm 

3.1. Notations and Formulation 

In this section, we briefly review several notational con-
ventions that we have introduced in [20]. For ease of 
presentation, we assume that the physical domain is 
two-dimensional and divided into a uniform array of cells 
of width and height h. Let the cell with center at 
 ,i j x y be denoted by the pair (i, j), and let the half integer 
subscripts i+ 1/2 and j + 1/2 denote a shift by distance h/2 
in the x- and y-direction respectively. The extension to 
rectangular cells and three dimensions is straightforward. 

The PPM method or many other high resolution 
schemes rely on the so called finite-volume approach. The 
finite-volume approach is based on the evolution of cell 
averages. A cell average for some quantity  , ,x y t  is 
defined by 
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Similarly, cell edge averages of a quantity  , ,x y t  
are defined as 
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Figure 1 gives a graphical illustration of the above 
definitions. To specify the finite volume formulation of 
the conservation law 

 .tU F U 0                 (6) 

where  , ,U x y t  is the vector of conserved quantities 
and F(U) =     ,F U G U  is the flux function (notice 
that Equation (6) is equivalent to Equation (1)), we inte-
grate Equation (6) over the computational cells and use 
the divergence theorem to attain 

    2
,

1
, , , , 0t

i j

U x y t F U x y t
h

          (7) 

where the flux integral above is defined as 
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Using the definitions of the edge average in Equation 
(4)-(5) 
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Figure 1. Cell and cell-edge averaged representation of a 
quantity  . 
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Furthermore, if we let  , ,ij i jU U x y t ,  
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3.2. The Fourth Order Spectral Deferred 
Corrections (SDC) Time Integration 
Algorithm 

The construction of stable and accurate numerical meth-
ods for solving initial value problems is a well studied 
subject [21-23]. Runga-Kutta methods or linear multi-step 
methods are highorder discretization schemes by con-
struction. On the other hand, Richardson extrapolation or 
deferred correction methods are based on increasing the 
accuracy of a low order method through iterations. The 
second group is also known as the predictor-corrector 
techniques. High order direct discretization schemes can 
be expensive due to the stability constraint. In this case, 
most practitioners recommend the predictor-corrector 
techniques. 

In this paper, we consider the spectral deferred correc-
tions method. The spectral deferred corrections (SDC) 
method, introduced in [24], is a known stable numerical 
technique with, in principle, arbitrarily high order of ac-
curacy. The SDC method proceeds by first using a simple 
low order numerical method to compute a provisional 
(predicted) solution at a set of sub-steps within a given 
time step. Then, an equation for the correction to this 
provisional solution is constructed and also approximated 
on the sub-steps with the same numerical scheme. Each 
iteration at the correction step increases the accuracy of 
the provisional solution by one. 

We briefly describe the SDC procedure here, for details 
see [24-26]. 

Consider the initial value problem, 

    ,t F t t     ,t a b ,             (12) 
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The SDC method is based on the observations con-
cerning the integral form of the solution to Equations 
(12)-(13) 
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which then can be combined with Equation (15) to give 
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This equation is referred to as the correction equation. 
Now given Equations (12) and (13) and time interval 
 1,n nt t   in which the solution is desired, the SDC 
method proceeds by first di  viding 1,n nt t   into p subin-
tervals by choosi  points  0m ng  for p , with 
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Here, the interval  1,n nt t  will be referred to as a time 
step while a subinterval    1, ,m m m m mt t t   t t  will be 
referred to as sub step. Then an approximate solution 

 0
mt  is computed for  using a standard 

forward Euler method. Next, a sequence of corrections 
0m p 

 k
mt  is computed by approximating Equation (17) to 

provide an increasingly accurate approximation to the 
solution 1k k k    . To achieve this, the function 

  , tkE t  in Equation (17) must be calculated with 
spectral accuracy, i.e, by a Gaussian quadrature. Our 
choice of quadrature nodes is the Gauss-Lobatto nodes. 
This is because the Gauss-Lobatto nodes already include 
the end points, therefore, one does not have to do ex-
trapolations of the final solution to those points. See [25] 
for different choices of quadrature nodes. 

