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Abstract 
We have synthesized LiMn2−xFexO4 (x = 0, 0.25, and 0.50) cathode materials 
for applications in Li ion rechargeable batteries via sol-gel method. We stu-
died thermal characteristics of as synthesized materials using differential 
scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In order 
to optimize the synthesis conditions, we studied X-ray diffraction (XRD) of 
synthesized cathode materials at various temperatures, based on the transi-
tions obtained from DSC/TGA. The XRD results can be co-related to the 
thermal behavior of the synthesized cathode materials and the synthesis con-
ditions optimized. 
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1. Introduction 

Due to technological developments and the continuous depletion of fossil fuel, 
the development of new power sources is of great interest. With the recent de-
velopments in the area of green energy production such as solar and wind ener-
gy, the need for high energy density energy storage devices has become equally 
important [1] [2] [3]. Li ion batteries have the highest energy densities among 
the commercially available rechargeable batteries [4] [5]. The commercially 
available Li ion batteries suffer from various drawbacks such as poor cyclability, 
rate performances and toxicity [6]. Keeping this in view, the research communi-
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ty is working towards the development of new cathode materials [7] [8] [9] [10] 
[11]. The preparation of phase pure cathode materials for Li ion rechargeable 
batteries is very time consuming, since the process involves trying so many 
combinations of temperature and annealing time. Various authors have analyzed 
thermal behaviors in conjunction with X-ray diffraction (XRD), to understand 
the reaction mechanism for the synthesis of LiMn2O4 cathode materials. There is 
the need to continue work in this area to optimize the synthesis of these very 
important groups of energy storage materials. 

In order to get a better understanding of the different possible by-products, 
Berbenni and Marini [12] studied the thermal decomposition processes taking 
place in solid state mixtures of Li2CO3-MnCO3(xLi = 0.10 - 0.50, xLi = lithium ca-
tionic fraction) in air and nitrogen flow by thermogravimetric analysis (TGA) 
and X-ray powder diffraction studies. They found that the formation reaction of 
LiMn2O4 and Mn3O4 was completed by about 720˚C. At higher temperatures, 
complex reactions take place, resulting in the formation of the compounds 
Li2Mn2O4 and LiMnO2 with excess of Mn3O4. It was also reported that in the 
mixture of Li2CO3-MnO, formation of LiMn2O4 is a two stage process, where 
Li2MnO3 forms first, followed by reaction with excess Mn2O3 to yield LiMn2O4 
[13]. It has been reported that LiMn1.95M0.05O4 (M = Al, Co, Fe, Ni, Y) cathode 
materials can be synthesized by combustion method using lithium hydroxide, 
manganese nitrate, M-nitrates (M = Al, Co, Fe, Ni, Y), and urea as precursor 
materials. The thermal behavior of the reaction mixture and synthesized powder 
revealed that the spinal phase can be achieved in 1 minute at 280˚C [14]. 

Michalska and coworkers [15] have studied the important stages of the syn-
theses of nanocrystalline lithium-manganese oxide spinels using DSC-TGA mea- 
surements. They found that DSC/TGA/XRD data are co-related to each other, 
and all major thermal events, for all precursors occur between 500˚C - 700˚C. 
The mass loss during the synthesis procedure was between 51% and 64%, de-
pending on the material. Above 700˚C pure spinal phase is obtained, as con-
firmed by X-ray diffraction studies. 

The thermal behavior of LiMn2O4 spinal was studied by Molenda and co-
workers [16] using DSC/TGA in the temperature range of 300˚C - 900˚C in air 
atmosphere. They reported that the changes of mass within the studied temper-
ature range are related to arrangement of the structure accompanied by the dis-
appearance of cations vacancies and by the formation of the stoichiometric 
LiMn2O4. In the range of 820˚C - 925˚C, the mass changes corresponds to the 
formation or disappearance of the oxygen vacancies, while above 925˚C Mn3O4 
and LiMnO2 phases were formed and released oxygen. 

In this paper, we have synthesized LiMn2−xFexO4 (x = 0.0, 0.25 and 0.50) spinel 
cathode materials via sol-gel method. The thermal behavior of the synthesized 
spinel cathode materials during the calcinations process were studied using 
DSC/TGA. The results of thermal analysis were correlated with XRD data in or-
der to optimize the synthesis process to obtain the phase pure materials. 
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2. Experimental 

LiMn2−xFexO4 cathode materials were synthesized via sol-gel method. The pre-
cursor materials lithium acetate dihydrate (LiOOCCH3∙2H2O, 99%), iron (II) 
acetate anhydrous (C4H6FeO4), and Manganese(II) acetate tetrahydrate [Mn 22% 
(typical), C4H6MnO4∙4H2O] were procured from Alfa Aesar and used as re-
ceived. All of the precursor materials were dissolved in 2-ethylhexanoic acid, 
followed by stirring for 1 hr at 500 rpm. The final solution was dried drop by 
drop on a Petri dish at 280˚C. The resultant powders were ground and stored in 
a glass vial for further analysis/processing. 

Simultaneous DSC/TGA measurements were carried out between 50˚C and 
1000˚C in alumina crucibles using Q600 SDT (by TA Instruments, USA). The 
data were analyzed using TA Advantage software. The measurement conditions 
were as follows: LiMn2O4 (sample weight = 17 mg, LiMn1.75Fe0.25O4 (sample 
weight = 25.5 mg), LiMn1.5Fe0.5O4 (sample weight = 28.5 mg) were heated and 
cooled at a rate of 10˚C/min., under flow of nitrogen gas. The X-ray diffraction 
studies were performed using Rigaku Mini flex-II diffractometer (wavelength of 
X-ray, 1.5406 angstrom.) and CuKα radiations, at a scan rate of 1˚/min. The data 
were collected at every 0.02˚. 

