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Abstract 
Regional climate change impact assessments are becoming increasingly important 
for developing adaptation strategies in an uncertain future with respect to hydro- 
climatic extremes. There are a number of Global Climate Models (GCMs) and emis-
sion scenarios providing predictions of future changes in climate. As a result, there is 
a level of uncertainty associated with the decision of which climate models to use for 
the assessment of climate change impacts. The IPCC has recommended using as 
many global climate model scenarios as possible; however, this approach may be im-
practical for regional assessments that are computationally demanding. Methods 
have been developed to select climate model scenarios, generally consisting of select-
ing a model with the highest skill (validation), creating an ensemble, or selecting one 
or more extremes. Validation methods limit analyses to models with higher skill in 
simulating historical climate, ensemble methods typically take multi model means, 
median, or percentiles, and extremes methods tend to use scenarios which bound the 
projected changes in precipitation and temperature. In this paper a quantile regres-
sion based validation method is developed and applied to generate a reduced set of 
GCM-scenarios to analyze daily maximum streamflow uncertainty in the Upper 
Thames River Basin, Canada, while extremes and percentile ensemble approaches are 
also used for comparison. Results indicate that the validation method was able to ef-
fectively rank and reduce the set of scenarios, while the extremes and percentile en-
semble methods were found not to necessarily correlate well with the range of ex-
treme flows for all calendar months and return periods. 
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1. Introduction 

The process of regional climate change impact assessment with respect to water re-
sources management typically involves the use of Global Climate Model (GCM) output 
to assess to the impact of a changing climate on river flow regimes. In this process, var-
ious bias correction and statistical or dynamic downscaling methods can be used to 
translate coarse scale GCM data to scales appropriate for regional impact analyses (e.g. 
hydrologic modeling). Uncertainty exists at all stages of regional climate change impact 
assessments of water resources. Alternate climate and hydrologic models, along with 
multiple methodologies for bias correction and downscaling all play a role. In previous 
studies the selection of climate models and future emission scenarios has been found to 
carry the highest uncertainty in this process which cannot be avoided [1] [2] [3] [4] [5]. 
Therefore, the process of climate model and scenario selection should be considered as an 
integral step in any regional analysis of vulnerability and adaptation to climate change. 

The Fifth Coupled Model Intercomparison Project (CMIP5) provides a suite of 
GCMs consisting upwards of 35 models developed by 21 different modeling groups [6]. 
For each GCM there are multiple greenhouse gas emission scenarios known in the 
CMIP5 as Representative Concentration Pathways (RCPs). These pose a set of plausible 
pathways for the global radiative forcing associated with greenhouse gas emissions to 
the year 2100. The evolution of greenhouse gases in future emission scenarios is inhe-
rently uncertain, but because so many models exist to capture the same phenomena, 
there also exists a level of uncertainty associated with model structure between and 
within modeling groups, as well as from various model realizations due to the use of al-
ternate initialization, and parameterization schemes. To deal with these sources of un-
certainty, the IPCC recommends using as many GCM-scenario combinations as possi-
ble to generate a range of future climates when carrying out regional climate change 
impact analyses [7]. Depending on the computational nature of the analysis and availa-
ble time and resources this approach may not be practical for management agencies 
and academic researchers [8] [9] [10]. As such, methods to select a subset of climate 
model outputs for a specific application are needed that can reasonably represent the 
range of predicted changes in future climate and their impacts.  

Methods for selecting subsets of GCMs have been developed to reduce the number of 
GCM-scenarios required for impact assessments. [11] describes three general types of 
approaches consisting of the extreme combinations, ensemble, and validation methods. 
The method of extreme combinations approach is used to select models which re- 
present extreme combinations of climate variables, ensembles are used to aggregate 
GCM-scenarios, and validation can be used to limit the set of models to those with 
higher confidence. Hybrid selection approaches have been proposed consisting of a 
combination of two or more of these methods, while sensitivity-based methods have 
been used for generating climate impact response surfaces for which projected changes 
in climate variables can be directly translated into impacts [12].  

The ensemble approach selects a set of models that are aggregated using a multi- 
model mean. Although this approach lacks a physical basis, it has been shown to pro-
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vide superior prediction capabilities with respect to historical climate, as the variability 
in the mean and variance of climate projections among multi-model sets have the abil-
ity to cancel each other out [13]. This suggests that the errors between models have an 
element of randomness [14]. While the ability to simply average all climate models and 
realizations can be a convenient selection method, it may not be applicable for analyz-
ing hydro-climatic extremes. By taking an average, the variability in climate predictions 
on a daily scale is lost, and changes in different climate variables such as precipitation 
and temperature may no longer be physically consistent [15]. In addition, multi-model 
averages are not able to take into consideration the uncertainty in the timing of season-
al changes for precipitation and temperature, which is likely to alter the occurrence of 
extreme hydrologic events [8]. An alternative approach to developing multi-model en-
sembles can be made by selecting a set of GCM-scenarios corresponding to percentile 
changes in precipitation and temperature from the ensemble [11] [15]. In this way, 
changes in precipitation and temperature are obtained from the same models, making 
them physically consistent. Model runs are also kept separate in order to preserve the 
uncertainty in seasonal climate changes, and the loss in variance from averaging is 
eliminated. 