A discretization for Equation (17) based on the forward 
Euler method is given by 
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where  k k
m mt  ,  k k

m t  m  and 
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m mE E t  .m  Each iteration for Equation (19) 
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raises the formal temporal order of accuracy of the 
scheme by one, therefore for a fourth order method, three 
iterations (e.g, k = 3) of the correction equation are 
needed. Also, for a fourth order method, four Gauss- 
Lobatto points are necessary, i.e, p = 3 in Equation (18). 

Now reconsider Equation (11) in the following form 
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3.3. The Fourth Order PPM Oriented Flux 
Calculations 

In this section, we define the cell edge averaged quantities 
that will be used to calculate the numerical flux functions, 
i.e, 1 2,i j  and F 


, 1 2i jG 
  in (11) or in (20). The procedure 

is based on Colella and Woodward [7]. In [7], cell edge 
averages are calculated by interpolating quartic polyno-
mials which are constructed through cell averages. For-
mulae, in [7], are given for one dimensional non-equally 
spaced mesh. The formulae below are the two dimen-
sional versions of [7] in a uniformly spaced mesh. Below, 
we systematically describe the steps to calculation of 
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     
 

                    (24) 

    , 1 , 1 , 1 , , , 1
,

1
sgn if 0

2

0 otherwise

y
ij i j i j i j i j i j i jy

i j

U U U U U U
U


    

  

,

      


 


             (25) 

, 1 , 1 , 1 , , , 1

1
min ,2 ,2 .

2
y
ij i j i j i j i j i j i jU U U U U U    

     
 

                  (26) 
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Equations (21) and (22) are the slope limited edge  

quantities. Notice that if   , 1,1 2x
i j i j i jU U U    1, ,  

then Equation (21) simplifies into 

1, 7ˆ i jx U U
U  

 ) , 1, 2, .i j i j i jU U  
     (27

Similarly if 

1 2, 12i j

 , , 1 ,

1

2
y

i j i j i jU U U    1  then 

(22) becomes 

Equation 

, 1 , , 1 , 2
, 1 2

ˆ .jy
i jU 



 
       (28) 

7

12
i j i j i j iU U U U  

Equations (27) and (28) are fourth order extrapolations 
to the edge quantities. Consequently, this mak
scheme fourth order accurate in space in regions where 
th

es the PPM 

e solution is smooth. To prevent possible overshoots or 
undershoots, the slope limited edge quantities are further 
monotonized with the monotonicity algorithm. 

Monotonicity algorithm: 
Initialize 

1 2,, 1 ,L R i ji j i j 
ˆ ,xU U U  , 1 2, , 1

ˆ
L R

y
i jU U U 

i j i j 
  (29) 

Modify 

  
, ,, ,

, ,, ,

, ,

if 0,

L R

R L

i j i ji j i j

i j i ji j i j

U U U U

U U U U

 

 
 


       (30) 

   
, ,, ,

, ,, ,

, ,

if 0,

L R

R L

i j i ji j i j

i j i ji j i j

U U U U

U U U U

 

 
 


      (31) 

   
 

,, ,

,, , , ,

2

, ,

3 2 ,

1
if

2

,
6

L R

R L R L

R L

i ji j i j

i ji j i j i j i j

i j i j

U U U

U U U U U

U U

 

  





 


  (32) 

   
 

,, ,

,, , , ,

2

, ,

3 2 ,

1
if 

2

,
6

L R

R L R L

R L

i ji j i j

i ji j i j i j i j

i j i j

U U U

U U U U U

U U

 

    
 




   (33) 

 

   

,, ,

2

, ,

,, , , ,

3 2 ,

if
6

1
,

2

R L

R L

R L R L

i ji j i j

i j i j

i ji j i j i j i j

U U U

U U

U U U U U

 




     
 

 

 

   

,, ,

2

, ,

,, , , ,

3 2 ,

if
6

1
.

2

R L

R L

R L R L

i ji j i j

i j i j

i ji j i j i j i j

U U U

U U

U U U U U

 




     
 

   (35) 

We note that the aim is to construct the Riemann vari-
ables, with which the numerical flux functions are evalu-
ated. To define the point-wise Riemann variables, first 
we set 

1 2, 1 2, , 1 2, 1 ,

, 1 2, , 1

, ,

, .