3. Results and Discussions 

Figures 1-3 show the thermal behavior of LiMn2O4, LiMn1.75Fe0.25O4, and 
LiMn1.5Fe0.5O4, respectively, obtained from DSC and TGA analysis. The XRD 
patterns of the synthesized materials are given in Figures 4-6. It can be seen 
from Figures 4-6 that synthesized materials showed additional peaks, which 
may be due to the defects in structure. Additionally, the peaks are less intense 
and broader, which may be due to the lower crystallinity. Furthermore, as the 
calcinations temperature increases, the peaks become more sharp and intense, 
which may be due to the increased crystallinity. These results are in agreement 
as reported earlier by Molenda and coworkers [16]. 

It can be seen from Figures 1-3 that there is mass loss starting at about 380˚C 
and corresponding exothermic peak is observed. This may be due to the organic 
removal and removal of oxygen. Figure 1 showed various transitions at temper-
atures 535˚C, 665˚C, 720˚C, 741˚C, and 781˚C. The transitions between 280˚C - 
450˚C are due to results of pyrolysis, which can be see seen clearly from the peak 
obtained in X-ray diffraction pattern of as prepared [Figure 4(a)] and pyrolyzed 
LiMn2O4 [Figure 4(b)]. Upon further annealing at higher temperature, heat flow 
increases up to 705˚C and corresponding mass loss is observed. This may be due 
to the oxygen removal from the sample and this corresponds to the decrease in 
peak intensity at 2 theta values of 33˚, 55˚, and 66˚. These peaks correspond to 
Mn3O4 and Mn2O3 phases [13] [14]. The peak intensities corresponding to fd3m 
structures are increased. At 850˚C, we obtained phase pure LiMn2O4 cathode 
materials. This can be verified from TGA graph [Figure 1], where no significant 
mass change is observed after 850˚C. 
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Figure 1. DSC and TGA thermograms of LiMn2O4 cathode materials. 
 

 
Figure 2. DSC and TGA thermograms of LiMn1.75Fe0.25O4 cathode materials. 
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Figure 3. DSC and TGA thermograms of LiMn1.5Fe0.5O4 cathode materials. 

 

 
Figure 4. X-ray diffraction patterns of LiMn2O4 cathode materials at various calcinations 
temperatures. 
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Figure 5. X-ray diffraction patterns of LiMn1.75Fe0.25O4 cathode materials at various calci-
nations temperatures. 
 

 
Figure 6. X-ray diffraction patterns of LiMn1.5Fe0.5O4 cathode materials at various calci-
nations temperatures. 
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Figure 2 showed the thermal behavior of LiMn1.75Fe0.25O4 cathode materials 
and corresponding XRD patterns are given in Figure 5. It can be seen from Fig-
ure 2 that after pyrolysis between 200˚C - 380˚C, the mass decreases gradually 
from 380˚C to 750˚C, after that no significant mass loss is observed. The cor-
responding XRD [Figure 5] showed the decrease in peak intensity of peaks at 
33˚ and 55˚ and increasing of spinel characteristic peaks. We obtained phase 
pure spinel LiMn1.75Fe0.25O4 at 750˚C, which is lower than that of pure LiMn2O4 
cathode materials. Similar behavior was also obtained for LiMn1.5Fe0.5O4 cathode 
materials, where there is mass loss up to 750˚C, and after this temperature, there 
is no significant mass loss [Figure 3]. The corresponding XRD patterns of 
LiMn1.5Fe0.5O4, obtained at various calcinations temperatures [as prepared, 555˚C, 
665˚C, and 755˚C] [Figure 6] showed that phase pure material at 755˚C. Table 
1 shows the crystallite size and lattice parameters of LiMn2O4, LiMn1.75Fe0.25O4, 
and LiMn1.5Fe0.50O4 cathode materials, calcined at various temperatures. It can be 
seen from the table that as the calcined temperature increases, lattice parameter 
also increases. Similar behavior was reported by Dziembaj and coworkers [17]. 
The crystallite size was calculated using Scherer’s equation. The average crystal-
lite sizes were found to be in the range of 13 - 40 nm. The crystallite size varies 
with the temperature and was found to be increased upon increasing annealing 
temperature. Our results are in agreement as reported earlier [18]. 

4. Conclusion 

We have successfully synthesized spinelLiMn2O4, LiMn1.75Fe0.25O4, and LiMn1.5 

Fe0.50O4, cathode materials via sol-gel method. The thermal behavior of the syn-
thesized materials is in agreement with the results obtained from X-ray diffrac-
tion studies. Based on the results obtained from thermal and structural studies, 
the synthesis conditions for the cathode materials can be optimized. We ob-
tained the optimum calcinations temperatures for LiMn2O4, LiMn1.75Fe0.25O4, and 
LiMn1.5Fe0.5O4 as 850˚C, 750˚C, and 750˚C, respectively. Further characteriza-
tions such as X-ray photoelectron spectroscopy and micro-Raman spectroscopy 
may be carried out to provide better understanding of the reaction mechanism. 
 
Table 1. Lattice parameter and crystallite size of LiMn2−xFexO4 cathode materials. 

Material 
Annealing 

temperature (˚C) 
Average lattice 
parameter ( ‎Å) 

Average crystallite 
size (nm) 

LiMn2O4 

665 8.3595 20.13 

720 8.3727 19.68 

740 8.3906 27.6 

780 8.3643 25.70 

LiMn1.75Fe0.25O4 
625 8.2601 12.99 

755 8.2725 39.65 

LiMn1.5Fe0.5O4 

555 8.2462 26.7 

665 8.2473 22.32 

755 8.2945 23.92 
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