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ABSTRACT 
The study was carried out with the objective of developing suitable and sustainable low cost adsorbent materials 
for diazinon, an organophosphate pollutant used as a pesticide. Montmorillonite modified with iron was used. 
Two different types of iron-montmorillonite, each having different contents of iron and synthesized with differ-
ent pH and levels of Fe hydrolysis were used. One was denoted “Fe-modified” and the other denoted as “FeOH- 
modified”. The color of the samples changed from greyish green to light-reddish brown after the modification. 
X-ray diffraction and physical observations were used for characterization of the samples. The d-spacing of the 
samples was greater than 15 Å, indicating the formation of iron hydroxides in the interlayer space of montmo- 
rillonite. The amount of adsorption was calculated from the difference between the initial and the final concen- 
tration of diazinon. The adsorption data were analyzed using the Langmuir adsorption isotherms. The amounts 
of diazinon adsorbed were 58.8 and 54.1 mmol∙kg−1 for Fe-modified and FeOH-modified respectively. The steep 
rise in their adsorption isotherms indicated the possibility of adsorption for low level of diazinon in polluted wa- 
ter. 
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1. Introduction 
The contamination of soil, ground water and surface wa- 
ter by pesticides is currently a significant concern 
throughout the world because many of these compounds 
are detrimental to both human health and the environ- 
ment. Increasing use of pesticides in agriculture, and 
domestic activities for controlling pests are polluting wa- 
ter resources day by day. Pesticides form a strong class 
of water pollutants as they are mostly nonbiodegradable. 
Moreover, most pesticides are carcinogenic. Modern 
agriculture relies increasingly on the use of pesticides to 
meet the ever-growing need for food and fiber. While 
pesticides are indispensable to increase the quantity and 
quality of food commodities and to safe guard society 
through better health and higher living standards, their 
off-site migration and detrimental effects on surface wa- 

ter and groundwater quality are of environmental concern. 
Among newly developed pesticides, organophosphate 
pesticides are most commonly used [1]. This is due to 
their reduced persistence and shorter half-life as com- 
pared to organochlorine pesticides whose use is banned 
in many countries.  

Diazinon is a broad spectrum organophosphorous in- 
secticide classified by the World Health Organization 
(WHO) as “moderately hazardous” Class II [2]. It is used 
as a control for sucking and chewing insects and mites. It 
is also an active ingredient of some veterinary ectopara- 
siticides to control mange mites, ticks, lice, keds, biting 
flies, blowflies on sheep, cows, pigs, goats as well as 
horses [3]. It is relatively water soluble, moderately mo- 
bile and persistent in soil, hence it is a concern for 
ground and surface water derived drinking water. Toxic 
effects of diazinon are attributed to its inhibition of the 
enzyme acetylcholinesterase. It is also associated with *Corresponding author. 
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toxicity to aquatic organisms at concentrations of 350 
ng∙l−1 with an LC50 of 4.4 mg∙l−1 in killifish (48 h). Fatal 
human doses were found to be in the range of 90 to 440 
mg∙kg−1 [4]. Over 13 million lbs. of diazinon are applied 
annually in the United States alone. All residential uses 
in the US were banned starting December 31, 2004 [5]. 
In many developing countries, however, diazinon is still 
being used for multiple uses including indoor uses. 

Various adsorbents have been used for the removal of 
diazinon from the environment through adsorption and 
they include the use of agricultural soil [6], use of sur- 
factant modified agricultural soil [7] and Organo-Zeolites 
[8]. Adsorption provides one of the most efficient me- 
thods for the removal of pollutants from the environment. 
It is a means of limiting mobility of pollutants to a wider 
area once they get adsorbed. Owing to their adsorbent 
properties, clay minerals have often been used in differ- 
ent industrial and technological processes [9]. In recent 
years, much attention has been paid to the development 
of modified clays with improved sorption capacities.  

