
American Journal of Climate Change, 2015, 4, 94-114 
Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcc 
http://dx.doi.org/10.4236/ajcc.2015.41009   

How to cite this paper: Kabela, E.D. and Carbone, G.J. (2015) NARCCAP Model Skill and Bias for the Southeast United States. 
American Journal of Climate Change, 4, 94-114. http://dx.doi.org/10.4236/ajcc.2015.41009 

 
 

NARCCAP Model Skill and Bias for the 
Southeast United States 
Erik D. Kabela, Gregory J. Carbone 
Department of Geography, University of South Carolina, Columbia, South Carolina, USA 
Email: ekabela@gmail.com  
 
Received 4 March 2015; accepted 19 March 2015; published 23 March 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper investigates dynamically downscaled regional climate model (RCM) output from the 
North American Regional Climate Change Assessment Program (NARCCAP) for two sub-regions of 
the Southeast United States. A suite of four statistical measures were used to assess model skill 
and biases were presented in hindcasting daily minimum and maximum temperature and mean 
precipitation during a historical reference period, 1970-1999. Most models demonstrated high 
skill for temperature during the historical period. Two outliers included two RCMs run using the 
Geophysical Fluids Dynamics Lab (GFDL) model as their lateral boundary conditions; these models 
suffered from a cold maximum temperature bias. Improvement with GFDL-based projections of 
maximum temperature was noted from May through November when they ran with observed sea- 
surface conditions (GFDL-timeslice), particularly for the east sub-region. Precipitation skill prov- 
ed mixed-relatively high when measured using a probability density function overlap measure-
ment or the index of agreement, but relatively low when measured with root-mean square error 
or mean absolute error, because several models overestimated the frequency of extreme precipi-
tation events. 
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1. Introduction 
Most global climate models (GCMs) have spatial resolution of 100 kilometers or lower―relatively coarse with 
respect to surface-based atmospheric processes. To address this issue, regional climate models (RCMs) are used 
to dynamically downscale coarse resolution GCM output. But how skillful are regional climate models? This 
paper uses several members of the North American Regional Climate Change Assessment Program (NARCCAP) 
ensemble [1] to evaluate temperature and precipitation output in the Southeast United States and to investigate 
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potential sources of model bias. Such evaluation is relevant for water resource managers [2], agricultural engi-
neers and farmers [3] [4], and forest managers [5] estimating impacts of potential temperature or precipitation 
changes, and for those assessing adaptive capacity to climate change [6]-[9]. Central to assessing impacts or de-
veloping adaptation policies is the spatial resolution at which climate change scenarios and the limits to predict-
ability of some climate variables at a regional or local scale are presented [10]. Assessing model skill, perform-
ing model validation, and determining model bias will influence stakeholder confidence in future projections 
[11].  

Biases in RCM output occur for various reasons, but the largest source of uncertainty is derived from the 
GCM providing lateral boundary conditions (LBCs) [12] [13]. Differences in the physical handling of complex 
atmospheric processes account for the second largest source of uncertainty in RCM output [14] NARCCAP data 
are structured in a way that allows analysis of both of these sources of error. Each RCM was run first with “ob-
served” boundary conditions from reanalysis data, then each was driven by a set of GCM boundary conditions. 
This paper uses this structure to evaluate model performance and investigate potential causes of model bias 
found in each regional climate model.  

Although prior skill assessments of NARCCAP model output have focused on the Southeast U.S., such stud-
ies have used only a small number of NARCCAP ensemble members, and have evaluated output on only a 
monthly timescale [15]. This paper presents individual skill metrics for nine NARCCAP members and notes the 
perceived source of the NARCCAP model bias. Additionally, this work uses four metrics to assess model skill; 
each providing unique insights into model performance, while other studies used only one skill metric [5] [15] 
[16]. 

Section 2 provides details on each of the datasets used for the model assessment and information on each skill 
metric. Section 3 provides results of individual NARCCAP ensemble member skill and attributes degradation in 
skill to biases found in each RCM and GCM used as part of NARCCAP. 

2. Data and Methods 
The study area for this analysis focuses on the Southeast United States, defined here as Alabama, Mississippi, 
Tennessee, Georgia, and North and South Carolina (Figure 1). Further, the study area is broken into two sub- 
regions: a west sub-region made up of Alabama, Mississippi, and Tennessee; and an east sub-region made up of 
Georgia, and North and South Carolina. Breaking the Southeast U.S. into two sub-regions was done due to the 
micro-, meso-, and synoptic-scale patterns that impact the two sub-regions differently due to the influence of the 
Appalachian Mountains and the Atlantic and Gulf Coasts. Similar, yet slightly different, east-west sub-division 
is noted in work conducted by Bukovsky (2011) [17], and similar sized sub-domain-based analysis has been 
conducted for other regional climate model assessments [18]. 
 