R L

R L

L R
i j i j i ji j i j

R
i ji j i j

U U U U U

U U U

  

 

 

 
 

L


    (36) 

Then the slope limited and monotonized corner points 
at each direction can be calculated through following 
Equ  ations (21)-(35). At this point we have the right/left
corner values, i.e, 

, , , ,
1 2, 1 2 1 2, 1 2 1 2, 1 2 1 2, 1 2, , , and .L y R y L x R x

i j i j i j i jU U U U         

Now we can define the Riemann variables along cyell 
edges by taking the two corner values and a cell edge 
averaged quantity. First we construct a quad
nomial along each cell edges. For instance, along the 

ratic poly-

 1 2, j edge, for given 
th

i , ,
1 2, 1 2 1 2, 1 2,L y L y

i j i jU U     and 

1 2,
L
i jU  , we determine the coefficients of the quadratic 

polynomial (i.e.,   2U y ay by c   ) with, 
,
1 2,

L y
i jU 

2 2
1 2 1 2 1 2j jay by c            (37) 

 
1 2

1 2

1 2, d
j

i j
y

U U y y
h



                (38) 
1 jy

L


, 2 2
1 2, 1 2 1 2 1 2

L y
i j j jU ay by c              (39) 

structing the quadrat efine 
o left point-wise Riemann variables at the two 

Gauss points, i.e.,

After con ic polynomial, we d
the tw

 for , in 1 2,y y 1 2 1 2,   interval, j jy y  
c, 2 2

1 1 1 ,L yU ay by       

c

        (40) 

, 2 2
2 2 2 .L yU ay by               (41) 

The right point-wise Riemann variables, ,
1
R yU , ,

2
R yU  

can be defined similarly. 
Using these Riemann variables, we calc

mann solutions at the two Gauss points, i.e.
ulate the Rie-
,  

 , ,
1 1 1, ,y Rim L y R yU U U U   , ,

2 2 2, ,y Rim L y R yU U U U  (42) 

where  ,Rim L RU U U  sents  solution. repre  the Riemann
An ex ann solution to
tions will be given below. 

Finally, using these point-wise Rie
calculate the average F flux along the 

  (34) ample of a Riem  the Burgers equa-

mann solutions, we 
 1 2,

th
i j  cell 
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edge as, 

   1 2

1 2, .
2i j

F U F U
F 


           (43) 

y y

Similarly we calculate G fluxes along the   
 , 1 2

th
i j   cell edges us g Equations (37)-(42) with

d by x, i.e., 
in  y 

replace

   1 2
.           (44) 

g the SDC 
t the numerical variables representing cell av-

erages and cell edge fluxes are always computed at the 
same time level (i.e. there is no time-ce
as in most second-order Godunov type schemes). 

A Riemann 

, 1 2 2i j

Remark: One observation about usin strat-
egy is tha

x xG U G U
G




ntering of fluxes 

Solution to the Burgers Equation 
Consider, 

2 21 1
0.          (45) 

2 2t
x y

u u u        
   

 Characteristics speed in both x and y directions is u, 

i.e., 
d

d

x
u

t
  and 

d

d

y
u

t
 . Thus we have to consider the 

following four cases in both coordinate directions. 
x-direction: 

 

Case 1: If Lu  and , then the wave (either shock 
herefore 

n solution becomes 

.

0Ru 
or rare-faction wave) moves from left to right. T
the Rieman

 ,Rim L R Lu u u u               (46) 

Case 2: If Lu  and 0Ru  , then the wave (either 
ock or rare-factio e) moves from right to left. sh n wav

efore th ann soTher e Riem lution becomes 

 , .Rim L R Ru u u u               (47) 

Case 3: If 0 L Ru u , t

0.

  hen we have a rare-faction 
wave. Therefore the Riemann solution becomes 

 ,Rim L Ru u u                 (48) 

Case 4: If 0L Ru u   
 is

then we
Th b

 have a shock wave. 
e shock speed  calculated y  

   
.