Montmorillonite is one type of clay minerals and has 
been used as an adsorbent for a long time. It is a 2:1 clay 
mineral, characterized by its interlayer spacing and ex- 
ternal surface. It is particularly suitable for many reac- 
tions, such as adsorption of heavy metal ions and organic 
compounds [10]. Its surface reactions are used to control 
different organic chemicals [11] such as azinfhosmethyl 
[12], atrazine [13], paraquat and diquat [14], triasulfuron 
[15] and triphenylmethane dyes [16]. The modification 
of expandable phyllosilicates with Fe to form materials 
that could be used as adsorbents has also been explored 
for a long time. These materials have shown important 
potential application as catalysts and adsorbents for in- 
organic pollutants. However, little is known about their 
application as adsorbents for organic pollutants such as 
organophosphate pollutants. 

In the present study, adsorption of organophosphate 
pesticide diazinon was done using Fe-modified montmo- 
rillonite as a low cost adsorbent. The abundance of mont- 
morillonite in nature, its expansion abilities and large 
interlayer space qualifies these phyllosilicates as useful 
adsorbents for such pollutants with generally large mo- 
lecular size. 

2. Materials and Methods 

2.1. Description of Adsorbate 
Diazinon was supplied by Dr. Ehrenstorfer-Schäfers la- 
boratory. Figure 1 shows its chemical structure. It is a 
colorless liquid pesticide with a faint ester like smell. It 
has a molecular weight of 304.35, water solubility of 40 
mg∙l−1 at 25˚C and log Kow of 3.81. 

2.2. Iron Modification Procedure 
Montmorillonite supplied by the Japan Clay Science So-  

 
Figure 1. Chemical structure of diazinon. 

 
ciety was used for making the Fe modified samples. 
Montmorillonite was initially saturated with Ca2+ by 
washing with 0.5 M CaCl2. After the CaCl2 washing, the 
samples were washed thrice with water and once with 
acetone. Finally, the samples were dried for 48 hours at 
40˚C. After drying the samples were ground, sieved and 
stored in clean, dry jars. These were called Ca-montmo- 
rillonite.  

Fe (NO3)3 purchased from Nacalay Tesque was used 
for iron modification. Two types of Fe modified samples 
were synthesized at different pH and NaOH hydrolysis. 
To Ca-montmorillonite, 0.01 M Fe (NO3)3 was added and 
shaken for 1 hour, centrifuged and decanted. This addi- 
tion and centrifugation was done thrice. The samples 
were then washed thrice with water and once with ace- 
tone. Samples were then dried for 48 hours at 40˚C. After 
drying the samples were also ground, sieved and stored 
in clean, dry jars. These were called Fe-modified sam- 
ples. For the second sample, dubbed FeOH-modified, the 
0.01 M Fe (NO3)3 was pre hydrolyzed with NaOH to 
achieve and OH/Fe ratio of 2. The hydrolyzed solution 
was then added to Ca-montmorillonite samples and a 
similar procedure to the one used for the Fe modified 
sample was followed. 

2.3. Sample Characterization 
The three samples (Ca-montmorillonite, Fe-modified 
montmorillonite and FeOH-modified montmorillonite) 
were subjected to physical Characterisation by X-ray dif- 
fraction using a Rigaku Ultima IV X-ray Diffractometer 
and physical observations. 

2.4. Water Adsorption Experiment 
Water adsorption was measured by putting each 0.5 g of 
sample into glass weighing bottles and heat drying at 
105˚C for 24 h. The samples were then kept in desicca- 
tors containing silica gel for cooling. After cooling, the 
samples were placed in desiccators containing saturated 
solutions of various salts at temperatures of 20˚C ± 1˚C. 
Samples were maintained at these humidity levels for 3 
weeks with weighing at intervals. The equilibrium mass 
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of each sample was measured and the amount of water 
adsorbed was calculated from the difference between the 
equilibrium mass and mass of sample dried at 105˚C for 
24 h. Saturated solutions of salts with various relative 
humidities (RH) that were used were: LiCl (RH = 0.15), 
CH3COOK (RH = 0.20), CaCl2 (RH = 0.31), KNO2 (RH 
= 0.45), Na2Cr2O7 (RH = 0.52), NaNO2 (RH = 0.66), 
NaClO3 (RH = 0.75), (NH4)2SO4 (RH = 0.81), Pb (NO3)2 
(RH = 0.98).  

