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ABSTRACT 

A theory of triple magnetopolarons in an isolated quantum well in a strong magnetic field was developed. We study the 
behavior of the magnetooptical absorption peaks corresponding to the transitions of an electron at the Landau level with 
quantum numbers n ≥ 2. For n = 2 at the point of equality of cyclotron frequency and the frequency of optical phonon 
(LO), there is a cross of three terms of the electron-phonon system (the electron at the Landau level n = 2, the electron 
at n = 1, and the optical phonon and electron at n = 0 and two phonons), considered as a function of the cyclotron 
frequency. Interaction with phonons takes off the degeneracy of the terms and leads to three disjoint branches of the 
electron-phonon spectrum. The theory predicts that in the resonant magnetic field, the peak of magnetooptical 
absorption splits into three peaks, the intensity and position of which are dependent in a complex way on the magnitude 
of the magnetic field and the constant of the electron-phonon coupling. 
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1. Introduction 

When the following condition is valid:  

0c                     (1) 

(where 0  is maxima frequency of longitudinal optical 
phonon (OP), c eН сm  c  is the cyclotron frequ- 
ency, е is the electron’s charge, Н is the magnetic field 
tension, с is the velocity of light in the vacuum, тс is the 
effective mass of electron), the magnetopolaron states are 
formed in semiconductors. This effect is called the effect 
of Johnson-Larsen [1,2] or magnetopolaron resonance.  

When the magnetic field satisfies the condition (1), 
there is a resonant relation between the levels with dif- 
ferent Landau quantum numbers n (Figure 1). The elec- 
tronphonon interaction leads to taking off the degener- 
acy in points of the level’s intercept which is manifested 
in magneto-optical phenomena. Magnetopolaron state 
was first discovered in a bulk InSb as the interband ab- 
sorption of light [4,5].  

Korovin and Pavlov showed [3] that in case of a bulk 
semiconductor, the magnetopolaron splitting is propor- 
tional to 2 3
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Figure 1. Schematic spectrum of electron 1—Landau level n 
= 2, 2—level n = 1 and optical phonon, 3—level n = 0 and 
two optical phonons. Dotted lines show the splitting of 

terms,  a A B   ;  —term’s energy, 1' and 3'—up- 

per and lower branches of the spectrum. Points of reso- 
nance 0 c   and break of the upper branch c   

 a0 0 1  and lower branch  0 1c a   0  of the spec- 

trum are shown. 0  , where 0  is the dimensionless con-  
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stant of the electron-phonon bonding, and 0 1  . 
During the last several years, a new wave of interest to 

the Johnson-Larsen effect [4-22] was stimulated by ap-
pearance of semiconducting objects of reduced dimen-
sion in which the effect is increased due to dimensional 
quantization of the electron’s motion in perpendicular 
direction.  

Formation of polaron states takes place both in three- 
dimensional (3D) [1-3,22] and quasi-two-dimensional 
(2D) systems [4-22]. A difference between the systems is 
in electron’s spectra in the presence of quantizing mag-
netic field: in 3D-system these are one-dimensional 
Landau zones, and in 2D system these are discrete Lan- 
dau levels. This difference leads to different magnitudes 
of pushing aside the levels of electron-phonon system 
[3,8,9].  

In 3D and 2D systems, the magnetopolaron states play 
an important role in formation of frequency dependence 
of magnetooptical phenomena, such as the intarband ab-
sorption of light [1,2,6], the cyclotron resonance [4,5, 
7,10] and Raman scattering of light [12-14].  

In 2D-systems, the effect is enhanced, and the distance 
between the components of the splitting of the peak be-
comes proportional to 1 2

0 0  [8-15].  
When the Condition (1) is implemented, and when 

Landau levels n = 1 and n = 0 plus one LO-phonon are 
connected, the double polarons are formed [22]. If in this 
condition, three Landau levels n = 2, n = 1 plus one 
LO-phonon and n = 0 plus two LO-phonons are con-
nected then triple polarons are formed [22]. The triple 
polarons in a bulk semiconductor were discussed in [23] 
and in the quantum wells they were considered in works 
[12-14,16].  

