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ABSTRACT 

One of the more critical issues in a changing climate is the behavior of extreme weather events, such as severe tornadic 
storms as seen recently in Moore and El Reno, Oklahoma. It is generally thought that such events would increase under 
a changing climate. How to evaluate this extreme behavior is a topic currently under much debate and investigation. 
One approach is to look at the behavior of large scale indicators of severe weather. The use of the generalized extreme 
value distribution for annual maxima is explored for a combination product of convective available potential energy and 
wind shear. Results from this initial study show successful modeling and high quantile prediction using extreme value 
methods. Predicted large scale values are consistent across different extreme value modeling frameworks, and a general 
increase over time in predicted values is indicated. A case study utilizing this methodology considers the large scale 
atmospheric indicators for the region of Moore, Oklahoma for Class EF5 tornadoes on May 3, 1999 and more recently 
on May 20, 2013, and for the class EF5 storm in El Reno, Oklahoma on May 31, 2013. 
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1. Introduction 

One of the more critical issues with a changing climate is 
the behavior of extreme weather events, as these can 
cause loss of life, and have huge economic impacts. Cur- 
rently, the average advance warning time for an ap- 
proaching tornado is 5 - 13 minutes. Any increase in the 
advance warning time could be vital for preventing eco- 
nomic loss as well as for saving lives. Atmospheric 
sounding readings provide a measure of the energy sys- 
tems in the atmosphere. Convective available potential 
energy (CAPE) and wind shear (WS) are indicators for 
ideal storm conditions, and can be predicted in real-time 
up to three hours before severe storms occur. Changes in 
these indicators can result in conditions that favor severe 
storms. Understanding the extreme behavior of these 
indicators could lead to real-time improvements in the 
advance warning times for possible severe storms. It is 
also important to understand whether the magnitude and 
frequency of these large scale indicators might be in- 
creasing over time. Here we consider extreme value 
analysis models for re-analysis data over the United  

States to explore the possibility of considering the large 
scale indicators of severe weather events and their be- 
havior over time. 

Numerous studies have been conducted pertaining to 
the characterization of environments that are conducive 
to severe thunderstorm activity and tornadic events (e.g., 
Brooks et al., 2003 [1]; Craven and Brooks, 2004 [2]. 
Molinari and Vollaro (2010) [3] examine the impact and 
interactions of atmospheric sounding readings including 
CAPE and WS on storm intensity. Definitions of storm 
classifications (Non-severe, Severe, Significant Non- 
tornadic, Significant Tornadic) are provided in [1]. 
CAPE and WS are found to be associated with atmos- 
pheric conditions that exist during the occurrence of 
thunderstorms and tornadoes. Gilleland et al. (2013) [4] 
shows the distinction between the cumulative distribution 
functions by storm classification, and the distinction be- 
tween the probability density functions of CAPE × Shear 
and WmSh for the different storm classifications, where 
WmSh is a function of CAPE and WS. A statistical sum- 
mary of the distribution for WmSh by storm classification 
is provided in Table 1. Clearly, as the storm classifica- 
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Table 1. Statistical summary of the distribution of WmSh (m2/s2) by storm classification (cf. Brooks, 2004). 

 Non-severe Severe Significant Non-tornadic Tornadic 

No. of cases 
Mean 

Std. Dev. 
Min 

0.25 quartile 
Median 

0.75 quartile 
Max 

55701 
455.71 
730.95 

0 
0 

55.02 
679.95 

12856.33 

3197 
1770.43 
1124.29 

0 
950.72 
1569.21 
2362.11 

13679.66 

579 
2399.92 
1335.30 

0 
1413.82 
2270.96 
3191.70 

13679.66 

83 
2958.76 
1273.67 
592.83 
2239.55 
2935.15 
3855.70 
6423.98 

 
tion intensifies, the number of cases decreases (there are 
fewer extremely severe storms), so caution is necessary 
in making any inferences about the distributions shown 
in the figure. Nevertheless, with 83 cases for the most 
severe category (tornadic), one can be reasonably certain 
that the distributions shift to higher values for both vari- 
ables. 