Validation methods test the ability of climate models to capture various attributes of 
historical climate in an attempt to narrow the set of GCMs to those for which a higher 
level of confidence may be assigned in a particular region [11]. The assumption intro-
duced here is that model skill in simulating historical climate attributes is indicative of 
projecting future climate. However, it is important to note that in previous studies 
model confidence or skill was not strongly correlated to the magnitude of future 
changes in precipitation and temperature on average [13] [14]. While the number of 
GCMs in the set to be used for evaluating climate impacts is reduced, this may not cor-
respond with a reduction in the range of projected changes in climate. However, more 
importance may lie in the relationship of model skill and the projection of extremes. A 
wide range of metrics for the validation approach have been used based on the location, 
timescale, and variables of interest for a particular study. These metrics include; corre-
lation and variance of mean statistics; comparisons of seasonal and diurnal fluctuations; 
prediction of regional meteorological phenomena (e.g. El-Nino Southern Oscillation 
(ENSO), Pacific Decadal Oscillation (PDO), cyclone development, etc.); robustness 
measures that take into account inter model spread; and methods of assessing model 
skill in reproducing probability density functions (PDFs) of specific climate variables 
[16] [17] [18] [19]. PDF methods that test the ability of climate models to simulate en-
tire distributions of climate variables offer a tougher test than only comparisons of the 
mean and variance [19]; however, they do not offer any indication of the GCMs ability 
to reproduce historical temporal trends. A common problem in using validation me-
trics is ranking the performance of each GCM, which range from arbitrarily selecting 
the top 50th percentile, averaging of ranks, or total Euclidean distance for a set of per-
formance metrics with respect to historical climate [10] [13] [20].  

The method of extreme combinations involves the selection of GCM-scenario com-
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binations in a way that aims to explore the full range of projected climate impacts. Pre-
vious studies have recommended using this method by calculating the maximum and 
minimum annual average changes in precipitation and temperature fields between a 
baseline and historical period for a set of GCMs [11] [15] [21] [22]. In this approach it 
is assumed that “extreme” combinations of projected changes in climate variables will 
generate the full range of projected climate impacts, however it many studies this is 
highly unlikely. In order to overcome this problem, studies have used simplified impact 
models to directly assess the sensitivity of changes in climate on specific impacts. 
Ntegeka et al. [8] used a simple lumped hydrologic model to select climate scenarios 
likely to generate extreme river flows. It was found that in order to replicate the upper 
and lower bounds of flow, combinations of climate perturbations from different models 
for both precipitation and evapotranspiration were needed. Vano et al. [9] used a Vari-
able Infiltration Capacity model and dynamic general vegetation model to test the sen-
sitivities of seasonally-averaged streamflow and vegetation carbon respectively, to 
changes in annual temperature and precipitation. Kay et al. [12] also used a sensitivity 
based method to estimate flood peaks for a range of river basins in the UK by generat-
ing a response surface dependent on the harmonic mean and amplitude of precipitation. 
The sensitivity metrics appear promising for quick selection of models to bound uncer-
tainty with respect to extreme impacts. However, simplified impact models may not be 
able to capture the range of climate impacts projected by the full impact model, partic-
ularly in the case of extreme hydrologic events.  

In this study three main selection methods (extreme combinations, ensemble, and 
validation) are applied to assess their effect on maximum daily streamflow uncertainty 
as a result of changes in daily precipitation and air temperature in the Upper Thames 
River Basin, Ontario, Canada. A quantile regression model validation methodology is 
proposed to assess the ability of GCMs to capture long-term changes in the distribution 
of hydrologically relevant climate variables. The proposed methodology is unique in 
that it considers the ability of GCMs to simulate the trajectory of observed climate 
across the distribution of a particular climate variable to gauge model skill. This is in 
contrast to methods which only simulate mean trends, or PDF methods which simply 
compare static GCM simulation of historical climate variable distributions to observa-
tions. This method is then used with a Compromise Programming multi-objective 
ranking method [23] to delineate the set of robust models with respect to the quantile 
regression results. This approach is then compared to an extreme combination and 
percentile ensemble scenario selection approach modified from [15] to gauge whether 
these selection methods are able to generate extreme and uniformly distributed maxi-
mum daily streamflow respectively. 

In the following sections the details of the GCM-scenario selection methods are pre-
sented, along with the procedure used for the downscaling and hydrologic modeling of 
stream flow in the Upper Thames River Basin. Results of the selection process and its 
ability to capture daily maximum streamflow uncertainty are discussed, followed by 
concluding remarks and recommendations. 
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2. Methodology 
2.1. Global Climate Model Evaluation and Scenario Selection 
2.1.1. Validation Approach 
Validation was used in this study to filter out the GCMs that under perform in com-
parison to the others with respect to their ability to represent the change in a climate 
variable’s distribution with time. The method used here is a linear quantile regression 
model to estimate the trajectory of a climate variable Y, for a given quantile, τ . The li-
near model, following Srivastav et al. [24], adapted from Koenker and Bassett Jr. [25] is 
shown as a relationship between Y and time t, for a given quantile τ , 

( ) 0 1| i iQ Y t tτ τ
τ β β ε= + +                        (1) 

where it , and iε  are the time index and error terms respectively for a given time step 
i , while 0
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and the τβ  coefficients can be found for any value of [ ]0,1τ ∈ . By using quantile re-
gression for this application as opposed to ordinary least squares, the temporal trend in 
varying quantiles of the distribution of Y can be compared between GCM and observed 
data as opposed to only the trend in the mean. The 1

