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Abstract 
In this paper, mathematical model of Martens and Hall (Analytical chemistry 66, 
2763-2770 (1994 [1])) for an immobilized oxidase enzyme electrode is discussed. The 
model involves the system of non-linear reaction diffusion equations under the 
steady state conditions. A simple and closed-form of approximate analytical expres-
sions for the concentrations of the immobilization of three enzyme substrates has 
been derived by solving the system of non-linear reaction diffusion equations using 
new approach of homotopy perturbation method. Approximate polynomial expres- 
sion of concentration of substrate, oxygen and oxidized mediator and current was 
obtained in terms of the Thiele moduli and the small values of parameters Bs, Bo  
and Bm (normalized surface concentration of substrate, oxygen and oxidized media-
tor). Furthermore, in this work the numerical simulation of the problem is also re-
ported using Matlab program. An agreement between analytical expressions and 
numerical results is noted. 
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1. Introduction 

There have been many publications on models for enzyme electrodes. Schulmeister et 
al. [2] have described models for multilayer and multi enzyme electrodes under diffu-
sion control such that enzyme kinetic are linear. Here the reaction and diffusion system 
is described by a parabolic differential equation with linear in homogeneities Schul- 
meister et al. [3]. A model for two substrate enzyme electrode has been developed by 
Leypoldt and Gough where the non-linear enzyme reaction was taken into account. 
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This model was employed to describe the behavior of a glucose oxidase (Gox) electrode 
Leypoldt et al. [4]. The transient response of a mediated amperometric enzyme elec-
trode was studied by Bergel and Comtat, employing an implicit finite difference me-
thod Bergel et al. [5]. Recently Indira and Rajendran et al. [6] have derived analytical 
expressions for the concentrations of substrate, oxygen and mediator in an amperomet-
ric enzyme electrode. Logambal et al. [7] and Anitha et al. [8] have developed the ap-
proximate analytical expressions for steady state concentrations of oxidized mediator, 
substrate and reduce mediator of an enzyme-membrane electrode by the Adomian de-
composition method and Homotopy perturbation method. To our knowledge no sim-
ple analytical expressions that describe the concentration of substrate, oxygen and oxi-
dized mediator for various values of the Thiele moduli and the normalized parameters 
have been derived. In this paper we have derived that analytical expressions corre-
sponding to the concentrations of substrate, oxygen, and oxidized mediator in an oxi-
dase enzyme electrode using new Homotopy perturbation method. 

2. Mathematical Formulation of the Boundary Value Problem  

The details of the model adopted have been fully described in Mertens and Hall [1] and 
so we only present a brief summary here. Figure 1 represents the general kinetic reac-
tion scheme of an enzyme membrane electrode geometry Gooding et al. [9] 

OX redE S ES P+ → → +                        (1) 

2 2 2red OXE O E H O+ → +                        (2) 

red OX OX redE Med E Med+ → +                      (3) 

We assume that the concentrations of all reactants and enzyme intermediates remain 
constant for all time. Also the concentration of total active enzyme [Et] and the reac-
tants in the bulk electrode remain constant. We can consider that the diffusion of the 
reactants can be described by Fick’s second law and the enzymes are assumed to be un-
iformly dispersed throughout the matrix. The enzyme activity is not a function of posi-
tion. The coupled three non linear reaction/diffusion equations in normalized form are 
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The boundary conditions becomes 

1 1s o mF F F at x= = = =                     (7) 

0, 1 at 0o s
m

dF dF
F x

dx dx
= = = =                   (8) 



M. Ramanathan, R. Lakshmanan 
 

681 

 
Figure 1. Schematic diagram of reaction scheme of an enzyme membrane electrode 
geometry [8]. 
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where Fs, Fo, and Fm represent the normalized concentrations of substrate, oxygen and 
oxidized mediator and Bs, Bo, and Bm are the corresponding normalized surface con-
centrations. The surface concentration is the ratio of the bulk concentration and the 
reaction constants. Φs, Φo, and Φm denote the Thiele moduli of substrate, oxygen and 
oxidized mediator, respectively. Thiele modulus Φ2 represents the ratio of the charac-
teristic time of the enzymatic reaction to that of substrate diffusion. d is the thickness of 
the enzyme layer. The normalized current JOX is given by, 

0

m
OX

x

dF
J

dx =

 =  
 

                          (10) 