Convective available potential energy and wind shear 
are considered as large scale indicators of severe weather, 
as over land, high values of both variables together are 
characteristic of an environment conducive to severe 
weather. It is the extreme values of the processes that are 
of interest, which combined with the presence of a possi- 
ble time trend, introduces new statistical challenges. 
Trapp et al. (2009) [5] look at frequencies of exceeding a 
threshold for areal averaged CAPE times WS (condi- 
tioned on having CAPE ≥ 100 J/kg and WS ≥ 5 m/s) and 
Marsh et al. (2007) [6] take the average over space to 
consider comparisons, but neither explore an extreme 
value approach for large scale indicators. Gilleland et al. 
(2008) [7] presents a preliminary investigation fitting an 
extreme value distribution individually at each location 
to investigate linear trends in the location parameter, 
whereas in this work the temporal relationship is more 
fully explored and showcases a case study. Heaton et al. 
(2010) [8] examine a spatial-temporal model for large 
scale indicators with focus on modeling the WmSh proc- 
ess, whereas here we are interested in investigating a 
possible change in the distribution of extremes of large 
scale indicators over time. 

This paper outlines an extreme value approach for ana- 
lyzing large scale indicators of severe weather through 
the consideration of WmSh. Various approaches utilizing 
extreme value theory for block maxima, including ex- 
amination of a trend over time, are implemented for re- 
analysis data over the United States. Section 2 provides a 
description of the data and Section 3 details a study of 
the empirical frequency of exceeding large values. Sec- 
tion 4 outlines the methodology of extreme value theory, 
followed by Section 5 which details the extreme value 
analysis of WmSh. A case study of the recent tornadoes 
in Oklahoma is explored in Section 6. Finally, a sum- 
mary of major findings is presented in Section 7 with a 
discussion in Section 8. 

2. Data 

For the present study, CAPE and WS, provided by H.E. 
Brooks, were calculated from the National Center for 
Environmental Prediction (NCEP)/National Center for 
Atmospheric Research (NCAR) reanalysis data (Kalnay 
et al., 1996) [9]. The dataset used here covers 42 years 
(1958-1999) of four times daily sounding readings over 
884 sites covering North America at a resolution of ap- 
proximately 1.875˚ longitude and 1.915˚ latitude. The 
maximum of the four values of each variable per day is 
taken to produce a daily observation, and to remove 
some temporal dependence. For the product variables, 
the product is taken before the maximum to ensure that 
the maximum product for each day is taken. Statistically, 
the data are very non-Gaussian and characterized by 
many zero or near-zero values. Depending on the region, 
some grid points never reach very high values, where 
others (e.g., over the central United States) are relatively 
very large relatively often. 

Define WmSh = Wmax × WS, where wind shear (WS) is  

measured in meters/second, Wmax = ( )2 CAPE× , and  

CAPE = Convective Available Potential Energy, meas- 
ured in Joules/kg. Using Wmax rather than directly mod- 
eling CAPE has the advantage that Wmax and WS are in 
the same units. 

3. Empirical Frequency of Exceeding Large 
Values 

As an initial exploratory analysis of whether these fre- 
quencies have been changing over the 42-year period, 
Figure 1 shows the probabilities of WmSh’s exceeding 
1000 m2/s2 for each of three time periods: 1958-1969 
(top left), 1970-1984 (top right), and 1985-1999 (lower 
left). This threshold is chosen because it represents rela- 
tively lower quantiles of the distributions of WmSh for 
the more severe storm types, versus a rather high quantile 
for the non-severe storm type (cf. [1]). From these plots, 
it is difficult to see any discernible difference from one 
period to the other. The plot in the lower right shows the 
ratio of the most recent period (1985-1999) to those of 
the earliest period (1958-1969) with 0.01 added to both 
numerator and denominator in order to avoid division by 
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Figure 1. Point-wise probabilities of WmSh’s exceeding 1000 m2/s2 for 1958-1969 (top left), 1970-1984 (top right), and 1985- 
1999 (lower left). Ratio of probabilities for 1984-1999 (+0.01) to those for 1958-1969 (+0.01). Left color scale applies for first 
three plots, right color scale only for lower right plot. 
 
zero, and maintain comparability. Clearly, much of the 
region has not changed appreciably with respect to the 
frequency of exceeding 1000 m2/s2. All of the values are 
close to unity, indicating that the frequency of WmSh 
values exceeding 1000 m2/s2 has not changed. However, 
the Gulf Coast states appear to have a potentially higher 
frequency of this event’s occurring. The ratio of prob- 
abilities, shown in the bottom right plot of Figure 1, 
shows increasing trends over the Gulf Coast and central 
North America, with decreases seen over the region in- 
cluding Great Lakes and South Eastern Canada. 