2

L R L R

L R

F u F u u u
s

u u

 
 


        (49) 

Then the Riemann solution is giv

The Riemann solution in y-dir
milarly. 

e employ a
 words, we define the 

left and right values in (36) by using the left and right 
state of the solution vector, e.g., 

en by  

 if 0
,

if 0,

L
Rim

R

u s
u u u

u s


 


           (50) L R 

ection is calculated si- 

Remark: W n up-winding flux procedure at 
the SDC’s prediction step. In other

1 2, , ,i jU  L
i jU  

1 2, 1,
R
i j i j

x evaluation for Equations (43) and (44).
U U  . This provides more diffusive numerical 
flu  

4. Numerical Results 

4.1. Solving the Linear Advection Equation 

We consider, 

0,t x yu u u    0 1,0 1x y         (51) 

As a first test, we use a smooth initial solution; 

     , ,0 sin 2π 2cos 2π .x y x y       (52) 

In this test, the solution stays smooth i

u

n time. We 
monstrate the fourth order of 

 periodic boundary 
otice 
 sim-

) and (28). Also one doesn’t have to apply 
ity algorithm r this specific test case. 

Figure 2 shows the orm of the absolu
di e indi-
cating the stability of the de-
creases by the factor of en for a finer me
in

solve this test problem to de
accuracy of our method. We apply
conditions in both x and y-coordinate directions. N
that the edge average formulae for the state variable
plifies into (27
the monotonic  fo

n te error for 2L  

 sixte

fferent meshes. The error grows linearly in tim
numerical scheme, and 

sh indicat-
g the fourth order convergence. Tables 1-3 show the 

convergence rates with different norms. The convergence 
rate   is estimated using the two finest grids according 
to the following formula 

 
 

error1
ln .

ln 2 error 2

x

x


 
    

        (53) 

 

 

Figure 2. Demonstrating the fourth order of accuracy of the 
method with the L2-norm when solving Problem (4.1). 
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Table 1. Error table in terms of max norm for the linear ad- 
vection Problem (4.1). The final time is set to . Here 
the solution uses the smooth initial Function (52). 

Mesh  
refinement 

 1.0t 

max

exact numu u  

h = 1/10 9.43
Between mesh 

Convergence
rates 210  

h = 1/20 6.18 1/10 - 1/20 3.93 310  

h = 1/40 3.94 1/20 - 1/40 3.97 

h = 1/80 2.48 1/40 - 1/80 3.98 

410  
510  

 
Table 2. Error table in terms of norm for the linear ad- 
vection problem (4.1). The final  is set to . Here 
the solution uses the smooth initial Function (52). 

Mesh  

1L  
 time  1.0t 

refinement 1

exact num

L
u u  

h = 1/10 4.30 210  

Between 
mesh 

Convergence 
rates 

h = 1/20 2.82 310  1/10 - 1/20 3 3.9

h = 1/40 1.78 410  1/20 - 1/40 3.98 

1.11 1/40 - 1/80 h = 1/80 510  4.00 

 
Tab r ta  terms of  the - 
ve blem ). The final time is set to Here 
the  uses smoo h init n (52). 

refinement 

le 2. Erro
ction Pro

ble in
 (4.1

2L  norm for linear ad
1.0 .  t 

 solution  the t ial Functio

Mesh  
2

exact num

L
u u  

h = 1/10 5.04 210  
mesh rates 

Between  Convergence 

h = 1/20 3.29 310  1/10 - 1/20 3.93 

h = 1/40 2.08 1/20 - 1/40 3.98 

1.30 1/4

410  

h = 1/80 510  0 - 1/80 4.00 

 
Ta -3 also indicate the fourth order of accuracy 

of od. When performing ergen aly-
sis set to equal to 

bles 1
our meth  the conv ce an
, t  is  x y   and the s 

refine half for consecutive r
I ond t e s lve E 1) wi  ini-
al discontinuity, i.e., 

in th  doubly period  domain. Figure 3 illustrates 
the solution after one per od i ig
duc g

 mesh i
d uns. 

n the sec est, w o quation (5 th an
ti

 
1.0 if 0.3 0.7,0.3 0.7

, ,0
0.0 otherwise,

x y
u x y

   
 


  (54) 

e same ic
i n time. F ure 3 is pro-

ed usin  1 80x y     and early, 
we e an er/under s indi-
cating th PPM uxing proce orks qu

4.2. Solving the Burgers E

4.

0.5t x 
e solu

 . Cl
 don’t se y ov hoots in th tion 

at the  fl dure w ite well. 

quation 

2.1. 1-D Burgers Test Problem 
We consider the one dimensional Burgers equation; 

 

Figure 3. Propagation of the initial square pulse after one 
uta-

 

period (t = 1.0). 80 grid points are used for this comp
tion. 