 
Figure 1. Southeast U.S. study area with the east sub-region 
(dark gray) and west sub-region (light gray) highlighted.           
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2.1. Data 
2.1.1. NARCCAP Ensemble Models 
Modeling runs for NARCCAP were conducted for the “present climate” (1979-2004) with NCEP/DOE Re-
analysis II data [19] as boundary conditions as Phase I of NARCCAP and another run in the reference climate 
(1968-2000) using four GCMs as LBCs comprised Phase II [1]. The NCEP/DOE Reanalysis II dataset provides 
the equivalent of observed data as boundary conditions for RCMs and allows for the assessment of uncertainties 
and bias from the RCMs alone. NARCCAP runs were also conducted for future climate (2038-2070) using the 
Special Report on Emissions Scenarios (SRES) [20] A2 emission scenario.  

For this work, nine NARCCAP ensemble members were utilized. Members were chosen based on a necessity 
to compare a myriad of RCM-GCM combinations, while focusing on multiple runs of the same RCM with dif-
fering LBCs. Table 1 provides information on the NARCCAP ensemble members used in this research. In addi-
tion to the eight models listed in Table 1, data from the Geophysical Fluid Dynamics Laboratory (GFDL) model 
timeslice experiment provided a third RCM run with the GFDL GCM. In the timeslice experiments, the atmos-
pheric component of the GCM is run without the full-coupled ocean component of the model. Instead, the 
boundary conditions for sea surface and ice for the reference period are based on observed data, and boundary 
conditions for the future period are derived by perturbing the same observed sea-surface temperature and ice 
data by an amount based on the results of a lower-resolution run of the full GCM. Excluding the coupled ocean 
model allows the atmospheric model to be run at much higher resolution because the computational require-
ments are much lower. 

2.1.2. Global Climate Models 
The GCMs used as boundary conditions were generated for the International Panel on Climate Change’s (IPCC) 
Fourth Assessment [21] by the World Climate Research Program’s (WCRP’s) Working Group on Coupled Mod-
eling (WGCM) and hosted on a server at Lawrence Livermore National Laboratory’s (LLNL) Program for Cli-
mate Model Diagnosis and Intercomparison (PCMDI). To provide a consistent, meaningful, and robust analysis, 
it was important for multiple models to share the same LBCs. Specifically, GCMs used in this work include the 
Community Climate System Model (CCSM) [22], the Third Generation Coupled Global Climate Model 
(CGCM3) [23], and the GFDL GCM [24]. 

2.1.3. Observed Dataset 
A gridded meteorological dataset developed by the University of Washington (hereafter, Maurer dataset) serves 
as the observed dataset. It is described in Maurer et al. (2002) [25] and available for download at  
http://www.engr.scu.edu/~emaurer/data.shtml. The Maurer dataset has daily temporal resolution of minimum 
and maximum air temperature and precipitation from 1950 to 1999 and a spatial resolution of 12 kilometers, 
covering a domain from 25.125˚N to 52.875˚N latitude and −124.625˚E to −67.000˚E longitude. Additionally, 
the Maurer dataset treats interactions at the land-atmosphere interchange in a way that is physically superior to 
 
Table 1. Acronyms, full names with references, and modeling groups of RCMs involved in NARCCAP and this paper.          

Regional  
climate model Full name (Reference) Modeling group 

Lateral  
boundary  
conditions 

Number found  
in percentile plots  

in Section 3 

CRCM Canadian Regional Climate Model (version 4.2.0) 
(Caya and Laprise, 1999) Quranos/UQAM CCSM 

CGCM3 
8 
7 

ECP2 Experimental Climate Prediction Regional Spectral Model 
(Juang et al., 1997) 

University of California-San 
Diego/Scripps GFDL 3 

MM5I MM5-PSU/NCAR Mesoscale Model (version 5) 
(Grell and Stauffer, 1993) Iowa State University CCSM 1 

RCM3 Regional Climate Model (version 3) 
(Giorgi et al., 1993) 

University of  
California-Santa Cruz 

CGCM3 
GFDL 

6 
2 

WRFG Weather Research and Forecasting Model 
(Leung et al., 2005) 

Pacific Northwest  
National Laboratory 

CCSM 
CGCM3 

4 
5 

http://www.engr.scu.edu/%7Eemaurer/data.shtml
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reanalysis data. Unlike reanalysis data, the Maurer dataset does not employ the use of soil moisture “nudging” or 
adjusting, which results in failed closure of the surface water budget. Maurer et al. (2001) [26] showed that the 
nonclosure term can be of the same order as other terms (e.g., runoff) in the surface water cycle. Although 
nudging in reanalysis data is designed to bring the model (especially atmospheric moisture variables) closer to 
observations, this is done at the expense of other components of the water budget, and complicates studies fo-
cused on the interaction and variability of water budget components at the land surface (like temperature and 
precipitation). Maurer et al. (2000, 2001) [26] [27] argue that physically-based land surface model forced with 
quality controlled surface variables produce better data for diagnosis of land surface water budget simulations. 