Figure 2 shows the daily WmSh (m2/s2) time series 
across the entire 42-year period for three individual grid 
points in the vicinities of Havana, Cuba (top), northwest- 
ern Oklahoma, USA (middle) and southern California, 
USA (bottom). Clearly, the values tend to have higher 
magnitude over northwestern Oklahoma than the other 
two locations, and Cuba tends to have moderately higher 
values than southern California. There do not appear to 
be any long term trends in any of these series, which is 
consistent with the above exploratory analysis. There is 
perhaps a periodic structure in them, but it is difficult to 
discern over the entire time length. Figure 3 shows the 
same series as Figure 2, but for only the year 1958. From 
this figure, it can be seen that the intra-annual behavior 
of WmSh varies wildly for each site. Cuba has moder- 
ately high, but relatively constant values throughout the 
year, Oklahoma has very low values in the winter, and 
extremely high values in the summer months, and southern 
California shows relatively low values for the entire year. 

Finally, Figure 4 shows the entire 42-year series for 
these same three grid points by month. It can be seen 
from this figure that the behavior of WmSh is relatively 
constant from year to year for Cuba and southern Cali- 
fornia, but the sharp peaks for northwestern Oklahoma 
stretch over more of the year than they did for 1958 alone. 
In looking at the long-term behavior of frequencies of 
higher values of WmSh, it would seem prudent to account 
for the annual variability. While it might be reasonable to 
exclude November through February for northwestern 
Oklahoma, it is not clear that this strategy would work 
well for arbitrary grid points. Therefore, careful study of 
each region is necessary before applying a model for the 
frequencies. 

4. Methodology: Extreme Value Theory 

When dealing with extreme events, the values of interest 
lie in the tail of the distribution of the corresponding 
process. Even if the underlying distribution is known, 
estimation error for the corresponding parameters will be 
compounded in the high percentiles of the tails. Thus it is 
necessary to develop methodology to model the tail of 
the distribution directly. Extreme value theory offers a 
well-defined framework for the asymptotic properties of 
the tails of probability distributions. 

4.1. Annual Maxima Approach 

Consider the natural blocks of interest for the series under 
which the observations are measured, e.g. daily, yearly,  
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Figure 2. Daily WmSh (m2/s2) values from 1958-1999 for 
three grid points: around Havana, Cuba (top), northwest-
ern Oklahoma, USA (middle) and southern California, USA 
(bottom). 
 

 

Figure 3. Same as Figure 2, but only for the year 1958. 
 
etc. In many environmental applications, temporal ob- 
servations are measured hourly or daily, where the year 
is the natural block of interest for the series. Under cer- 
tain normalizing conditions (see Coles, 2001 [10]), the 
block maxima of the series can be modeled using a lim- 
iting form of an exponential distribution, known as the 
Generalized Extreme Value (GEV) distribution. 

Let X represent the annual maximum of daily observa- 
tions in a given series. The Generalized Extreme Value 
(GEV) distribution is defined by the formula 

{ } ( )( )1/
Pr X x exp  1 x µ

ξξ σ −

+
≤ = − + −      (1) 

where y+ = max{y, 0}, µ is a location parameter, σ a  

 

Figure 4. As in Figure 2, but by month. 
 
scale parameter and ξ is the extreme-value shape pa- 
rameter; µ and ξ can take any value in (−∞, ∞), but σ 
must be positive. The notation (• • •)+ follows the con- 
vention x+ = max(x, 0) and is intended to signify that the 
range of the distribution is defined by ( )1 ξ x 0µ σ+ − > . 
In other words, y > ξµ σ−  when ξ > 0, y ξµ σ< −  
when ξ > 0 (cf. [10]; Smith, 1990 [11]). 

4.2. Parameter Interpretation: Return Levels 

It is difficult to directly interpret the parameter estimates, 
but it is convenient to investigate the associated return 
levels, which are a function of the parameters from the 
Generalized Extreme Value distribution. The n-year re- 
turn level, rn, is the level so extreme it is expected to oc- 
cur once every n years. Note that the n-year return level 
corresponds to the (1 – 1/n) quantile of the predictive 
distribution. An advantage of using the block maxima 
approach is the estimated parameters are directly inter- 
pretable in terms of the return levels. 