τβ  and 0
τβ  coefficients represent 

the slope and intercept of a particular climate variable for a given level of τ . Differ-
ences in the intercept between observed and GCM simulated historical climate re- 
present model bias, while differences in the slope can be considered as a disagreement 
in the long-term trajectory for a particular climate variable and quantile. Model bias is 
typically dealt with through the implementation of bias correction methods, and is al-
ready accounted for in the downscaling procedure described in the following section. 
Therefore, it is not considered for comparison to observations. In order to compare the 
quantile regression slopes between observed and GCM simulated historical climate,  
95% confidence intervals are generated for 1

τβ  using the bootstrapping procedure de-
scribed in Koenker and Hallock [26]. If there is no overlap in confidence intervals of 

1
τβ  between historical GCM simulations and observations at a particular meteorologi-

cal station, and both of these coefficients are statistically significant (p < 0.05), then the 
ability for the GCM to simulate the trend in the climate variable of interest at that sta-
tion is considered a failure. For each GCM, model realization, and meteorological sta-
tion this process is repeated across the set of selected quantiles to generate an aggre-
gated percentage of failure. A lower percentage of failure is associated with higher 
model skill in projecting the linear quantile trends in historical climate. 
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Regional assessment of hydrologic extremes in response to climate change must tar-
get models that can more accurately simulate the changing statistical distributions of 
precipitation and air temperature for the purpose of hydrologic modeling. As such the 
analysis is applied to these variables; however, because the regional climate change im-
pact assessment is directed towards changes in maximum daily flows, the extreme 
quantiles are given larger weight. With regards to precipitation, this signifies the ability 
to simulate higher magnitude events likely to cause flooding. To account for these ef-
fects, the number of failures in each quantile is weighted using a quadratic function 
with a heavier weight on the extremes. As such, the weighting for precipitation is as-
signed to be 0 when τ  is 0, and increases to a weight of 1 when τ  is 1. Similarly, air 
temperature is weighted with a quadratic function that is centered at 0.5τ = . The 
weighted average percentage of failures for a particular climate variable is then com-
pared amongst the other models. In this study evenly spaced quantiles in increments of 
5% were used to provide adequate coverage of the distribution in daily precipitation 
and air temperature values. It is important to note that for alternate climate related im-
pacts different sets of variables may need to be used. These variables may be selected 
based on prior knowledge of those which are known to be associated with a particular 
impact. If an impact model exists, the climate variables selected would likely be those 
for which the model shows the highest level of sensitivity. Alternatively, statistical me-
thods may be used to determine which climate variables are associated with a particular 
impact if observational data is available. 

In order to rank and filter out models that under perform with respect to the others 
for precipitation and temperature variables, a compromise programming approach is 
taken to find the most robust set of models with respect to a set of distance metrics 
from the weighted mean failure rate to the ideal failure rate (0 percent weighted average 
failure rate for both precipitation and temperature variables). The distance metrics, pL  
are formulated as follows [23],  

*

1

r
p p

p i i
i

L zα
=

= ∑                              (3) 

where r is the number of climate variable skill scores (in this case r = 2 corresponding 
to the weighted average failure rate for precipitation and temperature), α  is the rela-
tive weight given to a particular variable, and *

iz  is a vector composed of the weighted 
average failure rate for climate variable i. The power p defines the importance of dis-
tance that is used, where 1≤ . With this formulation an optimal solution can be ob-
tained for multiple climate variables and models, given a set of α  for r climate va-
riables and a value of p by minimizing pL . In Simonovic [23] the most robust solution 
to a multi-objective problem can be found in this way by selecting solutions that con-
sistently give a high rank for a set of p and α  values. The set of p values should be 
chosen so as to cover the whole range of values representing the importance of the dis-
tance between the ideal solution and a set of non-dominated solutions. Practically, the 
set of p = {1, 2, 100} can be used [23]. The α  values chosen are mostly subjective, 
however they can be assigned based on the sensitivity of the impact model to a particu-
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lar climate variable for a baseline simulation, or from statistical relationships between 
the climate variables of interest and the climate related impact. These values may be 
uncertain; however, they can also be varied in the determination of the robust model 
set. This idea is used here to select a set of robust climate models in their ability to si-
mulate the change in the historical distribution of climate variables for regional climate 
change impact analyses of hydro-climatic extremes.  

2.1.2. Extremes Approach 
After the subset of GCMs have been selected from the validation method, a scatter plot 
method was used to select GCM-scenario combinations that are likely to generate hy-
dro-climatic extremes. In the report from EBNFLO [15], annual average temperature 
and precipitation change combinations from a baseline to future period were used to 
select 4 GCM-scenarios that represented the total range of uncertainty for future cli-
mate. This method assumes that extreme hydro-climatic events are linked to combina-
tions of high temperature, low precipitation and vice versa for low and high stream 
flows respectively. In this study an intra-annual dimension is incorporated by using the 
N-day maximum annual adjusted precipitation change as a proxy for high flow events, 
where N corresponds to the time of concentration for the hydrologic model of the river 
basin under consideration. The use of adjusted precipitation takes into account the im-
pact of snow accumulation and melt calculated using a degree day method. 