3. Analytical Expressions of Concentrations of Substrate, Oxygen 
and Oxidized Mediator under Steady-State Condition 

Recently, many authors have applied the Homotopy perturbation method to solve the 
various non linear problems in physical and chemical engineering sciences [10]-[12]. 
This method is a combination of Homotopy in topology and classic perturbation tech-
niques. Ji-Huan He used the HPM to solve the Lighthill equation [13], the duffing Equ-
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ation [14] and Blasius Equation [15]. The idea has been used to solve non-linear boun-
dary value problems, integral equations and many other problems [16]-[18]. The HPM 
is unique in its applicability, accuracy and efficiency. The HPM uses the imbedding pa-
rameter p  as a small parameter and only a few iterations are needed to find the 
asymptotic solution with good accuracy. Using the new approach to Homotopy per-
turbation method, the analytical expressions of steady state concentrations of substrate, 
oxygen and oxidized mediator (Appendix A) can be obtained as follows: 
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Recently Anitha and Rajendran [8] have derived that analytical expressions corre-
sponding to the concentrations of substrate, oxygen and oxidized mediator in an oxi-
dase enzyme electrode using Homotopy perturbation method. From Equation (10), we 
can obtain the current as follows: 

( )1E

OX

e E
J E

Sinh E

−
−=                   (14) 

Equation (11) to Equation (13) represents the new simple and closed-form of approxi-
mate analytical expression of concentrations of substrate, oxygen and oxidized media-
tor. 

4. Discussion 

Equation (11) to Equation (13) represent the new closed approximate analytical expres-
sion of the non-steady state concentration of substrate, oxygen and oxidized mediator 
for all values of kinetic and diffusion parameters. The concentration depends on para-
meters such as Bs, Bo and Bm and Φs, Φo and Φm (Thiele moduli). 

Figure 2 shows the dimensionless non-steady state concentration of substrate, oxy-
gen and oxidized mediatorversus dimensionless distance for various values of the di-
mensionless parameters Bs. From this figure, it is inferred that the concentration of 
substrate and oxygen decreases when Bs (surface concentration of substrate) increases. 
Also concentration mediator decreases due to consumption by the enzyme reaction and 
reaching the minimum at the centre of the membrane (x = 0.5). Then the concentration 
of the mediator increases from x = 0.5 to x = 1 due reoxidation of the electrode. 
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Figure 2. (a)-(c): Plot of analytical expression of concentration of substrate oxygen and mediator 
for various values of parameter Bs using Equations (11)-(13). Dotted line represents numerical 
solution and solid line represents the analytical solution. 

 
Figure 3 represents the dimensionless non-steady state concentration profiles of 

substrate, oxygen and mediator for various values of Thiele modulus. Thiele Modulus 
depends upon thickness of the enzyme layer or amount of enzyme immobilized in the 
matrix (refer Equation 9). This parameter express the relative importance of diffusion 
and reaction in the enzyme layer when it is small, kinetics are the dominant and when 
Thiele modlus is large internal diffusion usually limits the overall rate of reaction. From 
this figure, we can observed that, the concentration of substrate, oxygen and mediator 
increases when Thiele modulus decreases. For small values of Thiele modulus, the reac-
tion rate is small compared to the diffusion rate and the concentration becomes nearly 
uniform. Also the minimum values of the mediator is zero for the large value of Thiele 
modulus. Concentration is uniform for very small values of Thiele modules (Φi less 
than 0.1). 

Figure 4 represents the concentration of substrate, oxygen and mediator verse the 
normalized distance for various values Bo. From this figure, it is inferred that the con-
centrate of substrate and oxygen increases when Bs decreases and become uniform for 
very small values of Bo. Here also concentration mediator decreases slowly from x = 0 
to x = 0.5. Then from x = 0.5 to x = 1 the concentration increases due to reoxidation at 
the electrode. 
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Figure 3. (a)-(c): Plot of concentration of substrate oxygen and mediator for various values of 
parameter 2

oΦ , 2
sΦ  and 2

mΦ using Equations (11)-(13). Dotted line represents numerical si-
mulation and solid line represents the analytical expression. 

 
Figure 5 represents normalized current density Jox verses Thiele modules/Bo for var-

ious values of dimensionless parameter Bs, Bo, Bm and Φm. From this figure it is observed 
that, the current density increases when Bs, Bo, Bm (surface concentration of substrate, 
oxygen, mediator) decreases. The most accessible parameters in the design of a sensor 
are the thickness of the membrane and the actual loading of active enzyme in the ma-
trix. Also the maximum current decreases with decreases of membrane thickness or 
actual loading of active enzymes due to decrease in the total amount of enzyme pres-
ence in the system.  