The n-year return value is formally defined by setting 
Equation (1) to 1 – 1/n; rn is then the solution to the re- 
sulting equation. In practice, however, for large n we 
have 1 − 1/n ≈ e−1/n and it is more convenient to define rn 
by the equation: 

( )( ) 1/ξ

n1 ξ r 1µ σ −
+ − = n  

which leads to the formula 

( )
ξ

n

n

r σn 1 ξ if ξ 0

r σlog if ξ 0n

μ
μ

= + − ≠
= + ≠

         (2) 

4.3. Tail Behavior 

The shape parameter ξ is also of interest. The shape pa- 
rameter determines the tail behavior of the extreme value 
distribution. A shape parameter value of ξ = 0 indicates a  
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flat tail and corresponds to a limiting distribution of the 
Gumbel exponential form. Values between −0.5 and 0.5 
are commonly seen, with negative values indicating a 
bounded tail [12] and positive values indicating un- 
bounded, heavier tails. 

4.4. Temporal Trend Model 

In order to consider whether the extreme behavior is 
changing over time, a model incorporating a time com- 
ponent can be investigated. For a temporal model, the 
time component is considered by including a trend in the 
parameters of the generalized extreme value distribution. 

Define Zt, the annual WmSh level as: 

( ) ) ( )(tZ GEV , ,ξµ t t tσ∼ (
where for trend of interest ∑kµk∗fk(t) for 0 ≤ k ≤ u, with 
fk(t) a function of time such as a quadratic or linear trend, 
k the number of terms in the function of time, µk the kth 
term’s coefficient, and t representing the year. 

)           (3) 

As explored in Katz et al. 2005 [13] and Mannshardt 
et al. 2013 [14], a shift in the location parameter of an 
extreme value distribution can indicate a shift in the 
overall distribution. 

Under the temporal trend model, the return values are: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
n

n

r n 1  if 

r log n if 

tµ t t t t

µ t t t

ξσ ξ ξ
σ ξ

= + − ≠

= + =

0

0
    (4) 

It is important to make the distinction between the 
timeframe defined by the return period and t. For the 
n-year return level, n is the timeframe defined by the 
return period. n = 10, 20, 50, 100 are return periods often 
considered in environmental applications. The temporal 
trend time period is defined by t, where t is the time at 
which the n-year return level is being calculated. Predic- 
tion utilizing the temporal trend coefficients significantly 
beyond the time period for which the model was fit could 
lead to misleading results due to extrapolation. Therefore 
for the temporal trend models we restrict our attention to 
values of t = 1, ..., 60. We consider the 20 years return 
levels from the temporal trend model as well as the no 
trend model in order to enable a comparison of the trend 
over time t for return levels within the time period used 
for model estimation. This also enables empirical valida- 
tion with the 0.95 quantile of WmSh. It would be valid 
inference to consider the 50 or 100 years return levels for 
the models used here, where 50 or 100 would be the 
timeframe defined by the return period, though for the 
purposes of this paper we restrict our attention the 20 
years return levels. 

5. Extreme Value Analysis Results 

We are interested in predicting the 20 years return levels 
of WmSh for the region of interest over North America  

including the continental United States. Recall that the 
n-year return level, rn, is the level so extreme it is ex- 
pected to occur once on average every n years, and for 
the GEV fit to annual maxima of the data, corresponds to 
the (1 – 1/n) quantile. Thus the 20 years return level for 
WmSh corresponds to the 0.95 quantile of the distribution 
of WmSh. We consider a comparison of a GEV model 
under the assumption of no trend over time to models 
incorporating a temporal trend through different parame- 
terizations. The generalized extreme value distribution 
for block maxima is fit to the time series at each of the 
884 sites. The block maxima model is chosen for this 
analysis over alternative models such as a Peaks Over 
Threshold approach (cf. [10]). The main reason is for the 
interpretability of the location parameter of the GEV 
distribution, as a possible shift in distribution over time is 
ultimately of interest and is considered using a model 
with a temporal trend in the location parameter. Spatial 
patterns are evaluated, however no spatial trend is incur- 
porated. The significance of the various time trend mod- 
els is evaluated, and the 20 years return levels are calcu- 
lated under each modeling framework. Analysis is done 
using the R (R Development Core Team, 2009 [15]) 
packages extRemes (Gilleland et al., 2009 [16]) and is- 
mev (cf. [10]). 

5.1. Annual Maxima Analysis for WmSh 

Figure 5 shows the 20 years return levels for WmSh as 
calculated using Equation (2), corresponding to the 0.95 
quantile of the distribution of WmSh. The top left shows 
the 20 years return levels resulting from fitting the GEV 
model; the empirical distribution for WmSh is shown in 
the top right. The lower and upper 95% confidence 
bounds are also shown (bottom) for the fitted return lev- 
els. The modeled 20 years return levels of WmSh are con- 
sistent with the empirical 20 years return levels, i.e. the 
empirical 0.95 quantiles. This helps to validate the use of 
the Generalized Extreme Value distribution for modeling 
the return levels of WmSh. 