21
0,

2t
x

u u   
 

               (55) 

with    0,0 .u x u x  
sidered in [27,15] and follows

The following test case is con-
 as setting the initial solu-

tion to a smooth parabolic profile. For instance, 

 
 
 0

max 0, 1 if 0.0
.

if 0.0o

y y y
u y

u y y

      
 

    (56) 

where y = 5x − 2.5 and x belongs to [0, 1]. Periodic 
boundary conditions are applied at both x = 0 and x = 1. 
At t = 0.2, shock waves start forming in the solution nea
x = x =  

r 
0.3 and 0.7. After this time, the shock waves 

propagate in the solution with  1
.

2 L Rs u u   

To be consistent with [15], we use the same number of 
grid points (e.g., 40) to produce o
sults. The time stepping criteria 
cept omitting the c, since the only characteristic speed is 

lution u itself. W

ning the 
code with 200 grid points. Comparing our results to the 
results reported in [15], we observed that our r
better or comparable to the most of the high res
schemes (e.g., ENO, WENO, FCT, PPM, TVD-MUSCL 

urgers equation; 

ur computational re-
uses Equation (59) ex-

the so e set cfl = 1.0 in (59). Figure 4 
represents the computed solutions at t = 0.5 and t = 2.4. 
The reference solutions are calculated by run

esults are 
olution 

etc). Notice that there is no over/under shoots around the 
shock profiles. 

4.2.2. 2-D Burgers Test Problem 
We consider the two dimensional B

2 2 0,0 1,0 1
2 2t x yu u u x y   1 1

         
   

   (57) 
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We solve (57) with     1
, ,0 sin 2π .

2
u x y x y     

We apply periodic boundary conditions in both coor-
dinate directions. Again the time steps are calculated by 
(59) with cfl = 0.8. The smooth initial solution turns into 
a diagonally propagating shock wave around t = 0.05.  

Figure 5 shows the time history of the numerical solu-
tions. The solutions are calculated with 80 grid points in 
each coordinate directions. From Figure 5, we observe 
that the shock discontinuities are captured sharply with-
out excessive oscillations. The long time run (e.g. t = 3.0 
in Figure 5) ind

data, 

        
 

1,0,1 if 0.5
,0 , ,0 , ,0

0.125,0,0.1 if 0.5

x
x u x p x

x


   
 

This problem is well studied over the years, i.e., in 
some cases an exact solution can be constructed. Thus it 
became a benchmark problem in scientific community to 
test new numerical schemes. We solve this problem in 
[0,1] interval with inflow boundary conditions. Our com-
putational results are produced using 400 grid points. 
The time step is calculated by 

,
max

x
t cfl

u c


 


              (59) icates the stability of our scheme. Tables 

 the solution is still 
hen 
cate 

the fourth order convergence of our scheme. 

4.3. Solving the Euler Equations 

4.3.

 

4-6 are created at t = 0.05 while
smooth. We note that the limiting procedure was off w
producing the Tables 4-6. These tables clearly indi where c represents the sound speed and cfl = 0.3. Figure 

6 shows the numerical solution at t = 0.15. Figure 6 
clearly indicates highly resolved discontinuous solutions 
(e.g, sharp shock and contact discontinuities) with cor-  
rect shock locations. 

1. Sod’s Shock Tube Problem  
The shock tube problem considers a long, thin, cylindri-
cal tube containing a gas separated by a thin membrane. 
The gas is assumed to be at rest on both sides of the 
membrane, but it has different constant pressures an

4.3.2. Interaction of Shock-Acoustic Waves  
This problem is first studied in [8] and describes the in-
teraction of a shock wave with a smooth acoustic entropy 
wave. The problem solves the one dimensional Euler 
equations with d

densities on each side. At time t = 0, the membrane is 
ruptured, and the problem is to determine the ensuing 
motion of the gas. The solution to this problem consists 
of a shock wave moving into the low pressure region, a 
rare-faction wave that expands into the high pressure 
region, and a contact discontinuity which represents the 
interface. 