2.5. Determination of Total Iron Content 
The total Fe content in samples was measured with ex- 
traction by 1 M HCl. To 0.1 g of iron modified sample, 
20 ml of 1 M HCL was added and shaken in a reciprocal 
shaker for 1 h after which the sample was centrifuged 
and decanted. This was repeated until the samples were 
free from Iron evidenced by a change in color to greyish 
green, the original color of unmodified montmorillonite. 
Iron analysis was done using Atomic Absorption Spec- 
trophotometry (AAS) with a Hitachi Z-5000 spectropho- 
tometer. 

2.6. Diazinon Adsorption Experiment 
Diazinon (97.5%) purity was purchased from Dr. Ehren- 
storfer-Schäfers laboratory, German. HPLC grade dis- 
tilled water was purchased from Nacalay Tesque and 
acetonitrile from Kanto Chemical Co., INC. The concen- 
trations of diazinon in solution were determined by a 
Jasco PU-2089 plus HPLC equipped with an Inertsil 
ODS-4 5 µm 4.6 × 150 mm column, 1.0 mL/Min Flow 
rate, UV detection at 246 and an Injection volume of 100 
µL. A Jasco UV-2075 plus intelligent UV-Vis detector 
was used and results were obtained from a Hitachi D- 
2500 Chromato-integrator.  

Diazinon adsorption experiments were conducted in 
glass tubes with screw caps lined with Teflon. All expe- 
riments were conducted in the tubes covered with alumi- 
nium foil at pH of 4. Concentrations ranging from 0 to 
128 µmol/L were used. To 0.05 g sample of montmoril- 
lonite, 30 ml of pesticide solution were added. Samples 
were shaken in a reciprocal shaker for an equilibration 
time of 24 hours under room temperature. The amount of 
sample (0.05 g), shaking time (24 hours) and the initial 
pH of the solution (4) were all determined during pre- 
liminary experiments. Adsorption was calculated from 
the difference between the initial and equilibrium con- 
centrations. 

3. Results and Discussion 
3.1. Characterization of Final Product 
Visual observations indicated that, with Fe-modification, 
the color of the sample had changed from greyish green 

(Ca-montmorillonite) to light-reddish brown (Fe-modi- 
fied montmorillonite) and Dark-reddish brown (FeOH- 
modified montmorillonite). This indicated that Fe was 
present in the Fe modified samples. Figure 2 shows the 
X-ray diffraction patterns of the three samples, Ca-mont- 
morillonite, Fe-modified montmorillonite and FeOH- 
modified montmorillonite.  

The XRD pattern for Ca-montmorillonite is typical for 
Calcium exchanged montmorillonite [17] with a d-spac- 
ing of 15.27 Å. With iron modification, the d-spacing 
changed to 15.33 Å for FeOH-modified and 15.38 Å for 
Fe-modified. This indicated that some iron was success- 
fully intercalated into the interlayer space with some iron 
on the outer surfaces of the samples as well. The d-spac- 
ing values are obviously smaller than those of Fe-pillared 
clays in previous reports (2.5 ± 0.5 nm) [18]. However, 
they are similar to those reported in the other literature 
(about 1.54 nm) [19] as it is considered that hydrolyzates 
of iron ion are difficult to form stable and consistent 
structures. 

3.2. Determination of Total Fe Content of  
Samples 

The amount of Fe ions contained in the prepared sample 
was slightly higher than the CEC of the host montmoril- 
lonite. Table 1 indicates the total iron results for the 
samples. It was clear that the Fe-modified sample had a 
higher total Fe of 140.7 Cmol/Kg in comparison to the 
FeOH-modified sample which had a total Fe of 128 
Cmol/Kg. This was, to a large extent influenced by the 
level of hydrolysis which the Fe solution used during the 
modification had undergone. The Fe (NO3)3 solution that 
was used for the Fe-modified montmorillonite sample 
had gone through lesser hydrolysis with a preparation pH 
of 3.30. For the FeOH-modified sample, prior hydrolysis 
with NaOH to a pH of 5.34 may have resulted into a 
larger molecular size of Fe hence less possibility of pe- 
netrating into the interlayer space. 