5.2. Tail Behavior: The Shape Parameter 

For the annual maxima approach, ξ is small but positive 
for most of the stations, which can be seen in the top left 
plot of Figure 6. If the shape parameter is in fact zero, it 
suggests that directly modeling the return levels through 
fitting a Gumbel model may lead to a better fit. To de-
termine whether the shape parameter is significant- ly 
different from zero, 80% confidence intervals for ξ are 
constructed to test the null hypothesis that ξ = 0 versus 
the alternative hypothesis that ξ is not zero. Figure 6 
shows the estimates of ξ (top left), with the correspond- 
ing 80% confidence intervals (bottom). Note that the 
confidence intervals are not adjusted for multiple com- 
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Figure 5. Generalized extreme value analysis, including the 20 years return levels (top left), 95% quantile (top right), and 
95% lower and upper confidence bounds (bottom) for the estimated return levels. 
 
parisons orspatial correlation. The top right plot in Fig-
ure 6 indicates the locations where ξ is significantly dif-
ferent from zero; non-significance is indicated in green, 
significantly less than zero in blue and significantly 
greater than zero in red. 

the model to a limited number of data points, by utilizing 
only the annual maxima (nmax = 42). Additional methods, 
including a Peaks Over Threshold approach (cf. [10]), or 
methods taking advantage of spatial dependence (Cooley 
and Sain, 2011 [17]), could be considered. 

Generally, this indicates a light and bounded upper tail 
behavior, which is consistent with the physics of WmSh 
in that there are physical properties constraining them 
from being very high simultaneously. At some locations, 
the shape parameter may not be significantly different 
from zero, but a three parameter model may still be the 
correct model. One consideration is the standard errors. 
The standard error estimates for the shape parameter may 
be too conservative, for which there are several consid- 
erations beyond the scope of this paper but are worth 
investigation for future applications. Here we are fitting  

We retain the use of the 3-parameter model as it was 
signficant for 350 of the 884 locations, and is ultimately 
more flexible. Additionally, while not detailed here, a 
Peaks Over Threshold model was fit to examine the tail 
behavior under a model incorporating more data points 
and the results support a non-Gumbel model. 

5.3. Temporal Analysis 

It is clear from Figure 1 that the empirical distribution of 
WmSh is changing over time. Thus it is of interest to 
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Figure 6. Shape parameter ξ (top left), its significance (top right) and the 80% lower and upper confidence bounds (bottom). 
 
examine a temporal trend model. We consider a linear 
temporal trend model as well as a quadratic model in 
time for the location parameter of the generalized ex- 
treme value distribution of large scale indicator WmSh, 
and examine the behavior and predictive properties. 

5.4. Linear Temporal Trend Model 

For a simple linear trend temporal model, the time com- 
ponent is considered through a linear trend in the location 
parameter µ. Therefore Z, the annual WmSh level, is Zt ~ 

 where µ(t) = µ0 + µ1t* with t* repre- 
senting the standardized year for t = 1, ..., 42 for t corre- 
sponding to the 42 years in the reanalysis series of 
WmSh. 

( )(GEV ,s,ξµ t )

The top left plot of Figure 7 shows that the return val- 
ues for the linear time trend model are consistent with the 
non-temporal GEV analysis. The top left shows the 20 
years return levels estimated at the 40th year, where t = 
40 is the 20-year return value seen at year 40 of the time  

series, which is comparable to the original 20-year return 
values resulting from the GEV model fit with no time 
trend for the 42 years in the original series of annual 
maxima. The interpretation of the location parameter can 
be seen in Figure 7. The top right shows the return val- 
ues for the linear time trend versus the return values for 
no trend. The plot indicates relative agreement between 
the return values, suggesting that the linear trend model 
is a good fit. The bottom left plot of Figure 7 shows that 
there is a positive trend in the time coefficient for the 
location parameter of the generalized extreme value dis- 
tribution across most of the continental US, particularly 
over the Mid-West region. The bottom right shows the 
significance at the 80% level of the linear time trend co- 
efficient against a null hypothesis of no significance; 
coefficient estimates which are significantly greater than 
zero are shown in red, significantly less in blue, and 
non-significance in green. 