2.2. Data Extraction 
To maintain methodological consistency with Perkins’ skill score calculation described in the next subsection 
and adapted from Perkins et al. (2007) [28], daily values of minimum and maximum temperature and mean pre-
cipitation from the dynamically downscaled results and observed data were extracted for the period 1970-1999 
from grid points located inside and within a half-degree of the boundaries of the two Southeast sub-regions (east 
and west). Kjellstrom et al. (2010) [18] found the same skill score metric based on daily data excluding dry 
events, or monthly data including both wet and dry events, gave very different results in terms of model ranking 
relative to precipitation output. This was most likely a result of a difference in the underlying probability density 
functions (PDFs). The same daily data values extracted for the Perkins method were also used for calculation of 
Willmott’s index of agreement, RMSE, and MAE. For comparison of the NARCCAP ensemble members to the 
NARR and NCEP-driven RCM hindcasts, daily data from 1979-1999 were extracted from the same grid points. 
A half-degree buffer was chosen due to the spatial resolution of the data and that the data points may not com-
pletely lie on or within state boundaries, yet are representative of some portion of the region and sub-region. By 
extracting daily values at each grid point, it is possible to gauge a model’s ability to simulate day-to-day vari-
ability rather than long-term averages, giving a proper gauge for testing a model’s worth.  

Although individual grid points were extracted within the six states classified as the Southeast U.S., all analy-
sis was conducted by aggregating data to the sub-regional scale (rather than grid point by grid point) for several 
reasons. First, the PDF skill score metric was designed by Perkins et al. (2007) [28] for determination of GCM 
skill across all of Australia (for the entire country rather than at individual grid locations) and is used in the same 
manner for regional climate model skill assessments [15] [29]. To maintain methodological consistency with 
others studies using Perkin’s method, aggregation was necessary. Additionally, although Kjellstrom et al. (2010) 
[15] display skill scores spatially throughout Europe, they average individual grid skill scores to obtain a single 
skill score for each of their defined sub-regions. Second, aggregating data into sub-regions allows for meso- and 
synoptic-scale pattern recognition which may not be evident when analyzing at each grid location. To further 
this point, GCMs were not meant to represent conditions at a single grid point but are more representative of the 
synoptic-scale (100 s to 1000 s of kilometers). Although RCMs are still not representative of a single grid loca-
tion they are representative of the meso-scale (10 s to 100 s of kilometers). Third, most crop and hydrological 
assessments aggregate information from the single grid point scale to a field (or multi-field) or watershed-scale 
[30] [31] and assessing skill and bias on a sub-regional level is adequate. Lastly, although the information con-
tained within an individual RCM grid better represents conditions within the grid point, models run at 50 km 
resolution will still have issues with pinpointing information at a specific location (e.g., town, city, weather sta-
tion, etc.). 

2.3. Methods 
Characterization of climate model forecast skill begins with determining how closely a model’s output matches 
observations. Model skill was measured against the Maurer gridded observed dataset [25] for the Southeast U.S. 
for monthly minimum and maximum temperature and mean precipitation (utilizing daily data) during a histori-
cal reference period, 1970-1999. Skill was determined through calculation of four metrics: probability density 
function overlap [28], an index of agreement [32], root mean square error, and mean absolute error. 

2.3.1. PDF (Perkins) Skill Score 
We generated probability density functions (PDFs) for monthly minimum and maximum temperature and mean 
precipitation from each of the downscaling approaches as well as gridded observations for the Southeast U.S. 
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PDFs can be a convenient way of condensing a vast amount of data to find probability of occurrence of an event 
[33]-[35]. We calculated the cumulative minimum value of two distributions of a binned value (defined by the 
user), measuring the common area between two PDFs [28]: 

( )score
1

minimum ,
n

m oS Z Z= ∑                                (1) 

where n is the number of bins used to calculate the PDF, Zm is the frequency of values in a given bin from the 
model, and Zo is the frequency of values in a given bin from the observed data. Temperature minimum and 
maximum bins were chosen as the minimum and maximum found in each month’s observations, respectively, 
with a bin size of 0.5˚C, while precipitation ranged from 1 mm∙day−1 to the maximum monthly value from ob-
servations, respectively, with a bin size of 1 mm∙day−1. Smaller bin sizes allow for the determination of skill 
with increased precision while larger bin sizes not only reduce precision but lead to slightly higher skill scores 
due to smoothing of the PDF. Precipitation values below 1 mm∙day−1 were not included in the analysis as part of 
the dataset to create the PDFs because it contributes little to daily precipitation [36] [37].  

This method of determining model skill is highly robust because its calculation does not rely on the underly-
ing data distribution. Perkins’ skill scores are based on a scale from zero to one. If the model is able to simulate 
the reference climate (represented by observed gridded data) adequately, model Perkins’ skill score will be high. 
Conversely, if the model is unable to simulate the day-to-day variability found in the reference climate ade-
quately, model Perkins’ skill score will be low. Perkins’ method has been used to determine model skill with 
coarse GCM data [28] [38]-[41] and more recently with RCM output from ENSEMBLES [18] [29]. The method 
has yet to be applied to individual RCM output from NARCCAP. This simple method gives decision makers in-
sight into model skill in the historical reference period and how much confidence they can place in its projec-
tions for future climate, as well as provide information on individual model bias. 