3.3. Adsorption Experiments 
Adsorption experiments are useful to evaluate adsorption 
capacities of adsorbents and thermodynamic parameters 
like the energy of adsorption. Adsorption isotherms of 
water vapour on Ca-montmorillonite, Fe-modified mont- 
morillonite and FeOH-modified montmorillonite at con- 
stant temperature of 20˚C ± 1˚C are shown in Figure 3. 
The isotherms indicate that the amount of water adsorbed 
by the montmorillonite samples increased with increas- 
ing RH. The water adsorption isotherms were Type II (S- 
shaped) sigmoidal function curves as commonly found 
for the sorption of water by clay [20]. However, the wa- 
ter adsorption was higher for the Fe modified than the 
rest of the samples. For all the samples adsorption 
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Figure 2. XRD patterns for (i) Ca-montmorillonite; (ii) Fe- 
modified and (iii) FeOH-modified montmorillonite. 
 

 
Figure 3. Water adsorption isotherm for Fe-modified, FeOH- 
modified and Ca-modified montmorillonite. 
 
Table 1. Total iron content for Fe modified montmorillonite 
and FeOH modified montmorillonite. 

SAMPLE Fe (Cmol/Kg) 

Fe-modified 140.7 

FeOH-modified 128.0 

 
increased rapidly until RH = 0.31. Then it increased 
gradually from 0.31 - 0.66 and again increased rapidly 
till RH = 0.98. 

The isotherm was subjected to Langmuir analysis. The 
Xm values for the RH = 0.15 - 0.66 region were calcu- 
lated for the Fe-modified, FeOH-modified and Ca-mont- 
morillonite samples respectively. The maximum adsorp- 
tion (Xm) so calculated were as 0.3947 g∙g−1 and 0.3514 
g∙g−1 and 0.3326 g∙g−1 for Fe-modified and FeOH-mod- 
ified and Ca-montmorillonite samples respectively. The 
specific surface areas for the samples obtained through 
monolayer adsorption were 789 m2∙g−1, 702 m2∙g−1 and 
665 m2∙g−1 for the Fe-modified, FeOH-modified and Ca- 
montmorillonite respectively. These SSA results espe- 
cially for the Fe-montmorillonite samples are in close 

agreement with those reported by Marco-Brown [21]. 
Figures 4-6 indicate the linear langmuir plots for the 
three samples. There was strong correlation of the sam- 
ples to the Langmuir theorem as evidenced by the strong 
correlation efficiency values of the samples. 

Figure 7 shows the adsorption isotherms of Diazinon 
on Fe-modified, FeOH-modified and Ca-montmorillonite. 
The results indicate that Fe modified montmorillonite 
had the highest potential to adsorb diazinon pesticide in 
comparison to FeOH-modified and Ca-montmorillonite. 
The chromatogram of diazinon before and after the ad- 
sorption experiments did not significantly change except 
for the intensity which was an indication that diazinon 
remained intact. There was generally strong adsorption 
of diazinon on both Fe samples as evidenced by the ad- 
sorption isotherm. The content of iron in the Fe modified 
sample was high which resulted into the sample having a 
higher adsorptive capacity. Since Fe has high affinity to 
Sulphur which is present in the molecular structure of 
diazinon, the presence of iron meant that diazinon could 
adhere to the adsorbent. In general, during the prepara- 
tion of the Fe modified samples, the adsorbed Fe ions 
would be transformed into different chemical and physi- 
cal forms (including oxidation state) depending upon the 
surrounding conditions, such as pH since the existence of 
iron species is pH dependent [22]. These iron chemical 
species, which include Fe2+ and Fe3+ ions, were the ones 
responsible for the removal of diazinon. They would, in 
effect alter the migration behaviour of pollutants in mont- 
morillonite by redox reactions, adsorption, and change in 
swelling behaviour of the montmorillonite. However, the 
prepared samples may have contained other iron species 
since Fe ions are likely to transform into various chemi- 
cal and physical forms [23-26]. The iron content of all 
the samples was slightly higher than the CEC of raw 
montmorillonite. The slight similarity of the amount of 
iron contained in the samples to the CEC of the samples 
indicated that the cation exchange sites of both samples 
were completely saturated with the iron species availa- 
ble. 