To consider the possible change in trend for the loca- 
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Figure 7. Temporal analysis: 20 years return levels for the linear trend model in time for WmSh (top left); comparison of 
return values for the Linear Trend model to No-Trend model (top right); location parameter time coefficient for WmSh (bot-
tom left) and the significance of the linear time coefficient (bottom right). 
 
tion parameter of the extreme value distribution of WmSh 
over time, the 20-year return values are calculated at dif- 
ferent points in time, for t = 40, 60, 100, where t is the 
standardized t* values used in the model fitting. Figure 8 
shows that there is an increasing trend in the return val- 
ues over time across most of the continental US, particu- 
larly over the Mid-West region. This indicates that the 
location of the extreme value distribution for WmSh is 
shifting towards higher values over time. Again, t = 40 is 
the 20-year return value seen at year 40 of the time series, 
which is comparable to the original 20 years return val-
ues resulting from the GEV model fit with no time trend. 
(Note that in order to show differentiation across the dif- 
ferent values of t, here the color scale is different than in 
previous figures. The 20 years return levels for t = 40  

shown in the middle plot of Figure 8 are identical to the 
values in the top left plot of Figure 7, and are simply 
shown on a different color scale in order to consider re- 
gional patterns). Thus a positive linear time trend coeffi- 
cient suggests that WmSh is increasing over the time pe- 
riod examined. 

5.5. Tail Behavior in Linear Time Trend 

The shape parameter ξ (tail parameter) is also of interest 
for the temporal trend, as the shape parameter determines 
the boundedness of the extreme value distribution. A 
fully temporally parameterized model was fit where 

( ) ( ) ( )( )tZ ~ GEV ,s ,ξµ t t t  

in order to investigate any possible trend in the tail pa-  
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Figure 8. GEV 20-yr return values for WmSh with a time 
trend in the location parameter. Shown for t = 40, 60, and 
100. Note that in order to show differentiation across the 
possible values of t, the color scale is different than in pre-
vious figures. 

rameter over time. 
The top left plot in Figure 9 shows the estimates of the 

intercept for ξ in the linear time trend model, with the 
corresponding standard errors (top right). The bottom left 
plot in Figure 9 shows the estimates of the coefficient or 
the linear time trend in ξ with the corresponding standard 
errors (bottom right). The tail behavior for the linear time 
trend model overall shows similar behavior as seen in 
Figure 6 for the no-trend model. There is little evidence 
of the tail behavior changing over time, as the estimates 
for the linear temporal trend coefficient are close to zero. 

5.6. Quadratic Trend in Time 

In order to allow for a more flexible trend in time, a 
quadratic temporal model is also considered with the 
time component a quadratic trend in the location pa- 
rameter µ. Therefore Zt, the annual WmSh level, is Zt ~ 

 where µ(t) = µ0 + µ1t* + µ2t**, where 
t* and t** are the standardized values of t and t2 respec- 
tively. The scale and shape parameter are taken to be 
constant over time. 

( )(GEV ,s,ξµ t )

The top plots of Figure 10 shows that the return val- 
ues for the quadratic time trend model are consistent with 
the non-temporal GEV analysis. The top left shows the 
20 years return levels estimated at the 40th year, which is 
comparable to the original 20 years return values result-
ing from the GEV model fit with no time trend. 

The interpretation of the trend in the location parame- 
ter can be seen in Figure 10, where the top right shows 
the return values for the quadratic time trend versus the 
return values for the linear time trend. The plot indicates 
relative agreement between the return values, however 
does show a little dispersion around the higher return 
levels, indicating that the models differ slightly in how 
the time trend affects the return levels estimated for each 
model. To consider the possible change in trend for the 
location parameter of the extreme value distribution of 
WmSh over time, the 20-year return values are calculated 
at different points in time, for t = 40, 60, 100, where t and 
t2 are the standardized t* and t** values used in the 
model fitting. The middle left plot of Figure 10 shows 
that there is neutral trend in the linear time coefficient 
across most of the continental US, however the plot of 
the quadratic coefficient (bottom left) indicates a positive 
quadratic effect over most of the continental US. The 
middle right shows the significance of the linear time 
trend coefficient at the 80% level and the bottom right 
shows the significance of the quadratic coefficient; coef- 
ficient estimates which are significantly greater than zero 
are shown in red with significantly less than zero in blue 
and non-significance in green. In a quadratic model, t2 is 
the dominating term for the temporal behavior in the lo- 
cation parameter, which if positive indicates an increase 
in the location parameter over time. A positive quadratic 
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Figure 9. Shape parameter linear time trend coefficient for ξ (left) and the corresponding standard errors (right). 
 
temporal coefficient suggests that the expected magni- 
tude of the WmSh 20 years return levels is increasing 
over the time period examined. This positive trend is 
seen over much of the continental United States, with a 
few areas over the Pacific showing a negative trend. 

shown on a different color scale in order to consider re- 
gional patterns. The increasing estimated return levels for 
different values of t suggest that the level of extremes 
expected on average over a 20-year period is increasing 
over time. 