2.1.3. Ensemble Approach 
Due to the inherent uncertainty in future climate projections, it is essential to quantify 
the spread in climate related impacts using multi-model ensembles [27]. Using the 
same indicators for the selection of extreme GCM-scenario combinations, a range of 
scenarios within the 4 extreme precipitation and temperature combinations can be se-
lected. This range corresponds to the 5th, 25th, 50th, 75th, and 95th percentile changes for 
the 5-day maximum annual precipitation and daily average air temperature. These 
combinations provide scenarios that cover the statistical range of future changes in pre-
cipitation and temperature. The impact of these GCM-scenario selection methods on 
the level of uncertainty in future stream flows for the basin is assessed in Section 4. 
Ideally, these methods should provide a way to limit the number of future climate sce-
narios that must be simulated, while retaining the uncertainty associated with future 
impacts of climate change on extreme daily flows.  

2.2. Statistical Downscaling of Future Precipitation and  
Temperature Series 

After the GCM-scenarios have been selected, future downscaled precipitation and tem-
perature variables are generated using a Change Factor Methodology (CFM) combined 
with a non-parametric weather generator. CFMs consist of additive or multiplicative 
methods using single or multiple change factors for a given variable as seen fit for a 
particular analysis [28]. Typically CFMs allow for changes in the mean or variance pro-
jected by GCMs to be applied to historically observed data through additive and mul-
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tiplicative change factors [29]. The factors can be calculated for the entire baseline pe-
riod, or subdivided into calendar months to take into account seasonal variability for 
projected climate changes. Although monthly change factors take into account seasonal 
variability, they do not allow for accurate estimation of the changes in daily extreme 
climate data [30]. 

In this study a monthly multiple change factor approach is used to scale future va-
riables of daily precipitation and average air temperature. By using multiple change 
factors for each calendar month, the changes for a set of percentile ranges can be used 
to perturb the historical climate distributions, while taking into account seasonal cli-
mate changes. This allows for more accurate estimates of changes in extreme tempera-
ture and precipitation amounts. For this approach, Anandhi et al. [28] recommends a 
minimum of 25 change factors to reduce the difference in results obtained by using ad-
ditive or multiplicative change factors. Additive change factors are used for air temper-
ature, while multiplicative factors are used for precipitation. These are applied to the 
observed station data to generate a future scaled dataset. By using a multi CFM ap-
proach to perturb the historical climate record, bias correction is taken into account, as 
only the changes between GCM time slices are applied [8]. 

The scaled climate series using CFM are then used with KNN-CADv4, a multi-site, 
multivariate weather generator developed by King et al. [31]. The main purpose of this 
step is to explore plausible temporal variability within the historical record through the 
process of bootstrap resampling, while generating a long climate series using the future 
scaled baseline period that will then be used for streamflow-frequency analysis. For this 
analysis, a total of 150 years of simulated weather is generated. Using this method, the 
spatial correlation among meteorological stations, as well as the temporal correlation of 
the generated variables will be preserved, as 10-day block periods are used for resam-
pling among meteorological stations [31].  

3. Application 
3.1. Description of Study Area 

The area used for demonstration of GCM evaluation and scenario selection in this 
study is the Upper Thames River Basin (UTRB) located in Southern Ontario, Canada 
(Figure 1). The Thames River is composed of two main branches, the North and South, 
draining areas of 1750 km2 and 1360 km2 respectively. The climate can be considered as 
temperate, with mean annual precipitation of ~950 mm, an average air temperature of 
8˚C, and a mean flow at the basin outlet of 42.6 m3∙s−1 (statistics calculated for 1975- 
2005). At the basin outlet, a time of concentration of 5 days has been observed, and is 
used for scenario selection in this study [32]. The region is home to approximately 
420,000 people mostly concentrated in the City of London located at the intersection of 
the North and South river branches. In early March, flooding as a result of snowmelt 
and spring rainfall on frozen ground constitutes one of the major hydrologic hazards in 
the basin [30]. In the past, flooding has resulted in extensive damage to the City of 
London, prompting construction of reservoirs and dykes for flood control. 
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Figure 1. Location of the Upper Thames River Basin in Southwestern Ontario, Canada. 

3.2. Data Collection and Preparation 

Meteorological data in the form of daily precipitation, as well as mean air temperature 
were obtained for 22 measurement stations in and around the UTRB for the period of 
1950-2013. This data was obtained from the ANUSPLIN V4.3 dataset, constructed us-
ing a thin plate smoothing spline surface fitting method with Environment Canada 
climate station observations [33] [34]. This period was selected to be as long as possible 
in order to be able to detect longer term changes in the observed data using the linear 
quantile regression method for model validation. 

GCMs used in the IPCC AR5 report that included climate variables corresponding to 
the selected meteorological variables for the historical scenario, as well as future emis-
sion scenarios RCP 2.6, RCP 4.5, and RCP 8.5 were selected for further analysis. These 
datasets were obtained from the CMIP5 through the Earth Surface Grid Federation data 
portal hosted by the Program for Climate Model Diagnosis and Intercomparison at the 
Lawrence Livermore National Laboratory. Information on each GCM’s name, affilia-
tion and horizontal resolution are listed in Table 1. Each GCM grid was interpolated 
using the inverse distance method (IDM) for comparison with historically observed 
meteorological station data. Two 30-year future periods were selected for analysis cen-
tered on 2050 (2035-2065) and 2080 (2065-2095). The 2050 time period has been 
deemed to be appropriate for strategic planning, risk framing, and building resilience in 
water resources, while the 2080 time period can be used for longer term climate change 
impact assessments [15]. 

3.3. Hydrologic Modeling in the Upper Thames River Basin 

A calibrated, semi-distributed continuous hydrological model developed with HEC- 
HMS is used to estimate the impact of climate changes on streamflow at the basin  
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Table 1. Global climate models used in the selection process and maximum daily flow assessment. 

