

Influence of the Neutron Flux Characteristic Parameters in the Irradiation Channels of Reactor on NAA Results Using *k*₀-Standardization Method

Tran Van Hung Research and Development Center for Radiation Technology, Hochiminh City, Vietnam Email: tranhungkeiko@yahoo.com

Received November 28, 2011; revised January 5, 2012; accepted January 16, 2012

ABSTRACT

An approximation method using to estimate the influence of the uncertainties of the neutron flux characteristic parameters in the irradiation positions on the NAA results using k_0 -standardization technique was presented. Those are the epithermal reactor neutron spectrum shape-factor α , the effective resonance energy \overline{E}_r for a given nuclide and the thermal to epithermal neutron flux ratio f. The method is applied to estimate the effect of the uncertainties in the determination of α , \overline{E}_r and f on final NAA results for some irradiation channels of the Dalat reactor. It also shows that presented method is suitable in practical use for the estimation of the errors due to the uncertainty of the neutron flux characteristic parameters at the irradiation position.

Keywords: k₀-Standardization Technique; Error Propagation Function; Neutron Flux Characteristics; Dalat Reactor

1. Introduction

Since the k_0 -standardization method was introduced in NAA [1], it has been broadly applied in the reactor in the world. The fundamental concept of k_0 -method was being elaborated previously in great detail [1-3]. The concentration of an element in the k_0 -method is calculated by:

$$\rho(ppm) = \frac{\frac{N_p/t_m}{SDCW}}{\left(\frac{N_p/t_m}{SDCW}\right)^*} \frac{1}{k_0} \frac{f + Q_0^*(\alpha)}{f + Q_0(\alpha)} \frac{\varepsilon_p^*}{\varepsilon_p}$$
(1)

with k_0 in Equation (1) defined as:

$$k_0 = \frac{M^* \theta \sigma_0 \gamma}{M \theta^* \sigma_0^* \gamma^*} \tag{2}$$

In Equations (1) and (2):

```
M—atomic mass;
```

 θ —isotopic abundance;

 σ_0 —2200 m·s⁻¹ (*n*, γ) cross-section;

 γ —absolute gamma-intensity;

 N_p —peak area corrected for pulse losses;

W—sample weight in gram;

 w^* —comparator weight in microgram;

 $S = 1 - \exp(-\lambda t_{irr}); t_{irr}$ —irradiation time; λ —decay constant;

 $D = \exp(-\lambda t_d); t_d$ —decay time;

 $C = [1 - \exp(-\lambda t_m)]/\lambda t_m; t_m$ —measuring time;

f—thermal to epithermal neutron flux ratio;

 $Q_0(\alpha) = I_0(\alpha)/\sigma_0$; $I_0(\alpha)$ —resonance integral corrected for a non-ideal epithermal neutron flux distribution (assumed $1/E^{1+\alpha}$);

 ε_p —detector's efficiency;

When the epithermal neutron flux distribution deviates from ideality, *i.e.* it does not follow the 1/E-law, $Q_0(\alpha)$ of nuclide *i* can be written by:

$$Q_{0i}(\alpha) = (Q_{0i} - 0.429) / (\overline{E}_{ri})^{\alpha} + 0.429 / [(2\alpha + 1)(0.55)^{\alpha}]$$
(3)

with α —neutron spectrum shape factor deviating from the 1/*E*-law, independent of neutron energy and $|\alpha| \ll 1$.

 \overline{E}_{ri} —effective resonance energy of nuclide *i*.

The asterisks in Equations (1) and (2) refers to the comparator, which is suitable for coirradiation with the sample; in most case, Au is used as a comparator. The k_0 -factors to Au for interested isotopes in NAA were experimentally determined and tabulated in report [4] with an accuracy which better than 2% (average ~1%). The relevant nuclear data as Q_{0i} and \overline{E}_{ri} can be found in a tabulated form or in a computer library. α , f and ε_p must be experimentally determined and they depend on spe-

cific irradiation channel and detector, which are used in practice. The detector's efficiency (ε_p) can be determined with an uncertainty about 2%; but the uncertainty of α can be more than 10%, even bigger, depend on the irradiation channels in reactor. Since the term $[f + Q_0^*(\alpha)]/[f + Q_0(\alpha)]$ in Equation (1), it is clear that an additional parameter, \overline{E}_{ri} , should be considered, because the uncetainties of \overline{E}_{ri} of some nuclides are about 20% [4,5].