The return values for the quadratic trend model seen in 
Figure 11 show that there is an increasing trend in for t = 
20, 40, 60 across time across most of the continental US, 
particularly over the Mid-West region. It can be seen that 
the return values are increasing in comparison to the re- 
turn levels seen in the no-trend model and the linear 
trend model. (Note that in order to show differentiation 
across the different values of t, the color scale is different 
than in previous figures). The 20 years return levels (for t 
= 40) shown in the middle plot of Figure 11 are identical 
to the values in the top left plot of Figure 10, simply  

6. Case Study: Moore and El Reno, 
Oklahoma 

We consider a case study utilizing this methodology to 
evaluate the large scale atmospheric indicators for the 
region of Moore, Oklahoma for May 3, 1999 and May 20, 
2013, as well as El Reno, Oklahoma for May 31, 2013. 

Figure 12 shows WmSh for Moore, Oklahoma on May 
3, 1999. For 2013, values of CAPE and WS were esti- 
mated from the National Oceanic and Atmospheric Ad- 
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Figure 10. 20 years return levels for the linear trend model in time for WmSh (top left); comparison of return values for the 
Linear Trend model to No-Trend model (top right); linear time coefficient for WmSh (middle left) and the significance of the 
linear time coefficient in the quadratic model (middle right); Quadratic time coefficient for WmSh (bottom left) and the sig-
nificance of the quadratic time coefficient in the quadratic model (bottom right). 
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Figure 11. Univariate GEV 20-yr return values for WmSh 
with a quadratic time trend in the location parameter. 
Shown for t = 20, 40, and 60. 

 

Figure 12. CAPE, WS, and WmSh values on May 3, 1999. 
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ministration’s (NOAA) Storm Prediction Center (SPC) 
Hourly Mesoscale Analysis graphical output for atmos- 
pheric sounding readings 
(http://www.spc.noaa.gov/exper/ma_archive/images_s4). 
For the time trend models, t is the year in the series used 
for model fitting. t = 1 corresponds to 1958, and thus 
1999 corresponds to the last year in the series used for 
model fitting, t = 42 and t = 56 corresponds to 2013. The 
standardized values, t* are used for t to calculate the re- 
turn period, as in the model fitting and calculation of the 
20 years return levels in Section 5. 

Table 2 shows the estimated return periods for the val- 
ues of WmSh observed during each of the tornadic events 
under each of the three models considered: No time trend, 
Linear time trend and Quadratic time trend. For the 1999 
Moore, Oklahoma tornadic storm, the estimated return 
period for the observed WmSh = 1654 was n = 1.3. This 
indicates a value of WmSh is expected to be seen about 
once every 1.3 years. Note that WmSh = 1654 was well 
within the range of values observed over the 42 years pe- 
riod (0 - 2475). The location parameter for the no trend 
model was µ = 1747, which is higher than the observed 
value of 1654, so this return period validates well with 
the empirical distribution of WmSh in Moore, OK. The 
linear and the quadratic time trend models show de- 
creasing return periods respectively, indicating that the 
severity of this event is becoming less extreme over time; 
i.e. what was considered a 1.3 years event is a 1.1 years 
event under the quadratic model, which allows for the 
changing trend in time. 

For the 2013 Moore, Oklahoma tornadic storm, the es- 
timated return period for the observed WmSh = 5020 is n 
= 402. This is a somewhat large return period, however 
note that WmSh = 4183 is almost twice that of the largest 
observed WmSh (2475) over the 42 years period. The lin- 
ear and the quadratic time trend models show decreasing 
return periods respectively, indicating that the severity of 
this event is becoming less extreme over time, with the 
quadratic model estimating the return period at less than 
a quarter of the return period under the no trend model. 

For the 2013 El Reno, Oklahoma tornadic storm, the 
estimated return period for the observed WmSh = 5692 is 
n = 900. Again note that WmSh = 4743 is twice that of 
the largest observed WmSh (2475) over the original 42 
years period with which the model was fit. The linear and 
the quadratic time trend models show decreasing return 

periods respectively, indicating that the severity of this 
event is becoming less extreme over time, with the 
quadratic model estimating the return period at less than 
one third of the return period under the no-trend model. 