Region Modeling Centre Name Model 
Historical  

Realizations 

Resolution 

Lat × Lon  
(degrees) 

China 

Beijing Climate Center, China Meteorological Administration bcc-csm1-1 1 2.79 × 2.80 

Beijing Climate Center, China Meteorological Administration bcc-csm1-1-m 3 1.33 × 1.00 

College of Global Change and Earth System Science BNU-ESM 1 2.79 × 2.80 

Institute of Atmospheric Physics,  
Chinese Academy of Sciences, Tsinghua University 

FGOALS-g2 2 3.05 × 2.81 

Canada Canadian Centre for Climate Modeling and Analysis CanESM2 5 2.79 × 2.80 

USA 

National Center of Atmospheric Research CCSM4 3 0.94 × 1.25 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 1 2.00 × 2.50 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G 1 2.00 × 2.50 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M 1 2.00 × 2.50 

France 

National Centre of Meteorological Research CNRM-CM5 1 1.40 × 1.40 

Institut Pierre Simon Laplace IPSL-CM5A-LR 4 1.89 × 3.75 

Institut Pierre Simon Laplace IPSL-CM5A-MR 3 1.27 × 2.5 

Australia Commonwealth Scientific and Industrial Research Organization CSIRO-Mk3-6-0 10 1.87 × 1.88 

United Kingdom Met Office Hadley Centre HadGEM2-ES 4 1.25 × 1.88 

South Korea National Institute of Meteorological Research, Met Office Hadley Centre HadGEM2-AO 1 1.25 × 1.88 

Europe European Earth System Model EC-EARTH 2 1.12 × 1.12 

Japan 

Atmosphere and Ocean Research Institute, National Institute  
for Environmental Studies, and Japan Agency for  

Marine-Earth Science and Technology 
MIROC5 3 1.40 × 1.40 

Atmosphere and Ocean Research Institute, National Institute for Environmental 
Studies, and Japan Agency for Marine-Earth Science and Technology 

MIROC-ESM 1 2.79 × 2.81 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and  
Ocean Research Institute, National Institute for Environmental Studies 

MIROC-ESM-CHEM 1 2.79 × 2.81 

Meteorological Research Institute MRI-CGCM3 1 1.12 × 1.12 

Germany 
Max Plank Institute for Meteorology MPI-ESM-MR 1 1.87 × 1.88 

Max Plank Institute for Meteorology MPI-ESM-LR 2 1.87 × 1.88 

Norway Norwegian Climate Center NorESM1-M 1 1.89 × 2.50 

 
outlet. In the model, precipitation data in combination with a soil moisture accounting 
algorithm, are used to generate baseflow and rainfall excess, which is then routed to 
streamflow in the river channel. Temperature data is used in the soil moisture ac-
counting algorithm to determine evapotranspiration rates with the Thornthwaite equa-
tion. The Thornthwaite equation is used here for simplicity, as evapotranspiration ef-
fects were likely to be negligible when considering daily maximum flows, especially at 
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larger return periods. The calibration and validation procedure for the model can be 
found in [32]. The focus of this study is limited to the effect of climate change on 
streamflow, and as such potential effects of changing land-use, reservoir operation, and 
water consumption and use were not included. The resulting flow series from the 
weather generated climate are used to compute flow-frequency curves with the Genera-
lized Extreme Value (GEV) distribution. The GEV distribution was selected as it has 
been shown to perform well in comparison to other commonly used distributions in 
the UTRB [35]. 

4. Results and Discussion 
4.1. Selection of Global Climate Models Using the Validation Approach 

Quantile regression slopes for both precipitation and temperature were calculated for 
the historically observed data (Figure 2). 

The highest quantile regression slopes for wet-day precipitation were found for the 
largest precipitation events, to a maximum of 0.5 mm/decade (Figure 2(a)). The un-
certainty however, is larger at the upper quantiles. This is expected as there is a greater 
amount of variability between events in this range. Below the 85th quantile the majority 
of regressions show slope parameters that are less than zero, signifying that in the 
UTRB there exists some evidence to say that small to medium daily precipitation 
amounts have been decreasing slightly while extreme daily precipitation amounts have 
increased over the observation period. With respect to air temperature, the changes are 
more pronounced. Significant trends across the distribution ranging from 0.07 to 
0.36˚C/decade were found, with the largest changes concentrated at the lower quantiles 
( 0.4τ < ). This is indicative of warmer winter temperatures, and accurately capturing 
this change could be crucial in assessing hydrologic extremes in the UTRB as this will 
likely change the timing of snowmelt and frozen ground in late winter to early spring.  
 

 
(a)                                          (b) 

Figure 2. All historically observed quantile regression slopes for (a) daily precipitation (mm/ 
decade) and (b) temperature (˚C/decade) variables for the period of 1950-2013. Shaded regions 
depict the 95% confidence interval for each regression slope. 
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Nearly all of the quantile regressions had positive slope parameters, most of which were 
significantly different from zero, with a maximum of approximately 0.35˚C/decade at 
the 30th quantile. The cumulative fraction of quantile regressions determined to be sta-
tistically significant are shown in Figure 3. Air temperature is shown to have statisti-
cally significant trends for 69% of all quantile regressions performed whereas precipita-
tion has shown a total of 76%. The regions where the trends were not statistically sig-
nificant are shown as flat regions in Figure 3, and shaded regions overlapping a slope 
of zero in Figure 2. 