The accuracy and the applicability of the k_0 -standardization method were detailly presented in paper [5] by F. De CORTE *et al.* In paper [6], J. OP De BEEK evaluated the effect of errors of α and \overline{E}_{ri} on the results in terms of concentration, based on the ¹⁹⁷Au comparator; in that $Q_{0i}(\alpha)$ was approximated by :

$$Q_{0i}\left(\alpha\right) \approx Q_{0i}\left(\overline{E}_{ri}\right)^{-\alpha} \tag{4}$$

However, with this approximation, it led that some results in paper [6] have to be put to discussion (see below).

In this work, we carry out an approximation method to evaluate the effect of errors of α and \overline{E}_{ri} on the NAA results in the k_0 -standardization method. The obtained results showed that the approximate method in this work is acceptable with confident accuracy.

2. Base of Approximation

As we know, α value is smaller than unity in absolutte value. In practice, in irradiation channels of reactor, absolute value of α is less than 0.2 (in most cases, $|\alpha| < 0.1$ and this condition is satisfactory in reactor core). In

the approximation of J. OP De BEEK, it is good for the nuclides having $Q_{0i} > 1$, but is not for the nuclides with $Q_{0i} < 1$. Due to $|\alpha| \ll 1$, in paper [7,8], we suggest substituting $Q_{0,i}(\alpha)$ from Equation (3) by the following approximated formula:

$$Q_{0i}(\alpha) \approx Q_{0i} \left(\overline{E}_{ri}\right)_{i}^{-a\alpha}$$

or $Q_{0i}(\alpha) \approx Q_{0i} \exp\left(-a_{i}\left(\ln \overline{E}_{ri}\right)\alpha\right)$ (5)

where a_i is constant for each nuclide and determined by fitting the values of $Q_{0i}(\alpha)$, which are calculated from Equation (3) in range $|\alpha| \le 0.2$, then fitting according to function (5) (see reference [7,8]). Note that, a_i of each nuclide depends on the sign of α . The values of a_i for the interested nuclides in NAA are given in Table 1. Seeing the Equation (5), it differs to Equation (4) of J. OP De BEEK by a correctional coefficient a_i . However, it can be used good for all nuclides with uncertainties of the calculated $Q_{0i}(\alpha)$ less than about 5% for the nuclides having $Q_{0i} < 1$ and less than about 2% for $Q_{0i} > 1$ with $|\alpha| \le 0.2$. Indeed, we carried out a survey of the ratios of $Q_{0i}(\alpha)$ calculated from Equation (5) (in this work) and Equation (4) (of J. OP De BEEK) to Equation (3) (accurate expression) for Q_{0i} from 0.44 (⁴⁶Sc) to 248 (⁹⁷Zr) with $\alpha = -0.1$. The results are presented in Figure 1 and some results are presented in Table 2. Clearly, the approximated expression in this work is better than one of J. OP De BEEK. Moreover, the calculated $Q_{0i}(\alpha)$ from three expression Equation (3), Equation (4) and Equation (5) for ${}^{45}Sc(n, \gamma){}^{46}Sc$ presented in **Table 3**. The another nuclides presented in papers [7,8] also confirm the above conclusion.

Figure 1. Survey of the ratios of $Q_{0i}(\alpha)$ calculated from Equation (5) (in this work) and Equation (4) (of J. OP De BEEK) to Equation (3) (accurate expression) for different Q_{0i} with $\alpha = -0.1$.

T. VAN HUNG

2	5	2
2	Э	2

Table 1. The values of a_i for the interesting nuclides in NAA.