For both the events that took place in Oklahoma in 
2013, the temporal trend models show a significant dif- 
ference in the estimated return periods. The flexibility in 
incorporating a trend in time allows us to see the chang- 
ing distribution of extreme values of WmSh as a large 
scale indicator of extreme tornadic events. What the no 
trend model would estimate to be a level achieved at the 
magnitude of several hundreds of years, the quadratic 
model captures on a much more immediate time frame, 
with the 2013 Moore event being estimated at a less than 
100 years event. 

7. Summary 

Results indicate that extreme value methods are success- 
ful for modeling large scale severe storm indicators 
CAPE and wind shear as WmSh. Standard extreme value 
modeling techniques are appropriate for modeling the 
behavior of WmSh, however there are a few points to 
consider. For most locations, the shape parameter is not 
significantly different from zero for the block maxima 
model. This indicates a light and bounded upper tail be-
havior, which is consistent with the physics of WmSh. 
The 3-parameter model is retained for its flexibility in 
allowing different tail behavior across locations. 

Incorporation of a temporal component was successful 
and showed interesting trends over time. Investigation of 
the temporal magnitude of changes in WmSh shows 
slight changes in the location parameter of the extreme 
value distribution over time, including increasing trends 
in WmSh over the Gulf Coast and central North America, 
with decreases seen over the region including Great 
Lakes. A positive trend in the location parameter over 
time was seen across the US and especially over the 
MidWest, for both the linear and the quadratic model in 
time. This effect is also shown in the 20 years return val- 
ues for WmSh, which are shown to be increasing across 
time. 

The case study of the tornadic events in Oklahoma 
showcases an interesting retrospective analysis, as past 
data was used to evaluate return periods that can be 
evaluated using current events. The models allowing for  

 
Table 2. Estimated return periods for the values of WmSh observed during each of the tornadic events for the three models 
considered: No time trend, linear time trend, and quadratic time trend. 

City and Date CAPE WS WmSh No Trend Linear Quadratic 

Moore, OK 05/03/1999 2185 25 1654 1.3 1.2 1.1 

Moore, OK 05/20/2013 3500 50 4183 402 334 87 

El Reno, OK 05/31/2013 4500 50 4743 900 741 307 
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a time trend show decreasing return periods, indicating 
that the severity of these events are becoming less ex- 
treme over time. This is an important indication of a 
positive shift in the distribution of atmospheric sounding 
extremes, high values of which are conducive to severe 
thunderstorm activity and tornadic events. 

8. Discussion 

Results indicate that the generalized extreme value dis- 
tribution provides a good methodology for modeling the 
extremes for large scale indicators. A known weakness of 
the generalized extreme value distribution for block 
maxima is the tendency to discard data that might in ac- 
tuality be considered extreme. While beyond the scope of 
this paper, for similar problems a threshold approach 
could be utilized—with careful attention given to declus- 
tering techniques to account for the fact that extreme 
weather patterns tend to occur in clusters over time. In 
addition, while they provide an improvement in data re- 
tention, because of the tendency of extremes to occur in 
clusters and hence violate independence assumptions, 
threshold methods are susceptible to the same loss of 
data issues that they are intended to resolve over the 
block-maxima approaches used in extreme value theory. 
The standard bias-variance trade-off is considered by 
Fawcett and Walshaw (2007) [18], who provide an al- 
ternative approach to the standard errors which makes 
use of all of the data above the threshold while address- 
ing the temporal dependence within extreme clusters. 

Results suggest spatial dependence as well as multi- 
variate dependence among the different large scale indi- 
cators. Spatial extreme is an expanding field, and de- 
pendence structures can be introduced in different ca- 
pacities to address both of these issues. There are several 
methods that can be investigated to resolve this depend- 
ence. Heaton et al. (2010) [8] considered a Bayesian 
modeling approach to address the tail behavior in physi- 
cal regions for the indicators across the continental US, 
which could partially resolve the tail behavior issues oc- 
curring in the preliminary results for the global data. 
These approaches could both be considered. 

There is much that can be learned from this initial ex- 
ploration of the extreme behavior of large scale indica- 
tors for severe storm events. Predicting extreme weather 
events is an important, growing area of research and 
there remain many avenues for further exploration. The 
practical applications of properly describing this behav- 
ior are vital, given the possible effect of increasing the 
warning times for severe storms, which ultimately could 
have a huge human and economic impact. 
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