The underlying assumption comparing quantile regression trends between observed 
and modelled climate is that the models are capable of capturing historical levels of 
anthropogenic forcing, building confidence towards the climatic response to future 
forcing. The role of internal climate variability as opposed to historical anthropogenic 
forcing on the quantile regression slopes was tested by comparing the percentage dif-
ference in the quantile regression slopes when accounting for internal climate variabili-
ty (in the form of ENSO and PDO) as additional endogenous components (Figure 4). 
 

 
Figure 3. Cumulative fraction of quantile regressions determined to be statistically significant (p 
< 0.05). 
 

 
(a)                                     (b) 

Figure 4. Percentage difference of quantile regression slope parameters for precipitation (a) and 
temperature (b) with and without PDO and ONI as internal climate variability components. 
Dotted lines denote the regions of +/−20% difference. 
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The factors accounted for were the Oceanic Nino Index (ONI) and Pacific Decadal 
Oscillation (PDO) index. The results show that almost all of the precipitation slopes 
were largely unaffected by considering the effects of internal climate variability in the 
form of these indices. The temperature slopes however, are shown to be much lower at 

0.2τ = . This implies that internal variability is the main contributor to the increased 
winter temperature quantile trends, while the majority (66%) of the slopes are within 
+/−20% of their original values. Internal variability was not found to dominate the 
quantile trends in this case, however application of this method in alternate regions 
should attempt to remove the effects of internal climate variability on the regressions. 
Despite the influence of ENSO and PDO, the method could still be used to compare 
similarities of the climate variable distributions as in Perkins et al. [19]. 

With the proposed methodology, skill scores for each GCM, representing the 
weighted mean percentage of failures across model realizations and climate stations, for 
daily precipitation and average air temperature were calculated. It is assumed that 
models with a high failure rate may have a model structure or parameterization that is 
less applicable for the region of interest. With regards to precipitation it was found that 
the highest amount of failures were detected between the 15th and 80th quantiles, while 
the failure rate for smaller and more extreme events was much lower (Figure 5). This 
may be due to the fact that there is less variability across the distribution of precipita-
tion at lower quantiles. For the largest events there were less regressions determined to 
be statistically significant and therefore could not be counted as failures. 

Overall, HsdGEM2-AO and MIROC-ESM-CHEM had the highest weighted mean 
failure rates at 30% and 25% respectively, indicating that these models may be less ap-
plicable for projecting long-term changes in precipitation for the UTRB. With  
 

 
Figure 5. Percentage of failures for precipitation by model for each quantile sorted top to bottom 
by weighted mean. 
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respect to average air temperature, it was found that the distribution of failure rates is 
opposite from that of precipitation, with more failures concentrated at the extremes 
(Figure 6). This may be in part due to the fact that there were fewer statistically signifi-
cant quantile regression trends found between the 45th to 60th quantiles. BNU-ESM and 
HadGEM2-AO were shown to have the highest failure rate for air temperature, corres-
ponding to 31% and 26% respectively. Although HadGEM2-AO performed poorly in 
both assessments of daily precipitation and air temperature, other models such as 
FGOALS-g2 had the lowest failure rate with regards to precipitation, and was in the top 
three for air temperature. It is because of this that both metrics should be considered 
for the overall ranking. 

In order to select specific GCMs for further analysis, a subset is excluded in order to 
eliminate models which were found to be less capable in simulating historically ob-
served climatic changes through the compromise multi-objective programming me-
thod. The remaining models in turn are deemed to be more robust. Rankings were first 
establishing using the distance metric p for values of 1, 2, and 100, with α equal to 0.5 
for both temperature and precipitation from the ideal point (Figure 7). 

Models are excluded by eliminating those that consistently rank in the bottom N. 
The relationship between N and the number of models selected is shown in Figure 8. 

As the value of N increases, the selection criterion becomes more strict, and fewer 
models are included in the robust model set. In the UTRB a break-line appears at N = 
12, where a decrease no longer eliminates GCMs from the analysis until N = 15. For 
this particular example, models that are below the dotted break line are deemed to be 
sufficiently robust in simulating the change in daily precipitation and air temperature 
distributions over the historical period for the UTRB, and are kept for further analysis.  
 

 
Figure 6. Percentage of failures for average air temperature by model for each quantile sorted top 
to bottom by weighted mean. 
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Figure 7. Position of GCMs relative to the ideal point (0,0).  

 
In other regions it may be possible to see a more distinct break line, to determine more 
specifically which models can be eliminated from the analysis. If a break line is not 
found, then it is up to the climate change impact modeler to justify how many models 
are feasible to include in subsequent analyses, and set the break line accordingly. It is 
important to note here that the compromise programming method of model ranking 
and selection can be extended to include more metrics of model skill as opposed to only 
those obtained from the quantile regression method proposed here, in order to obtain a 
more robust ranking of GCMs. In addition, the inclusion of more metrics may result in 
a clear break line with fewer models included in the robust model set. 

4.2. Selection of Global Climate Model Scenarios Using the  
Extreme Combination and Percentile Ensemble Methods 

Quantile regression was used to develop model skill scores, and the compromise pro-
gramming method was used to rank and select a robust set of GCMs in simulating his-
torical climate trends for the UTRB. The goal of the extremes and percentile ensemble 
methods are to select a set of GCM-scenarios in a way that preserves the range of un-
certainty for future regional climatic changes. In Figure 9 the changes in annual aver-
age air temperature and 5-day maximum adjusted precipitation are shown for each 
GCM-scenario from the excluded models (those above the break line in Figure 8) and 
selected models. 