The energy spectrum of magnetopoarons—both usual 
(classical) and combined [18]—was defined in two ways, 
which give the same results. One of them was first used 
in [3] and consisted in determining the poles of the sin- 
gle-particle Green’s function of an electron. It was also 
used in [8,17,18]. Another method was described in work 
[14] devoted to double magnetopolaron of A type. Wave 
functions of the polaron are represented as the superpose- 
tion of wave functions of unperturbed states (in the case 
of the A-polaron, this state (n = 1 and n = 0 plus one LO- 
phonon) is that with yet unknown coefficients). Schrod- 
inger equation reduces to a system of two equations for 
two coefficients. Equating the determinant to zero, we 
obtain a quadratic equation for the energies of polaron 
states p = a and p = b. The advantage, as compared with 
the first method, is that simultaneously with the calcula- 
tion of the energies we find the wave functions of mag-
netopolarons, and these functions are necessary to de- 
scribe a lot of magneto-optical effects. In [22], the results 
of [14] for the A-polaron were generalized to the case of 
all double polarons, including regular combined and spe- 

cial polaron states.  
In this paper, we present the results of theoretical in- 

vestigation of the energy spectrum of a triple mango- 
topolaron, and the influence of the triple magnotopolaron 
spectrum on the frequency dependence of magneto-op- 
tical interband peaks in semiconductor quantum wells.  

2. Problem Statement and Analysis of the 
Mass Operator in Case of a Low  
Temperature 

We consider a semiconductor in which in a surface layer 
there is a single-dimensional potential well that quantizes 
the motion of electrons in a direction normal to the inter-
face (we mean InSb in MDS system and GaAs hetero-
junction). In the magnetic field, which is normal to the 
interface, the energy levels in the well become discrete 
ones (with infinitely fold degeneracy), and their classifi-
cation depends on the ratio of the energy in the well and 
the cyclotron energy. Below we assume that the energy 
of quantization in the well is high as compared with the 
cyclotron one, and only the lowest level with adjacent 
Landau levels is taken into account  

We assume that the valence (V) and conductance (C) 
bands are located in the center of Brillouin zone, and the 
direct dipole transition between them is allowed. Inte- 
raction with LO-phonons, which determines in this case 
the splitting of peaks, we assume to be a weak one. In 
many semi-conductors the following condition is valid: 
  1c vm m   (where mv is the effective mass of the 
hole). We consider in this case the interband optical tran-
sitions, which creates an electron in a potential well of 
the conduction band and a hole near the peak of the 
Landau band or in a potential well in the valence band in 
the case of GaAs heterojunction (possibility of formation 
of exciton states is neglected). If the temperature is low, 
and the magnetic field is close to the resonance (see (1)), 
then the hole states will be stationary ones in the chosen 
mechanism of interaction, because the hole can not actu-
ally emit the LO-phonon due to a lack of energy. The 
hole cannot also absorb phonons because of their absence. 
An electron in the conductance band can, in this case, 
actually emit the LO-phonon and move to the level with 
quantum number n – 1.  

Wave functions of electron in this case can be written 
as  

      , , exp n l x y z ikx y z         (2) 

where  n y  is a wave function of a harmonic oscilla- 
tor in the magnetic field,   represents l, n and k quan- 
tum numbers that characterize the state of electron in the 
potential well in the magnetic field (l is a number of the 
quantization level along z axis, i.e. along the normal di- 
rection to the interface, that describes the levels of di- 
mensional quantization in the well; n is the number of 
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Landau level; k is the continuous quantum number, 
which describes the degeneration of discrete levels). 

 describes the quantum states in the well. In case 
when only the lowest level l = 0 is occupied, the function 

 can be well approximated by the following ex- 
pression:  

 l z

 0 z

  3
0 2 exp 2z b z bz              (3) 

where 

   3 2 2
048 11 32p db m e N N   S  ,     (4) 