2.3.2. Index of Agreement 
Willmott et al. (2012) [32] provide another method used to validate model performance. Their dimensionless 
index of agreement (dr) is computed by finding the magnitudes of the differences between the model-predicted 
and observed deviations about the observed mean relative to the sum of the magnitudes of the perfect model and 
observed deviations about the observed mean [32]. The modified index of agreement is based on the original 
form of Willmott’s index of agreement [42] [43]. Equation (2) illustrates the revised index of agreement pre-
sented in Willmott et al. (2012) [32], of which dr is based: 
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where n is the number of values, Pi are the predicted values (model), Oi are the observed values, O  is the ob-
served mean. Equation (2) is unbounded at the lower values, thus Willmott et al. (2012) [32] chose to refine the 
index of agreement such that the metric was bounded between −1 and 1. The refined index of agreement is re-
duced from Equation (2) and written in the form illustrated in Equation (3): 
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where c = 2, representing the two mean absolute deviation terms in the numerator of Equation (2). Values close 
to 1 indicate strong agreement between model and observations while index number approaching −1 illustrate 
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strong deviation of the modeled result from observations. Willmott et al. (2012) [32] argue their modified index 
is an improvement over other non-dimensional techniques described in several published articles [44]-[47] be-
cause of its flexibility, its well-behaved nature, and because it can be used in a multitude of model-performance 
applications.  

2.3.3. Root Mean Square Error and Mean Absolute Error 
Equation (4) illustrates the computation of RMSE: 

( )2

1

1 ˆRMSE
n

j j
j

y y
n =

= −∑                                  (4) 

where n is the number of values, yj are the observed values, and ˆ jy  are the modeled values. Equation (5) illus-
trates the computation of MAE, following the same notation as RMSE: 
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n

j j
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n =

= −∑                                    (5) 

Direct comparison of specific daily values from GCM-driven RCM runs were not compared to specific ob-
servational values (i.e., January 1, 1979 in the GCM-driven runs were not compared to January 1, 1979 in the 
observational record) to compute RMSE and MAE because although GCM-based runs have a date and time as-
sociated with the output, the output is simply a general time keeping measure. However, over the course of a 
lengthy climatology (20 - 30 years) the intra- and inter-annual variability shown in observations is also illus-
trated in the GCM-based climatology. For this reason, daily data values for each month within both sub-regions 
were sorted from lowest to highest with the assumption that general values found in the GCM-driven RCMs are 
found at some instance in the observational record of the same period. 

RMSE is commonly reported in the climatological/meteorological peer-reviewed literature to express model 
error and aid in quantifying model skill compared to observations [48]-[53]. Additionally, RMSE is a preferred 
method of expressing model accuracy because it not only includes contributions from each individual data point, 
but also includes any mean bias error [52] [54] [55]. However, Willmott and Matsuura (2005) [56] argue mean 
absolute error (MAE) should be reported because it represents a more natural measure of average error with a 
clearly defined meaning, something RMSE lacks. Both values indicate dimensional (i.e., ˚C for temperature and 
either percent or mm∙day−1 for precipitation) mean model error compared to observations; however, large errors 
have a relatively greater influence on RMSE than MAE. Both methods were chosen to represent mean model 
error/skill because a suite of measures is appropriate to gain a well-rounded assessment of skill (Willmott, 
1981). 

2.4. Model Bias 
Another important aspect of this research was to determine why a model may lack skill. A first step towards this 
is to determine whether bias occurs in a particular part of a variable’s frequency distribution. To this end, Kjell-
strom et al. (2010) [18] computed area-average model bias at the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th 
percentiles for each of their sub-regions, variables, and models. This method allows for determination of where, 
within the probability density function (or distribution), a model under or over predicts a given variable, leading 
to degradation in skill. For example, a model with a warm temperature bias in the lower percentiles (the coldest 
days) may decrease the number of cold air outbreaks and potential decrease snow cover in the region during 
winter. A model with a warm summer bias in the upper percentiles could cause over prediction of heat waves 
and drought. In this study, model bias at each percentile was computed for each combination of RCM-NCEP 
output from NARCCAP Phase I, RCM-GCM results from NARCCAP Phase II, and the three GCMs from the 4th 
IPCC assessment. 

3. Results 
Results of model skill and bias are presented in the following subsections for minimum and maximum tempera-
ture and mean precipitation. Findings are reported for the entire Southeast, however, the percentile plots dis-
played and referenced in the paper are taken from one month for each season to provide tangible examples for 
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the east sub-region.  