Tables 1-3 represent the comparison of analytical expression of concentration of the 
substrate, oxygen and mediator (Fs, Fo, Fm) for various of Thiele modules. The maxi-
mum average relative error between the analytical results and numerical results is 
1.62%. This error is less than pervious published analytical result [8]. 

5. Conclusion 

In this paper, steady state nonlinear differential equations in biofiltration model have 
been solved analytically. Approximate analytical expressions pertaining to the concen-
trations of substrate, oxygen and oxidized mediator are derived using homotopy per-
turbation method. These analytical solutions are compared with the numerical simula-
tion results. These analytical results provide a good understanding of the system and  
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Figure 4. (a)-(c): Plot of concentration of substrate oxygen and mediator for various 
values of parameter, B0 using Equations (11)-(13). Dotted line represents numerical 
simulation and solid line represents the analytical expression. 

 

 
Figure 5. (a)-(d): Normalized current density Jox verses the lie Modules/Bo for various 
values of the parameters using Equation (14). 
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the optimization of the parameters in enzyme model. The extension of the prodecure to 
other immobilized oxidase enzyme electrode systems at steady and non-steady state 
condition seems possible. 

References 
[1] Martens, N. and Hall, E.A.H. (1994) Model for an Immobilized Oxidase Enzyme Electrode 

in the Presence of Two Oxidants. Analytical Chemistry, 66, 2763-2770.  

[2] Schulmeister, T. (1990) Mathematical Modeling of the Dynamic Behaviour of Amperome-
tric Enzyme Electrodes. Selective Electrode Reviews, 12, 203-260. 

[3] Schulmeister, Th. and Pfeiffer, D. (1993) Mathematical Modelling of Amperometric with 
Perforated Membranes. Biosensors and Bioelectronics, 8, 75-79.  
http://dx.doi.org/10.1016/0956-5663(93)80055-T 

[4] Leypoldt, J.K. and Gough, D.A. (1984) Model of a Two-Substrate Enzyme Electrode for 
Glucose. Analytical Chemistry, 56, 2896-2904. http://dx.doi.org/10.1021/ac00278a063 

[5] Bergel, A. and Comtat, M. (1984) Theoretical Evaluation of Transient Responses of an 
Amperometric Enzyme Electrode. Analytical Chemistry, 56, 2904-2909.  
http://dx.doi.org/10.1021/ac00278a064 

[6] Indira, K. and Rajendran, L. (2013) Analytical Expressions for the Concentrations of Sub-
strate, Oxygen and Mediator in an Amperometric Enzyme Electrode. Applied Mathemati-
cal Modelling, 37, 5343-5358. http://dx.doi.org/10.1016/j.apm.2012.10.021 

[7] Shumugham, L. and Rajendran, L. (2013) Analytical Expressions for Steady-State Concen-
trations of Substrate and Oxidized and Reduced Mediator in an Amperometric Biosensor. 
International Journal of Electrochemistry, Article ID: 812856, 12 p.  

[8] Shanmugarajan, A. and Lakshmanan, R. (2012) A Theoretical Model for an Immobilized 
Oxidase Enzyme Electrode in the Presence of Two Oxidants. Journal of Modern Mathe-
matics Frontier, 1, 46-56. 

[9] Gooding, J.J. and Hall, E.A.H. (1996) Practical Evaluation of an Alternative Geometry En-
zyme Electrode. Journal of Electroanalytical Chemistry, 417, 25-33.  
http://dx.doi.org/10.1016/S0022-0728(96)04752-3 

[10] Li, S.J. and Liu, Y.X. (2006) An Improved Approach to Nonlinear DynamicalSystem Identi-
fication Using PID Neural Networks. International Journal of Nonlinear Sciences and Nu-
merical Simulation, 7, 177-182. 

[11] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) Application of the Homotopy Pertur-
bation Method to Linear and Nonlinear Schrodinger Equations. Zeitschriftfür Naturfor-
schung, 63, 140-144. 

[12] He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Me-
chanics and Engineering, 178, 257-262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3 

[13] He, J.H. (2003) Homotopy Perturbation Method: A New Nonlinear Analytical Technique. 
Applied Mathematics and Computation, 135, 73-79.  
http://dx.doi.org/10.1016/S0096-3003(01)00312-5 

[14] He, J.H. (2006) Some Asymptotic Methods for Strongly Nonlinear Equations. International 
Journal of Modern Physics B, 20, 1141–1199. http://dx.doi.org/10.1142/S0217979206033796 

[15] He, J.H., Wu, G.C. and Austin, F. (2009) The Variational Iteration Method Which Should 
Be Followed. Nonlinear Science Letter A, 1, 1-30. 