Here, mo is the mass of a free electron, Nd is the con- 
centration of ionized impurities in the depleted layer, 

 is the concentration of electrons (cm−2) on l = 0 level, SN

p  is the static dielectric constant of a semiconductor.  
The absorption will be characterized by a fraction of the 
absorbed energy [24] 

0 Re ,c rW W iG 


    

0

        (5) 

where 

    1
, , ;r cG i       


          (6) 

is the single-particle retarded Green’s function of the 
electron  

 0

1

2c c cn       
 

             (7) 

   0

1

2v g v vE n        
 

         (8) 
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c m E m 




 

  
   

    0  

(9) 

Here,  is the interband momentum matrix element, 
evaluated at the Bloch modulating factors, 

y
cvP

gE  is the 
band gap, I  is the statistical permittivity of the dielec- 
tric, c v 0  is the energy of l = 0 level in the potential 
well.  

Below we consider in detail the transition of electron 
under the influence of light on Landau level with n = 2 in 
the conductance band. In this case, three terms of elec- 
tron-phonon system (electron at n = 2 level, electron at n 
= 1 level and one LO-phonon, and electron at n = 0 level 
and two LO-phonons), which are considered as functions 
of c , intersect in the point 0c   (Figure 1). The 
electron-phonon interaction leads to break of degeneracy 
in the point 0 c   and, consequently, to appearance 
of three non-intersecting branches of the spectrum. 

The problem of calculation of the spectrum is compli- 
cated by the fact that emission of phonons is connected 
with transitions of electrons between Landau levels, 
where the density of states is high. Formally, it means the  

impropriety of usual series expansion of the mass opera- 
tor with respect to coupling constant, and necessity of 
selective summation of the series.  

We start the analysis of the self-energy part of 
 ,   with consideration of the graph in Figure 2, a, 

which is  

     1 1
1

1222
01

, q cC J i 


     


  
q

q  

 (10) 

where  

     

   

2 2 2 2
0 0 0 0 0

2 1 1
0 0 0

4 , 2

2

q c

p

C l Vq l

e l

  

    


   ,m 


  

 


 (11) 

and  J  q  is the matrix element of  exp iqr  ope- 
rator, evaluated at the wave functions (3) 

       
     
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e

exp 2

n n
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y

J M q k k q u L u
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       

      

2
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0
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2 2 ,
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 


 

   




 (13) 

Here  , ,x y zq q qq —is the wave-vector of phonon, 
 —is the high-frequency dielectric constant, V —is 
the normalization volume,  n n

vL   u  is Laguerre poly- 
nomial [25],  1,n nminv 


In case then the electron is thrown by light to Landau 

level n = 2 in the sum by 
1

. 

n  the term with 
1

1n   
will be a resonant one since it corresponds to a real reso- 
nant transition between the neighboring Landau levels. 
Assuming 2n  , 

1
1n   for the resonant term we 

will have  

    1

01
2,

p
A i              (14) 

where  
 

d)c)


01,  

 

0, q


a) b)

 

Figure 2. Examples of graphs, which are essential for calcu- 
lation of the self-energy part. 
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 (15) 

Graphs with two phonon lines, which are presented in 
Figures 2(b) and (c) in the area of resonance when 

0   are, correspondingly, equal to 

    2 3
021

2,
p

A B           (16) 

    2 3
022

2,
p

D         (17) 

where  

 

   

     

0

0

0
0

d , e ,

d 2 , e
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










 
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





   (18) 

The general selection rule of the diagrams for the con- 
sidered case of low temperatures and 0c   is as fol- 
lows. For the Landau level with quantum number n the 
essential graphs will be those ones in which n-multiple 
resonant transition with emission of LO-phonons and 
serial transitions of the electron between the neighboring 
Landau levels is allowed. Graphs in which number of 
emitted phonons is greater than the number of possible 
resonant transitions will have smallness with respect to 
bonding constant, which is greater, the more “extra” pho- 
non lines in the graph. That is why, for the level n = 2, 
besides graphs in Figures 2(b) and (c), another graphs 
will be essential, for example in Figure 2(d). Graphs 
presented in Figure 3 are small with respect to the bond- 
ing constant since they contain non-resonant transitions 
and, correspondingly, non-resonant denominators. 