3.1. Minimum Temperature 
Each member of the NARCCAP ensemble replicates observed minimum temperature well. Perkins skill scores 
for most RCMs (with the exception of the WRFG models, and RCM3-GFDL and ECP2-GFDL) remain above 
0.7 for each month. Index of agreement values generally exceeds 0.5 in each month in both eastern (Figure 2(a) 
and Figure 2(b)) and western portions (Figure 3(a) and Figure 3(b)) of the study region. RMSE and MAE val-
ues typically remain below 3˚C for most models (Figure 2(c) and Figure 2(d); Figure 3(c) and Figure 3(d)). 
For the WRFG RCMs, ECP2-GFDL, and GFDL-timeslice, July and August show the worst skill. The degrada-
tion in skill for the WRFG RCMs and ECP2-GFDL are attributed to a cold bias between 1˚C to 3˚C as illustrated 
for July in Figure 4(c). Additionally, the WRFG model illustrates a slight cold bias in the same months for the 
NCEP-driven runs (e.g., Figure 5(c)). The ECP2-GFDL’s cold bias in July and August must be a function of the 
GFDL LBCs, as the NCEP-driven runs of the ECP2 model illustrate a warm bias in all months between 1˚C and 
4˚C (Figure 5(c)). The GFDL-timeslice, on the other hand, exhibits a warm bias of 2˚C to 5˚C from the 50th 
through 99th percentiles. The cold bias presented in the GFDL GCM over the Southeast U.S. is noted in Frei-
denreich and Ramaswamy (2011) [57] by a deficit in modeled downward shortwave radiationflux compared to 
observations. Further, the authors conclude the deficit in downwelling shortwave radiation is due to an over pre-
diction of total cloud amount when compared to observations. The best performing models are the RCM3- 
CGCM3 and CRCM-CGCM3 which show very little warm or cold bias, remaining within ±2˚C of observations 
across all percentiles and months, and only a 1˚C to 2˚C warm bias in the NCEP-driven runs. Although a bias of 
1˚C to 2˚C may seem rather large, it falls within a commonly known and accepted threshold in climate models 
[58] [59]. 

Interestingly, the two models driven by GFDL exhibit degradation in skill in the winter and early spring, an 
observation not found in the other ensemble members. Percentile plots reveal these RCMs suffer from signifi-
cant cold bias between 4˚C and 8˚C. This strong cold bias is passed from the GFDL model to each RCM (Figure 
6). Conversely, the CCSM GCM exhibits a warm bias between 1˚C and 5˚C in most months which is tempered 
 

 
Figure 2. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error (d) 
for east sub-region minimum temperature.                                                                      
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Figure 3. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error (d) 
for west sub-region minimum temperature.                                                                      
 

 
Figure 4. Percentile plots of minimum temperature bias for the east sub-region from nine NARCCAP ensemble members for 
January (a), April (b), July (c), and October (d). Labels for the NARCCAP ensemble members: “1” = MM5I-CCSM”, “2” = 
RCM3-GFDL, “3” = ECP2-GFDL, “4” = WRFG-CCSM, “5” = WRFG-CGCM3, “6” = RCM3-CGCM3, “7” = CRCM- 
CGCM3, “8” = CRCM-CCSM, and “9” = GFDL-timeslice.                                                        
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Figure 5. Percentile plots of minimum temperature bias for the east sub-region from each 
NARCCAP RCM run with NCEP reanalysis LBCs for January (a), April (b), July (c), and 
October (d). Labels for the NARCCAP ensemble members: “1” = CRCM, “2” = ECP2, “3” = 
MM5I, “4” = RCM3, and “5” = WRFG.                                                 

 
slightly in the downscaling process by both the MM5I and CRCM, resulting in a slight warm bias of not more 
than 2˚C in any given month. 

Percentile plots for the west sub-region reveal the RCM3-GFDL and ECP2-GFDL models have a more pro-
nounced cold bias than the eastern sub-region, with cold biases from December through March on the order of 
4˚C to 10.5˚C for the lower 50th percentiles. The cold bias must be a function of the GFDL LBCs as both the 
ECP2 and RCM3 RCMs have a warm bias of 1˚C to 3˚C from December through March with the NCEP-driven 
runs. Conversely, the GFDL-timeslice’s warm bias observed in the east sub-region (2˚C to 5˚C warm bias in 
above-median temperatures) is even greater in the west sub-region (3˚C to 8˚C warm bias in above-median 
temperatures), the result of a strong warm bias in the same percentiles with the driving GCM. This bias during 
the warmest months of the year, especially in the upper percentiles, may have the potential to lead to an increase 
in nocturnal evaporation from the soil [60]. Enhanced nocturnal evaporation aids rapid daytime temperature in-
creases and contribute to an increased number of heat waves, leading to a positive feedback wherein evaporation 
is increased leading to drier soil (assuming little to no replenishment) which perpetuates the warm cycle [61].  