[16] He, J.-H. (2003) A Simple Perturbation Approach to Blasius Equation. Applied Mathemat-
ics and Computations, 140, 217-222. 

http://dx.doi.org/10.1016/0956-5663(93)80055-T
http://dx.doi.org/10.1021/ac00278a063
http://dx.doi.org/10.1021/ac00278a064
http://dx.doi.org/10.1016/j.apm.2012.10.021
http://dx.doi.org/10.1016/S0022-0728(96)04752-3
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0096-3003(01)00312-5
http://dx.doi.org/10.1142/S0217979206033796


M. Ramanathan, R. Lakshmanan  
 

690 

[17] He, J.-H. (2000) A Coupling Method of a Homotopy Technique and a Perturbation Tech-
nique for Non-Linear problems. International Journal of Non-Linear Mechanics, 35, 37-43.  

[18] Ganji, D.D., Amini, M. and Kolahdoo, A. (2008) Analytical Investigation of Hyperbolic 
Equations via He’s Methods. American Journal of Engineering and Applied Science, 1, 
399-407.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M. Ramanathan, R. Lakshmanan 
 

691 

Nomenclature 

Symbols: 
Parameters Description Units 

[Et] Total active enzyme concentration in the matrix mmol/L 
[Eox] Enzyme concentration of the oxidized mediator mmol/L 
[ES] Enzyme concentration of the substrate mmol/L 
[Ered] Reduced enzyme concentration mmol/L 
[O2] Concentration of oxygen at any position in the enzyme layer mmol/L 
[O2]b Oxygen concentration in the bulk electrolyte mmol/L 
[S] Concentration of substrate at any position in the enzyme layer mmol/L 
[S]b Substrate concentration in the bulk electrolyte mmol/L 

[Medox] Concentration of oxidised mediator at any position in the enzyme layer mmol/L 
[Medox]b Oxidised mediator concentration in the bulk electrolyte mmol/L 

Do Diffusion coefficient of oxygen cm2∙s−1 
Ds Diffusion coefficient of substrate cm2∙s−1 

Dm Diffusion coefficient of mediator cm2∙s−1 

d Enzyme layer thickness cm 
y Distance from the electrode cm 

k1, k4, k5 Rate constants L∙mol−1∙s−1 
k2, k3 Rate constants s−1 

Ko Partitioning coefficient for oxygen None 
Ks Partitioning coefficient for substrate None 
Km Partitioning coefficient for mediator None 
Bo Normalized surface concentration of oxygen None 
Bs Normalized surface concentration of the substrate None 
Bm Normalized surface concentration of mediator None 
Fo Normalized oxygen concentration None 
Fs Normalized substrate concentration None 
Fm Normalized mediator concentration None 

x Normalized distance from the electrode None 

Jox Normalized current None 

 
Greek symbols: 

2
oΦ  Thiele modulus for the oxygen Normalized 

2
sΦ  Thiele modulus for the substrate Normalized 

2
mΦ  Thiele modulus for the mediator Normalized 

o Oxygen Subscripts 

s Substrate Subscripts 

m Mediator Subscripts 

ox Oxidized species Subscripts 

red Reduced species Subscripts 

t Total Subscripts 

∞ Bulk solution Subscripts 

 



M. Ramanathan, R. Lakshmanan  
 

692 

Appendix: A 

Approximate Analytical Solution of Equations (4)-(6) Using New Approach of 
Homotopy Perturbation Method. 

Here, we have indicated how to obtain the solution of Equations (4)-(6) using the in-
itial and boundary conditions Equation (7) & Equation (8). We consider the following 
non-linear differential equation.  

( ) ( ) ( ) 0,L u N u f r r+ − = ∈Ω                    (A1) 

where L is a linear operator, N is a non-linear operator, u is an unknown function, and 
f (r) is a given continuous function. We construct a homotopy which satisfies. 

( ) ( ) ( ) ( ) ( )1 0p L u p L u N u f r− + + − =                    (A2)  

Here p [0, 1] is an embedded parameter. Using the above Equation (A2), we can 
construct the homotopy [8] for the Equations (4)-(6), as follows: 
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Supposing the approximate solutions of Equations (4)-(6) have the form 

2
,0 ,1 ,2

2
,0 1 ,2

2
,0 ,1 ,2

s s s s

o o o o

m m m m

F F pF p F

F F pF p F

F F pF p F

= + + +
= + + + 


= + + + 







                     (A6) 

Substituting Equation (A6) into Equations (A3)-(A5) (respectively), and equate the 
terms with the identical powers of p, we obtain. 