3. Evaluation of the Spectrum of  
Electron-Phonon System 

In order to obtain a qualitative picture, we neglect first of 
all graphs, which contain apical parts. In this case it is 
enough to take into account a series of graphs presented 
in Figure 4. Non-resonant terms in all graphs are neg- 
 

 

Figure 3. Graphs, which are small as compared with those 
presented in Figure 2. 

+ + +  

Figure 4. A series of graphs that leads to Equation (19). 
 
lected due to their smallness with respect to the resonant 
ones. In this case, the summation of the series in Figure 
4 leads to the following equation  

0

2

A
B


 

 

 
 



           (19) 

If we make a substitution x   , then (19) can be 
presented as follows  
 

   3 2 0x A B x B A             (20) 

The roots of (20) are  

 
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 
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        

     


  (21) 

where 

 
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32

27
cos

2

B A

A B




 


 

   

.        (22) 

Taking into account the made substitution we have for 
the spectrum of the electron-phonon system  

1 1 2 2 3, , 3x x x                  (23) 

and when 0   we have 

   1 2 3, 0,A B A B .              (24) 

When 0   and  2 A B   from (23) we 
have 

   
1 2 32 2

2 , ,
2 2

A B A B 
    

 
 

       0.  (25) 

i.e., the lower branch of the spectrum disappears, at high 
magnetic fields two branches remain (see Figure 1). 

If 0  and  A B  , then we have a re- 
verse picture  

   
1 2 32 2

0, , 2 .
2 2

A B A B 
    

 
 

      (26) 

i.e., upper branch of the spectrum disappear, and also two 
branches remain (see Figure 1). 

Under disappearance of the upper branch of the spec- 
trum 1  we should understand disappearance of the  
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bond between states of electron with n = 1 and n = 0. 
Actually, when the magnetic field decreases the cyclo- 
tron frequency becomes so much lesser than 0  that the 
transition of electron thrown by light to level n = 2 
trough level n = 1 becomes impossible. Since the energy 
levels are discrete ones the energy conservation law is 
not valid. With rising the magnetic field the cyclotron 
frequency becomes so much higher than 0  that the 
transition of electron from level n = 2 to level n = 1 and 
then to level n = 0 becomes impossible, and in this case 
the bond between the levels n = 2 and n = 1 disappears 
and two levels n = 1 and n = 0 remain, and, correspond- 
ingly, two branches 

++

+ . . .  ++

+ . . .  

(а) 

(b)  

Figure 5. Essential apical parts. 
 

Taking into account the term 
22

 from (17) in the 
dispersion Equation (19) leads to addition of term (17) to 
the left side of the equation. Solution of (19) by taking 
into account this addition gives respectively small change 
in roots, which can be neglected.  



1  and 2  of the spectrum. 
Now we account in Equation (19) the apical points. 

For Landau level n = 2 it is necessary to take into ac- 
count the main graphs of those diverging in the reso- 
nance point, which are presented by the series presented 
in Figure 5(a), where the bold line presents the series in 
Figure 5(b).  

4. Splitting of Magnetooptical Absorption 
and Results Discussion 

 
The general term of the series is equal to  

 

 

0
2

1
2

2

m
m

mm
m

C

B

 

   
 




 

    

  (27) 

where m = 2, 3, … 
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(28) 

Three terms of the electron-phonon system, which in the 
absence of interaction, are interceptions in point 

0c  , after accounts of electron-phonon bonding are 
splitting, according to results of Section 2, into three 
branches of electron-phonon spectrum. The peak of 
magnetooptical absorption, which corresponds to excita-
tion of electron by light to Landau level with n = 2, will 
also split at 0c   into three  -like peaks. The ab-
sorption will be determined by three branches of elec-
tron-phonon spectrum in the conduction band since when 
the condition   1c vm m   is valid, the holes do not 
contribute into non-stationarity of the levels.  