3.2. Maximum Temperature 
Maximum temperature is less skillfully predicted, showing higher bias in both sub-regions. The RCM3-GFDL 
and ECP2-GFDL models, in particular, show strong cold bias, especially as measured by RMSE and MAE 
(Figures 7-9). The low skill values are attributed to a cold bias in the GFDL GCM (Figure 10) from winter 
through mid spring between 3˚C and 7˚C. Although two models with the same LBCs show relatively little skill  
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Figure 6. Percentile plots of minimum temperature bias for the east sub-region from the GCMs used as boundary conditions 
in NARCCAP for January (a), April (b), July (c), and October (d). Labels for the NARCCAP ensemble members: “1” = 
CCSM, “2” = GFDL, and “3” = CGCM3.                                                                       
 

 
Figure 7. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error (d) 
for east sub-region maximum temperature.                                                                       
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Figure 8. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error (d) 
for west sub-region maximum temperature.                                                                     
 

 
Figure 9. Percentile plots of maximum temperature bias for the east sub-region from nine NARCCAP ensemble members 
for January (a), April (b), July (c), and October (d). Labels for the NARCCAP ensemble members: “1” = MM5I-CCSM”,  
“2” = RCM3-GFDL, “3” = ECP2-GFDL, “4” = WRFG-CCSM, “5” = WRFG-CGCM3, “6” = RCM3-CGCM3, “7” = 
CRCM-CGCM3, “8” = CRCM-CCSM, and “9” = GFDL-timeslice.                                                       
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Figure 10. Percentile plots of maximum temperature bias for the east sub-region from the 
GCMs used as boundary conditions in NARCCAP for January (a), April (b), July (c), and Oc-
tober (d). Labels for the NARCCAP ensemble members: “1” = CCSM, “2” = GFDL, and “3” 
= CGCM3.                                                                         

 
in replicating daily maximum temperature and have high RMSE and MAE values, the fact the RCM3-CGCM3 
illustrates relatively little skill points to a systematic error within the RCM3 itself (Figure 11), and is not simply 
an issue of the GCM providing biased LBCs. Conversely, the CRCM-CCSM suffers a reduction in skill from 
July through September, a direct result of the model exhibiting a strong warm bias from the 50th percentile to the 
99th percentile and a lesser warm bias in the 1st through 50th percentiles. Part of the warm bias can be attributed 
to the CCSM GCM which shows a warm bias from the 50th through the 99th percentiles and a slight warm bias 
of less than 2˚C from the 1st through 50th percentiles while the other part is attributed to the strong warm bias 
observed with the NCEP-driven runs of the CRCM observed over the same period. 

Percentile plots (Figure 10) highlight the significant cold bias found within the GFDL-based NARCCAP en-
semble members, leading to low skill scores and high RMSE and MAE values. Most months exhibit a cold bias 
on the order of 4˚C with values as low as 9˚C and 10˚C in winter. Four of the nine NARCCAP members have a 
cold bias greater than 4˚C during the months encompassing boreal winter, spring, and mid to late fall. The cold 
bias observed with the GCM-driven runs is partially attributed to the persistent cold bias observed in most 
months (and percentiles) for each RCM driven with NCEP LBCs. Percentile plots also reveal the CRCM-CCSM 
suffers from a warm bias, most pronounced from June through September with the largest warm bias occurring 
from the 50th to 99th percentiles. 

An interesting comparison between the GFDL-driven (RCM-based runs) and the GFDL-timeslice reveals the 
GFDL-timeslice typically outperforms the RCM-driven GFDL runs, with higher skill-based values and lower 
error/bias values. This demonstrates how the use of observed sea-surface conditions in the timeslice experiment 
results in more accurate projections than using GCM-based sea-surface conditions. Additionally, it should be  
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Figure 11. Percentile plots of maximum temperature bias for the east sub-region from each 
NARCCAP RCM run with NCEP reanalysis LBCs for January (a), April (b), July (c), and 
October (d). Labels for the NARCCAP ensemble members: “1” = CRCM, “2” = ECP2, “3” = 
MM5I, “4” = RCM3, and “5” = WRFG.                                              

 
noted that the separation of skill and bias metrics of the GFDL-driven models are not significantly different with 
respect to minimum temperature but are (in some instances) with respect to maximum temperature. This may 
suggest that the inclusion of observed sea-surface conditions in a regional climate model impacts maximum 
temperatures more than minimum temperatures. Solman et al. (2008) [62] noted in their RCM-timeslice ex-
periment that maximum temperatures are better represented than minimum temperatures when compared to ob-
servations. 

The most consistent and least bias model in both sub-regions is the MM5I-CCSM with Perkins skill scores 
and Willmott values exceeding 0.75, and low RMSE and MAE values between 0.5˚C and 2˚C. Percentile plots 
concur with the MM5I-CCSM’s skillfulness by showing the model rarely deviates beyond ±2˚C from observa-
tions across all percentiles (Figure 9). The only months in which the MM5I-CCSM observes a small deviation 
in skill are December, August, and November when the model exhibits a consistent bias throughout all percen-
tiles (slight cold bias in December and November; slight warm bias in August). The MM5I-CCSM is the only 
model (with respect to temperature) to attain Perkins skill scores of greater than 0.9 for at least eight months, 
Willmott values of 0.85 for at least eight months, and RMSE and MAE values less than 1.5˚C for 10 months. 