M. Ramanathan, R. Lakshmanan 
 

693 

( ) ( ) ( )

2
,00

2

1

2 1 1: 1 0
0 0 0

s
s

o o m m s s

d F
P

F x B F x B F x Bdx

−
 

−Φ + + =  = + = = 
     (A7) 

( ) ( ) ( )

( ) ( )

12
,00 2

2

1 1: 1
0 0 0

0
0 0

o
o

o o m m s s

o o

o o m m

d F
P

F x B F x B F x Bdx

F B
F x B F x B

−
 

−Φ + +  = + = = 

=
= + =

       (A8) 

( ) ( ) ( )

( ) ( )

12
,00 2

2

1 1: 1
0 0 0

0
0 0

m
m

o o m m s s

m m

o o m m

d F
P

F x B F x B F x Bdx

F B
F x B F x B

−
 

−Φ + +  = + = = 

=
= + =

       (A9) 

The above equations can be written as 
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The initial approximations boundary conditions Equation (7) and Equation (8) are 
as follows. 
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( ) ( ) ( ),0 ,0
,0

0 0
0 1 ; 0o s

m

dF x dF x
F x

dx dx
= =

= = = =              (A14) 

And 

( ) ( ) ( ), , ,1 0 ; 1 0 ; 1 0 1,2,3,s i o i m iF x F x F x i= = = = = = =            (A15) 

( ) ( ) ( ), ,
,

0 0
0 0 ; 0 1, 2,3,o i s i

m i

dF x dF x
F x i

dx dx
= =

= = = = =          (A16) 

Solving the Equations (A7)-(A9) and using the boundary conditions Equation (A13) 
and Equation (A14) we get 

( ),0s
Cosh AxF x
Cosh A

=                       (A17) 

( ),0o
Cosh BxF x
Cosh B

=                       (A18) 

( )
( )

,0

1E

Ex
m

e Sinh Ex
F x e

Sinh E

−
= −                  (A19) 

where 
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( )
( )

2
s o m s

o m s s o m

B B B
A

B B B B B B
Φ +

=
+ + + +

 

( )

( )

2

2

o o s

o m s s o m

m m s

o m s s o m

B B
B

B B B B B B

B B
E

B B B B B B

Φ
=

+ + + +

Φ
=

+ + + +

 

Using the basic assumptions underlying the homotopy method, we obtain since the  

( ) 1 , ,0limps s i sF x F F= ≈


                    (A20) 

( ) 1 , ,0limpo o i oF x F F= ≈


                    (A21) 

( ) 1 , ,0limpm m i mF x F F= ≈


                    (A22) 

value of the first order iteration ,1 ,1 ,1, ,s o mF F F  is negligible. Substituting Equations (A 
17)-(A19) in Equations (A 20)-(A22), Equations (4)-(6) of the text. 

Appendix: B 
Matlab Program to Find the Numerical Solution of Equations (4)-(6) functionpdex4 
m = 0; 
x = linspace (0,0.5); 
t = linspace (0,100);  
sol = pdepe (m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2);  
u3 = sol(:,:,3); 
figure 
plot(x,u1(end,:)) 
xlabel('Distance x') 
ylabel('u1(x,2)') 
figure 
plot(x,u2(end,:)) 
xlabel('Distance x') 
ylabel('u2(x,2)') 
figure 
plot(x,u3(end,:)) 
xlabel('Distance x') 
ylabel('u3(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
Bs=0.5; 
Bo=0.05; 
Bm=0.1; 
A=0.1; 
J=0.1; 
E=0.1; 
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c = [1;1;1];                                   
f = [1;1;1].* DuDx;   
F1 =-A/(1+1/(u(2)*Bo+u(3)*Bm)+1/(u(1)*Bs)); 
F2 =-J/(1+1/(u(2)*Bo+u(3)*Bm)+1/(u(1)*Bs))*(u(2)*Bo/(u(2)*Bo+u(3)*Bm)); 
F3 =-E/(1+1/(u(2)*Bo+u(3)*Bm)+1/(u(1)*Bs))*(u(3)*Bm/(u(2)*Bo+u(3)*Bm)); 
s = [F1; F2; F3];                                                      
% -------------------------------------------------------------- 
functionu0 = pdex4ic(x) 
u0 = [0; 0; 1];                                  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
pl = [0; 0 ; ul(3)-1];                                
ql = [1; 1 ; 0];          
pr = [ur(1)-1; ur(2)-1 ; ur(3)-1];                             
qr = [0; 0; 0]; 
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