The shock tube problem of Sod [28] solves the one 
dimensional Euler equations with the following initial  

      
 

   

,0 , ,0 , ,0

3.857143,2.629369,10.333333 if 0.1

1 0.2sin 5 10 5 ,0,1  if 0.1.

x u x p x

x

x x



  
  

 

  (60) 

The shock wave interacts with the acoustic wave. As a 
result, the post-shock acoustic profile is amplified (Fig-
ure 7). We solve this problem in [0, 1] interval with in-
flow boundary conditions. We used 400 grid points and  

 

Figure 4. Solution to the one dimensionalBurgers equations t = 0.5 for the left figure and t = 2.4 for the right figure. 
Numerical solutions are produced with 40 grid points. Solid lines represent reference solutions. 

, 
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Figure 5. The time evolution of the solution to the 2-D Burgers equation. t = 0.0 for the top, t = 1.0 for the middle, anf t = 3.0 
for the bottom figures. Figures on the right are the diagonal cuts of the left ones. 80 × 80 mesh is used to produce these re-
sults. 
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Table 4. Error table in terms of  norm for Problem 
(4.2.2). The final time is set to 

 1L
0.05t  . 

Table 6. Error table in terms of max norm for Problem 
(4.2.2). The final time is set to .  

Mesh  
refinement

0.05t 

Mesh  
refinement 1

2h h L
u u  2 maxh hu u  

2h = 1/20 1.60

Between 
mesh 

Convergence 
rates 

Between mesh 
Convergence 

rates 
2h = 1/20 7.20310  310  

2h = 1/40 1.25 1/20 - 1/40 3.67 2h = 1/40 1.60 1/20 - 1/40 2.16 410  310  

2h = 1/80 9.01 1/40 - 1/80 3.79 

2h = 1/160 6.31 1/80 - 1/160 3.83 

2h = 1/80 1.75610  

710  

410  1/40 - 1/80 3.19 

2h = 1/160 1.47 510  1/80 - 1/160 3.57 

 
Table 5. Error table in terms of  norm for Problem 
(4.2.2). The final time is set to 

 2L
0.05t  . 

Mesh  
refinement 2

2h h L
u u  

2h = 1/20 2.50

Between 
mesh 

Convergence 
rates 310  

2h = 1/40 3.58 1/20 - 1/40 2.80 410  

2h = 1/80 2.85 1/40 - 1/80 3.65 

2h = 1/160 2.11 1/80 - 1/160 3.75 

510  

610  

 
cfl = 0.3 in (59) to generate our results. The reference 
solution is produced with 1600 grid points. Figure 7 
shows our computational result. We obtained highly re-
solved solution comparable to [8] and [12,14]. This is an 
important problem to study, since the solution has some 
structure in the smooth region. As noted in [8], higher 
order methods perform better in such regions. Our results 
confirm this. In other words, our results are comparable 
to higher order ENO [8], higher order PHM (Piecewise 
Hyperbolic Methods) [12], or higher order LLR (Local 

 

 

Figure 6. Sod’s shock problem. 
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Figure 7. Shock-acoustic wave problem. t = 0.18. 
 
Logarithmic Reconstructions Method) yet better than the 
second order MUSCL-type schemes. 

4.3.3. Interaction of Blast Waves 
This problem is introduced by Woodward and Colella 
[17] and is often referred to as the Woodward-Colella 
blast-wave problem. The problem solves the one dimen-
sional Euler equations with 


      (61) 

The two discontinuities in the initial data each have 
the form of a shock-tube problem and yield strong shock 
waves and contact discontinuities going inwards and 
rare-faction waves going outwards. The boundary condi-
tions at x = 0 and x = 1 are reflective solid wall condi-
tions, i.e., 

,r   (62) 

1,    (63) 

We used 400 grid points in the [0, 1] interval and cfl = 
0.3 in (59) to generate our results. The reference solution 
is produced with 1600 grid points. Figure 8 shows the 
numerical results at t = 0.38. It is clear from Figure 8 
that we obtained sharp discontinuities without spurious 
oscillations. 