The adsorption data have been subjected to the Lang- 
muir adsorption isotherm analysis with the following 
linearized form: 

C X 1 XmK C Xm= +             (1) 

where:  
C—the equilibrium concentration (µmol∙L−1); 
X—the amount adsorbed (µmol∙g−1); 
Xm—the maximum adsorption (µmol∙g−1); 
K—a constant related to binding energy (unitless). 

Table 2 indicates the Langmuir analysis results for the 
three samples. The Langmuir’s adsorption capacities so 
calculated were 58.8, 54.1 and 31.3 µmol∙g−1 for Fe- 
modified, FeOH-modified and Ca-montmorillonite re-  
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Figure 4. Langmuir plot for Fe-modified sample. 

 

 
Figure 5. Langmuir plot for FeOH-modified sample. 

 

 
Figure 6. Langmuir plot for Ca-montmorillonite sample. 

 
spectively. Langmuir’s K values related to binding ener- 
gy on the samples were 1.52, 0.75 and 0.04 for Fe-mod- 
ified, FeOH-modified and Ca-montmorillonite respec- 
tively. This indicated that the Fe modified sample apart 
from having high adsorptive capacity also has a high 
Langmuir binging energy constant, implying that diazi- 
non was strongly bound to the sample unlike with the 
FeOH-modified and Ca-montmorillonite. Using this sam-  

 
Figure 7. Adsorption isotherms of diazinon on Fe-modified, 
FeOH-modified and Ca-montmorillonite. 

 
Table 2. Maximum adsorption and Langmuir K-constant 
for Ca-montmorillonite, FeOH-modified montmorillonite 
and Fe-modified montmorillonite. 

Sample Maximum Adsorption Langmuir  
K-Constant 

Ca-montmorillonite 31.3 0.04 

FeOH-modified 54.1 0.75 

Fe-modified 58.8 1.52 

 
ple to remove diazinon as a water pollutant would there- 
fore result into Diazinon being strongly bound to the ad- 
sorbent and its mobility would be greatly reduced. 

The degree of polymerization had a significant con-
tribution to the adsorptive properties of the samples. 
Figures 8(a) and (b) are illustrations of the mechanism 
for diazinon adsorption.  

The Fe-modified sample, which was prepared at a 
lower pH than the FeOH-modified sample was less po- 
lymerized and had a comparatively larger available room 
within its structure for diazinon adsorption. On the con- 
trary, the FeOH-modified sample whose preparation pH 
was slightly higher, had a higher degree of polymeriza- 
tion. This implied that the available room for adsorption 
of diazinon was less hence lower adsorption. In other 
studies, FeOH-montmorillonite prepared at OH/Fe = 2 
(similar to current study), practically all original exchan- 
geable cations in the montmorillonite sample were re- 
placed by ferric ions with a majority of the total present 
outside the interlayer space [27]. This was due to the 
large size of the polymerized Fe species which could into 
easily penetrate into the interlayer space. This is unlike 
the Fe-modified sample whose Fe species could easily 
penetrate the interlayer space. 

4. Conclusion 
The use of iron modified montmorillonite as an adsor- 
bent for pollutants such as diazinon is an effective means  
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 FeOH-modified sample 

 
(a) 

 Fe-Modified Sample 

Montmorillonite sheet        FeOH 

Fe3+/Fe2+                   Diazinon  
(b) 

Figure 8. (a) Mechanism for diazinon adsorption on FeOH- 
modifies sample; (b) Mechanism for diazinon adsorption on 
Fe-modified sample. 
 
of environmental pollution clean-up. Iron modified mont- 
morillonite is a low cost adsorbent due to the abundance 
of montmorillonite in nature as well as that of iron. Its 
application is not only diazinon but also other Sulphurs 
containing Organophosphate pollutants. At environmen- 
tal concentrations of diazinon (<3 µmol∙L−1 in many 
countries), iron modified montmorillonite would be very 
effective in pollution control. The mechanism for adsorp- 
tion of diazinon on iron modified montmorillonite shows 
that diazinon can be adsorbed in the interlayer space of 
montmorillonite as well as its surface. The size of iron 
due to polymerization greatly determines its adsorptive 
abilities. 
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