Now we calculate the absorption as a function of light 
frequency in the region of the studied peak by neglecting 
the small contribution of apical parts. 

By taking into account Expressions (5), (6) and (19), 
as well as inequality of effective masses we have  

0
0

,

2

c A
W W Г

BГ
Г

 
 


 
  

    
      

   (29) 

where  

0 0 0

5
, .

2g c c c cГ E           
 

(  0I x
1m

c

 is the first order Bessel function [25]). When 
, . For InSb 

( 0

0mC 
24.4 meV    , ) а = 1.8 and С2 

= 0.175, С3 = 0.013 etc
00.013cm 

0  (30) 

Using the properties of  -function [26], from (29) 
we have  

m
. 
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               (31) 

where 

   2 2 .F A B A                                   (32) 
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As one can see from (32) when 0   the integral 

intensities of left and right peaks are equal to each other 
 л пI I А А В   , since the central peak has the inte-

gral intensity equal to  цI B A B  and it is  A B  
times lesser than the intensity of lateral peaks. The peaks 
are located in points ( )А ВлГ   


 (left peak), 

 (central peak) and 0цГ  пГ А В     (right 
peak). The distance between peaks in this case is the 
smallest one. If 0   and А В2  , then  
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,  i .e .  

the right peak becomes dominant, 
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

 . If 0     A B   , 

then the intensity of the left and the right peaks shuffle, 
and the intensity of the central peak remains unchanged:  
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Above we assumed that the resonant transition with 
emission of optical phonon occurs between Landau le- 
vels, which correspond to dimension-quantized level 
with zero number l = 0. This limitation is not principled, 
the difference is just in the magnitude of the matrix ele- 
ment J , which determines the magnitude of the le- 
vels’ splitting. On the other hand, the real depths of qu- 
antum-dimensional potential wells in quantum-dimen- 
sional nanostructures are quite enough for formation at 
least two or three Landau levels, which correspond to 
one dimensional-quantized sub-level with number l = 0 
and space from each other on the magnitude 0  [27].  

If we choose 0 24.4 meVc    , 0 , 0.0 13cm m
0.01   (the chosen parameters correspond to InSb), 

then  (variation 
parameter b coincides by order of magnitude with in- 
verse thickness of the quantum-dimensional potential 
well), 

2 12 210 cm, 1.5 10R b   12 1m2.4 c 

 2 2 2 1.8a R b  , A = 0.353, B = 0.336. The 
magnitude of splitting is  0 0.002 эв  A B , 
which is possible to be measured.  

Since dissipative mechanisms of scattering (for exam- 
ple, by acoustic phonons or impurities) are neglected, the 
levels of the electronic sub-system are discrete ones, and 
the lines of absorption appear to be  -like ones. Natu-
rally, in a real situation the lines are broadened and the 
picture of splitting becomes less pronounced. However, 
the considered mechanism of scattering due to LO-pho- 
nons is sharply non-monotonous one (in contrast with 
dissipative mechanisms, which depend monotonically on 
magnetic field and external frequency) and can be ex-

tracted on their background.  
Strictly speaking, the developed theory is valid if the 

energy of ionization of exciton in the magnetic field is 
small as compared with the energy of electron-phonon 
bonding, and the magnetic field is restricted by condition 

0c  . For example, the ionization energy of exciton 
in the field H = 3.5 × 104 Oe for GaAs is 1.5 × 10–5 eV 
[28], and this corresponds to the level n = 0. With the 
rising number of Landau levels the ionization energy 
sharply decreases such, for n = 2 it is significantly lesser 
than above magnitude. On the other hand, splitting ef-
fects, as shown above, are 0.002 эВ, since the neglect of 
exciton states is possible.  
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