3.3. Mean Precipitation 
Skill associated with NARCCAP output of mean precipitation in the Southeast varies by metric. No discernible 
relationship between Perkins/Willmott scores and RMSE/MAE for precipitation was found, indicating these 
metrics quantitatively measure non-Gaussian distributions much differently, with outliers having a much larger 
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impact in the calculation of RMSE and MAE than in Perkins or Willmott’s methods. Very rarely is a models’ 
Perkins or Willmott skill score below 0.8, indicating the models are able to adequately reproduce the daily data 
distribution found in observations, especially considering most data points are contained within the left tail of 
the distribution, with a very small number comprising the right tail of the distribution. However, a high RMSE 
and MAE, coupled with high Perkins skill score, indicates the model either under- or over-predicts the quantity 
and/or frequency of precipitation events in the upper percentiles (from 75th through 99th percentile). Although 
the upper percentiles account for an extremely small portion of the data distribution (while still having a large 
impact on daily total rainfall), their impact on RMSE and MAE is significant because these values are large out-
liers from the mean. With few exceptions, Perkins skill scores for most models exceed 0.8, with several in the 
0.85 to 0.95 range for both sub-regions (Figure 12 and Figure 13). Additionally, Willmott index of agreement 
values mostly fall within the 0.82 to 0.96 range.  

The only models to exhibit degradation in Perkins and Willmott skill scores in the east sub-region are the 
CRCM-CGCM3 and CRCM-CCSM in September and October, with Perkins skill scores between 0.7 and 0.8 
(save for CRCM-CGCM3’s September Perkins skill score between 0.8 and 0.85) and Willmott values between 
0.75 and 0.85. Percentile plots (Figure 14) reveal the CRCM RCMs exhibit a dry bias across all percentiles, but 
is most pronounced from the 50th through 99th percentiles and ranges between 30% and 60% below observations. 
A similar dry bias is observed from the winter through mid spring and fall for the NCEP-driven runs of the 
CRCM (Figure 15). In terms of real numbers, assume the 75th percentile value from observations was 100 
mm∙day−1, a 30% to 60% dry bias would mean the model predicts the 75th percentile value to fall between 40 
and 70 mm∙day−1. RMSE and MAE values are high because of the magnitude of model bias, and because of the 
range of values across which model exhibit bias.  

The west sub-region performs slightly worse than the east sub-region with regards to Perkins and Willmott 
scores, moreover, RMSE and MAE values are higher for most models, particularly in the winter and spring 
months. Percentile plots reveal, from December through May, almost all models have a dry bias in the lower 50th 
percentiles between 5% and 30%. Although Perkins and Willmott scores are respectable during this period (be-
tween 0.8 and 0.9 for both, respectively), indicating the models are able to replicate the daily precipitation pat-
tern, they fail to generate lighter precipitation found in the bottom half of the distribution.  
 

 
Figure 12. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error  
(d) for east sub-region mean precipitation.                                                                         
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Figure 13. Perkins’ skill score (a), Willmott’s index of agreement (b), mean absolute error (c), and root mean square error  
(d) for west sub-region mean precipitation.                                                                        
 

 
Figure 14. Percentile plots of mean precipitation bias for the east sub-region from nine NARCCAP ensemble members for 
January (a), April (b), July (c), and October (d). Labels for the NARCCAP ensemble members: “1” = MM5I-CCSM”, “2” = 
RCM3-GFDL, “3” = ECP2-GFDL, “4” = WRFG-CCSM, “5” = WRFG-CGCM3, “6” = RCM3-CGCM3, “7” = 
CRCM-CGCM3, “8” = CRCM-CCSM, and “9” = GFDL-timeslice.                                                
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Figure 15. Percentile plots of mean precipitation bias for the east sub-region from the GCMs 
used as boundary conditions in NARCCAP for January (a), April (b), July (c), and October (d). 
Labels for the NARCCAP ensemble members: “1” = CCSM, “2” = GFDL, and “3” = CGCM3.   

 
GCM-based percentile plots (Figure 15) illustrate all three models stay within a bias of ±15% below the 50th 

percentile, steadily increasing to a dry bias between 20% and 65% at the 99th percentile. Most RCMs, except 
those run by the CCSM GCM, show less dry bias at the higher percentiles. However, some models overcom-
pensate and what was once a dry bias within the GCM becomes a wet bias of the same magnitude in the RCM. 
This finding is attributed to the wet bias observed consistently in the ECP2, MM5I, and WRFG NCEP-driven 
models (Figure 16) for all months. Additionally, the RCM3-NCEP model illustrates a pronounced wet bias in 
the highest percentiles from spring through mid summer.  