Annual average temperature changes were shown to range from 0.8˚C to 4.4˚C, 
while the 5-day maximum annual adjusted rainfall had a range of −37.8% to 11.9%. The 
highest density of projected annual average temperature and 5-day annual maximum 
adjusted rainfall changes was shifted approximately −0.7˚C, and 8% respectively com-
paring the excluded to robust model sets. There do not appear to be any clear outlying 
scenarios. For the period of 2065-2095 the range and distribution of precipitation  
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Figure 8. Relationship between selection criterion denoting models that consistently appear in 
the bottom N, and the number of GCMs excluded from the analysis. The dotted break line high-
lights the point at which 9 models are excluded that consistently appear in the bottom 12. 

 

 
Figure 9. Changes in annual average temperature and 5-day maximum annual adjusted rainfall 
from baseline to future (2035-2065), and their marginal distributions shown on the top and right 
axis respectively for both the robust and excluded model sets. GCM-scenarios selected by the ex-
treme combinations and percentile ensemble methods are enclosed in circles and squares respec-
tively. 
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changes remains approximately the same, while the changes in temperature are greatly 
skewed, as much higher temperature changes are projected to a maximum of 7.4˚C 
(Figure 10). In both future time slices it is noted that the excluded model set has higher 
projected maximum annual average temperature and 5-day maximum annual adjusted 
rainfall changes. 

This cannot simply be justified by a lack of model skill on average using the quantile 
regression method to delineate the excluded and robust model sets. In future studies it 
may be possible to test the relationship between model skill and quantile regression 
slopes, however previous studies have not shown there to be a relationship between 
model skill and the magnitude of projected changes using mean statistics [13] [14].  

4.3. Characterizing Seasonal and Extreme Daily Flow Uncertainty  
with Respect to the GCM Selection Methods Used 

The average monthly maximum daily stream flow in response to future climate pertur-
bations from the periods of 2035-2065 and 2065-2095 are shown in Figure 11. In both 
time periods many of the GCM-scenarios used in this analysis project the timing of 
daily flow peaks to be shifted from March to February and January. This is due to the 
fact that increasing temperatures in late winter to early spring will shift the timing of  
 

 
Figure 10. Changes in annual average temperature and 5-day maximum annual adjusted rainfall 
from baseline to future (2065-2095), and their marginal distributions shown on the top and right 
axis respectively for both the robust and excluded model sets. GCM-scenarios selected by the ex-
tremes and percentile ensemble methods are enclosed in circles and squares respectively. 
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Figure 11. Modelled maximum daily streamflow for all climate scenarios averaged across calen-
dar months and divided into excluded and robust model sets for the validation method, as well as 
percentile ensemble and extreme combinations scatter-plot methods. 
 
snowmelt contributions to streamflow. In the months that typically present the highest 
flow, the models that are part of the robust model set generally tend to preserve most of 
the uncertainty in maximum daily stream flows. In the months of June to September 
the excluded model set has a range that is greater than or equal to that of the robust 
model set, indicating that during the summer months the GCM uncertainty has been 
reduced. 

The projected streamflow associated with the scenarios selected by the extremes me-
thod in most cases appears to underestimate the daily maximum streamflow range, es-
pecially during June to September where flows are generally lower. Similarly, the per-
centile ensemble scenarios do not provide good coverage of maximum daily streamflow 
ranges in most calendar months. It is likely that the annual average change in the 5-day 
maximum adjusted precipitation is not a good indicator for the lower range, as the 
lowest maximum daily flows may be associated with shorter duration rainfall. Addi-
tionally, it should be noted that summer flows are harder to reproduce in hydrologic 
models and include structural uncertainty as well. It is also important to note that the 
extreme combinations method does not generate the range of maximum daily flows for 
all months, as the metric used to select scenarios is not season specific. These two find-
ings highlight the importance of using an appropriate metric to select GCM-scenarios 
that capture the range of a particular impact.  

For the purpose of climate related impact frequency estimation, the quantile regres-
sion validation metrics could be useful for the selection of climate models for which the 
increase in extremes are of particular importance. Such cases could include selecting 
climate models for downscaled precipitation to be used in updating Intensity-Dura- 
tion-Frequency curves for storm water management design, or input to hydraulic mod-
els for the updating of floodplain maps. In this study flow-frequency curves are a useful 
tool for this type of analysis, as it allows for not only the magnitude of daily flows to be 
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compared, but also the frequency of their occurrence. At the outlet of the UTRB the 
simulated historical flow corresponding to the 10 and 100 year return periods is 720 
and 1215 m3∙s−1 respectively, while the impact of climate change on the historical flow 
frequency curve has a considerable amount of uncertainty (Figure 12). For the 2035 - 
2065 time slice, ranges for the 10 and 100 year return period flows were simulated as 
460 - 925 m3∙s−1 and 631 - 2160 m3∙s−1 respectively, while for the 2065 - 2095 time slice, 
the ranges of flow corresponding to these return periods were 486 - 860 m3∙s−1 and 665 - 
1790 m3∙s−1. Based on these ranges there appears to be no consensus on the direction of 
change of the flow-frequency curve from the baseline period. 