4.3.4. Smooth Euler Solution 
We solve this problem to verify the fourth order conver-
gence of our scheme for the Euler equations. The prob-
lem consists of an initial value problem with a smooth 
solution [29]. The problem considers the gas initially at 
rest and 

      
 
 
 

3

2

2

,0 , ,0 , ,0

1,0,10         if 0 0.1

1,0,10    if 0.1 0.9

1,0,10         if 0.9 1

x u x p x

x

x

x





  

 


 

 

1 1 1, , , for 1,n n n n n n
i i i i i iu u p p i           

1 1, ,

for 1, ,

n n n n n n
M i M i M i M i M i M iu u p p

i r

            

 
 

     230 12 1
, , ,0 , , ,0 1 0.1e ,

r
x y z E x y z  

      (64) 

where 2 2 2 .r    x y z   The solution of this problem 
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Figure 8. Colella’s double blast wave problem. t = 0.38. 
 
remains spherically symmetric. Therefore, the three di-
mensional Euler equations reduce to the one dimensional 
conservation laws with a source term [29]. 

The problem is solved in a [0, 1] domain. On the left 
end, the reflective wall boundary conditions are used as 
in Section 4.3.3. On the right end, the outflow boundary 
conditions are imposed. The numerical solution in Fig-
ure 9, produced at t = 0.15 with 160 mesh points, is su-
perimposed on a reference solution produced with 1280 
points. Table 7 shows convergence rates for the density 
field. Clearly, it is fourth order. Sin
xact solution for this problem, the convergence analysis 

, again no limiting 
procedure is performed. 

rred Correction (SDC) time 
integration technique and the Piecewise Parabolic Method 
(PPM) finite volume method. Our method introduces 
significant improvements to [1] such as the removal of 
unphysical oscillations due to flux treatment
of these oscillations is that [1] uses the same higher order 
less diffusive fluxes at all SDC steps (prediction plus 
deferred correction steps). In order to cure the oscillatory 
be

 

ce we don’t have an 
e
is done similar to the one described in Section 4. We also 
note that since the solution is smooth

5. Conclusions 

We have presented an improved gas dynamics method 
based on the Spectral Defe

s. The source 

havior, [1] has to employ couple of external fixes such 
as the smoothening, flattening, and artificial diffusion 
algorithms which are not straightforward to implement in 
a computer code. We avoid all of these extra steps by 
making use of an up-winding flux procedure at the pre- 
diction step. This brings sufficient amount of numerical dif- 

 

s t = 0.15. Figure 9. A smooth solution of the Euler equation
 
Table 7. Error table in terms of 2L  norm the smooth Eu- 
ler solution. The final time is set to 0.15t  .  

Mesh  
refinement 2

2h h L
u u  

2h = 1/80 8.87 510  
Between mesh 

Convergence 
rates 

2h = 1/160 1/80 - 1/160 3.81 6.33 610  

2h = 1/320 4.29 710  1/160 - 1/320 3.89 

2h = 1/640 2.74 810  1/320 - 1/640 3.97 

 
fusion so that the deferred correction steps can use less 
diffusive higher order flux evaluations. With this strategy, 
we have obtained oscillation-free discontinuous solutions 
with the quality comparable to the original PPM 
have also demonstrated the fourth order of accurac

[7]. We 
y of this 

method in both space and time for smooth flow problems. 

Copyright © 2011 SciRes.                                                                                AJCM 
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s that an av-

ct of the averaged values plus a co

  
Appendix 

Here we define stencils for multiplication and division of 
the cell averaged (also cell edge averaged in 2-D) quanti-
ties in order to compute higher-order accurate numerical 
flux functions. The primary reason for this i
eraged value of a product (or quotient) is not equal to the 
product (or quotient) of averaged values. The goal here is 
to express averaged values of quotients or products as the 
quotient or produ rrec-
tion term which must be computed by applying a stencil 
to neighboring averaged values. 

If we were to derive formula for an averaged value of 
a product, i.e.,  i

u  on the thi  cell, we first con
the following local series expansions 

sider 
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Recalling that 
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Evaluating this integral with (65) 
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Evaluating this integral with (65), (66), and using (68) 
we obtain 

69) 
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To derive a stencil for 
ix , we consider 
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Summing the above four expressions we get  
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Using (68) in (75) we obtain 
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Considering series expansions (71), (72), (73), and (74) 
for xx  terms in (76) and carrying out the similar alge-
bra, we arrive the following fourth order expression 
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Derivation of an averaged value for a quotient and 
several more details can be found in [20]. 

 