More than half of the models have a wet bias in the 50th through 99th percentiles and is a function of a wet bias 
in the same percentiles for each RCM driven by NCEP boundary conditions. These precipitation amounts do not 
adequately replenish water supplies and sub-surface moisture due to high runoff rates. Even more troubling is 
the dry bias observed from most models during the summer across all percentiles. The dry bias within the GCMs 
noted for the east sub-region is slightly greater in the west sub-region which is maintained, and in some cases 
enhanced, within the RCMs. The dry bias must be attributed to the GCMs because each RCM run with NCEP 
LBCs illustrates a wet bias during the summer, with the exception of the WRFG from the 5th through 50th per-
centiles and the CRCM from the 90th to 99th percentiles. Although observations show extreme precipitation (both 
high and low) is increasing across the Northern Hemisphere [63] and U.S. [64], the models exhibit a propensity 
toward high-end exaggeration. 

4. Conclusions 
This paper uses four statistically-based measures to assess daily temperature and precipitation output (by month) 
from nine NARCCAP ensemble members in the Southeast United States for an historical reference period,  
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Figure 16. Percentile plots of mean precipitation bias for the east sub-region from each 
NARCCAP RCM run with NCEP reanalysis LBCs for January (a), April (b), July (c), and Oc-
tober (d). Labels for the NARCCAP ensemble members: “1” = CRCM, “2” = ECP2, “3” = 
MM5I, “4” = RCM3, and “5” = WRFG.                                               

 
1970-1999. Most models demonstrated high skill for maximum and minimum temperature. The outlier models 
included two RCMs run with the Geophysical Fluids Dynamics Lab (GFDL) as their lateral boundary conditions; 
these models exhibited a cold maximum temperature bias, attributed to erroneously high soil moisture. Precipi-
tation output showed mixed skill―relatively high when measured using a probability density function overlap 
measure or the index of agreement, but relatively low when measured with root-mean square error or mean ab-
solute error, because the majority of models overestimate the frequency of extreme precipitation events. 

All models reproduce daily minimum temperature trends relatively skillfully. The WRFG RCMs (run with 
CCSM and CGCM3 LBCs), the ECP2-GFDL, and GFDL-timeslice show reduced skill during the summer 
months (June, July, and August) while the RCM3-GFDL and ECP2-GFDL exhibit slight degradation from De-
cember through March. The most consistently skillful models across all months are the RCM3- and CRCM- 
CGCM3. Additionally, the WRFG RCMs and ECP2-GFDL exhibit a minimum temperature cold bias of 2˚C - 
4˚C across all percentiles during the summer while the GFDL-timeslice exhibits a warm bias between 2˚C and 
4˚C below the 50th percentile and 4˚C to 8˚C above the 50th percentile. December through March cold bias be-
tween 4˚C and 10˚C plagues the RCM3- and ECP2-GFDL models. Less overall skill is observed for all models 
with respect to maximum temperature. The worst performing models are the RCM3- and ECP2-GFDL with 
strong cold biases between 2˚C and 10˚C for several months. Degradation in skill is caused by a cold bias exhib-
ited in the GFDL GCM that is transmitted and enhanced thought the downscaling process. The most skillful 
model across all months is the MM5I-CCSM in both sub-regions.  

Performance of monthly mean precipitation varies by skill metric. With the Perkins’ and Willmott’s method-
ologies, the MM5I-CCSM is the most consistently skillful in all months, and the WRFG RCMs and CRCM- 
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CCSM are the least skillful. By contrast, using RMSE suggests the CRCM RCMs are the most consistently 
skillful while the WRFG-CGCM3 and GFDL-timeslice are the least skillful. These differences demonstrate that 
complexity of assessing precipitation skill and the need to incorporate several skill metrics. Additionally, the 
WRFG RCMs overestimate either the frequency or magnitude of daily mean precipitation as they consistently 
exhibit wet bias of 15% to 30% (sometimes higher) above the 50th percentile. The CRCM RCMs illustrate a 
consistent dry bias between 10% and 40% for most percentiles and months, indicating they underestimate either 
the frequency or magnitude of daily mean precipitation. 

Finally, Perkins’ skill score, Willmott’s index of agreement, RMSE, and MAE are strongly correlated relative 
to minimum and maximum temperature because the temperature values are constrained within the Gaussian dis-
tribution such that large outliers are rarely observed (as 99.5% of the data values are contained within three 
standard deviations of the mean). However, little correlation is found between RMSE/MAE and either Will-
mott’s or Perkins’ methods relative to mean precipitation. Large outliers from the mean are inherent in the 
gamma distribution (precipitation) and are enhanced in the calculation of RMSE and MAE because of its 
value-by-value comparison but not the other two metrics, which evaluate on value-by-value basis relative to the 
underlying data distribution. This finding indicates multiple statistical metrics should be used to assess rather 
than one, which is the common approach to model validation in climate research. 
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