The use of the extreme combinations scenario selection method for this approach 
tends to underestimate the flow-frequency range at all return periods for both time 
slices. Similarly, the results from the percentile ensemble scenarios did not capture the 
range or distribution of flow-frequency at all return periods. This finding indicates that 
the scatter plot method used to “bound” the uncertainty in future climate projections 
does not necessarily capture the uncertainty in predicted extreme stream flows when 
considering the 5-day maximum annual precipitation and mean annual temperature 
changes as a proxy for high and low flow scenarios.  

Comparing the range of predicted discharges between the set of robust and excluded 
model sets reveals that the range of projected flows are greater for both future time 
slices and all return periods in the excluded model set. This indicates that selecting 
models with higher skill in replicating the linear quantile trends has the potential to 
reduce GCM related uncertainty associated with daily maximum streamflow. If this 
were the case, then selecting a larger value of N in the compromise programming mod-
el ranking step should result in a lower range, as this would exclude only models rank-
ing in the bottom N. In Figure 13 the effect of the selection of N on the uncertainty in 
the flow frequency distributions estimated for the UTRB is shown. 
 

 
Figure 12. Modelled flow-frequency curves derived using the GEV distribution for all climate 
scenarios divided into excluded and robust model sets for the validation method, as well as per-
centile ensemble and extreme combinations scatter-plot methods. 
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Figure 13. Relationship between maximum daily flow-frequency uncertainty and the selection of 
N in the GCM ranking step. Flow-frequency ranges are shown as overlapping areas in ascending 
order of N, while the historically observed flow-frequency curve is shown as a solid black line. 
 

With an increasing value of N, the range of flows are reduced for all return periods. 
Furthermore, the range tends to narrow around the historically observed results. This 
observation indicates that higher ranked models tend to give flow-frequency estimates 
that are more similar to the historically observed data in this case. This may be due to 
the inability of lower ranked models to simulate historical quantile trends, thus pro-
jecting excessive changes in precipitation and temperature variables. It is important to 
note that there may also be cases in alternate regions where lower ranked models could 
underestimate the range of projected maximum daily streamflow distributions. As such, 
the selection of N should be well justified in that a clear breakpoint between the robust 
set of models and those that will be excluded should be present. Otherwise, an arbitrary 
selection of N may leave out plausible climate model projections for regional impact 
analyses that could potentially influence the range of results. If a clear breakpoint is not 
present, alternative metrics for model skill could be used in the compromise program-
ming ranking method such as those used in Rupp et al. [16]. This would add higher 
dimensionality to the model evaluation and likely result in a clear breakpoint with more 
models being eliminated from the analysis. 

The focus of this study was on climate model selection for the assessment of climate 
change impacts on hydro-climatic extremes. As such the variables, impact model, selec-
tion methods, and weighting strategies (with reference to the proposed validation me-
thodology) are all directed towards the assessment of daily maximum streamflow. In 
order to apply the selection methodologies discussed here to assess alternate streamflow 
conditions such as mean and low flow, it is likely that different variables and quantile 
weighting strategies would need to be selected as indicators of a particular impact. For 
example, in the case of low flow conditions, the quantile regression validation metho-
dology would need to be adjusted by placing more weight on the upper quantiles of 
temperature for the weighted percentage of failure calculation, and precipitation 
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amounts might be replaced by dry period durations. In addition, the analysis could be 
done at a seasonal time scale to deal more specifically with seasonal impacts. 

5. Conclusions 

Incorporating climate change in regional vulnerability and impact assessments can be 
challenging given the presence of alternate climate models, model realizations, and fu-
ture emission scenarios, especially if the impact assessment is computationally de-
manding. In this study validation, extreme combinations, and ensemble GCM-scenario 
selection methods were used and applied to the assessment of maximum daily stream 
flows in the Upper Thames River Basin, Canada. The validation procedure proposed 
compared the regression coefficients from a linear quantile regression model to assign a 
model skill score representing the ability of models to simulate historical changes in a 
climate model’s daily distribution. Model skill scores for precipitation and temperature 
were ranked using Compromise Programming to generate a robust set of climate mod-
els for the UTRB, and the extreme combinations and percentile ensemble scenario se-
lection methods were employed in an attempt to generate a representative set to cap-
ture uncertainty in maximum daily streamflow. 

Results from the analysis indicate that the quantile regression methodology was able 
to detect statistically significant long term linear quantile trends in the precipitation 
and temperature variables in order to compare GCMs and observations for the assess-
ment of model skill in this regard. However, it was noted that the trends for the tem-
perature variable at the lowest quantiles were significantly affected by internal variabil-
ity. As such more work is needed to be able to separate these effects when compared the 
modelled and observe results, especially in other regions where these effect will be more 
significant. The application of the validation model selection proposed captures most of 
the uncertainty with respect to daily maximum stream flows, but can also reduce the 
range of predicted flow-frequency curves. In the ranking of models with the compro-
mise programming method, a small breakpoint was found to reduce the model set. It is 
expected that by including additional climate metrics to compare the models and ob-
servations that a clearer breakpoint will emerge. The method is also general enough 
that it can be extended to other climate variables and related impacts.  

Both the extreme combinations and percentile ensemble selection methods were 
based on the scatter plot to bound the uncertainty with respect to future temperature 
and precipitation changes that are likely to produce hydro-climatic extremes. The 5-day 
maximum annual precipitation and annual average temperature change combinations 
were used as proxies for the range of high flow scenarios. It is recommended that when 
using scatter plot methods to select GCM-scenarios the precipitation and temperature 
metrics should be carefully considered based on the impact under consideration.  
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