Target nuclide	Formed nuclide	a_i with $\alpha < 0$	a_i with $\alpha > 0$	Target nuclide	Formed nuclide	a_i with $\alpha < 0$	a_i with $\alpha > 0$
²³ Na	²⁴ Na	0.524987	0.301907	¹¹⁶ Sn	^{117m} Sn	0.996203	0.992120
²⁶ Mg	²⁷ Mg	0.600414	0.260458	¹²² Sn	^{123m} Sn	0.958568	0.907080
²⁷ Al	²⁸ Al	0.632092	0.355905	¹²⁴ Sn	^{125m} Sn	0.996581	0.993233
³⁷ Cl	³⁸ Cl	0.618735	0.340898	¹²¹ Sb	^{122m} Sb	0.99639	0.991949
⁴¹ K	⁴² K	0.744902	0.510677	¹²³ Sb	^{124m} Sb	0.993951	0.988375
⁴⁵ Sc	⁴⁶ Sc	0.225177	0.13871	127 I	¹²⁸ I	0.991934	0.984365
⁵⁰ Ti	⁵¹ Ti	0.61391	0.300434	¹³³ Cs	^{134m} Cs	0.993476	0.980868
51 V	52 V	0.484063	0.253348	¹³⁰ Ba	^{131m} Ba	0.991752	0.983823
⁵⁰ Cr	⁵¹ Cr	0.444713	0.235221	¹³² Ba	^{133m} Ba	0.961113	0.921759
⁵⁵ Mn	⁵⁶ Mn	0.768236	0.591296	¹³⁸ Ba	¹³⁹ Ba	0.721393	0.434897
⁵⁸ Fe	⁵⁹ Fe	0.744577	0.553371	¹³⁹ La	¹⁴⁰ La	0.824392	0.703294
⁵⁹ Co	⁶⁰ Co	0.899648	0.792867	¹⁴⁰ Ce	¹⁴¹ Ce	0.696096	0.429943
⁶⁴ Ni	⁶⁵ Ni	0.603571	0.327784	¹⁴² Ce	¹⁴³ Ce	0.798767	0.600323
⁶³ Cu	⁶⁴ Cu	0.786528	0.594356	¹⁴¹ Pr	^{142m} Pr	0.84513	0.710838
⁶⁵ Cu	⁶⁶ Cu	0.768558	0.578803	¹⁴⁶ Nd	¹⁴⁷ Nd	0.884097	0.750436
⁶⁴ Zn	⁶⁵ Zn	0.879728	0.716396	¹⁴⁸ Nd	¹⁴⁹ Nd	0.956282	0.908206
⁶⁸ Zn	^{69m} Zn	0.928832	0.842012	¹⁵⁰ Nd	¹⁵¹ Nd	0.982296	0.962764
⁷¹ Ga	⁷² Ga	0.967117	0.932900	¹⁵² Sm	¹⁵³ Sm	0.995457	0.985053
⁷⁵ As	⁷⁶ As	0.984389	0.968602	¹⁵⁴ Sm	¹⁵⁵ Sm	0.949148	0.899154
⁷⁴ Se	⁷⁵ Se	0.982325	0.966392	¹⁵³ Eu	^{154m} Eu	1.002410	0.972428
⁷⁹ Br	^{80m} Br	0.984481	0.963835	¹⁵⁸ Gd	¹⁵⁹ Gd	0.993709	0.987888
⁸¹ Br	^{82m} Br	0.988802	0.976569	¹⁶⁰ Gd	¹⁶¹ Gd	0.941083	0.869589
⁸⁵ Rb	^{86m} Rb	0.985106	0.962061	¹⁵⁹ Tb	¹⁶⁰ Tb	0.991765	0.983428
⁸⁷ Rb	⁸⁸ Rb	0.990543	0.978106	¹⁶⁴ Dy	^{165m} Dy	-0.59612	-0.13894
⁸⁴ Sr	^{85m} Sr	0.984748	0.963917	¹⁶⁵ Ho	¹⁶⁶ Ho	0.989663	0.976313
⁸⁶ Sr	^{87m} Sr	0.945262	0.87112	¹⁷⁰ Er	¹⁷¹ Er	0.950799	0.903065
⁸⁹ Y	^{90m} Y	0.963615	0.891243	¹⁶⁹ Tm	¹⁷⁰ Tm	1.004700	0.991756
⁹⁴ Zr	⁹⁵ Zr	0.957566	0.87700	¹⁷⁴ Yb	¹⁷⁵ Yb	0.357880	0.221067
⁹⁶ Zr	⁹⁷ Zr	0.999115	0.997943	¹⁷⁶ Yb	¹⁷⁷ Yb	0.908488	0.809688
⁹³ Nb	^{94m} Nb	0.969700	0.928380	¹⁷⁵ Lu	^{176m} Lu	0.996032	0.991774
⁹⁸ Mo	⁹⁹ Mo	0.995883	0.990853	174 Hf	¹⁷⁵ Hf	0.759887	0.609407
¹⁰⁰ Mo	¹⁰¹ Mo	0.988295	0.970848	¹⁷⁹ Hf	^{180m} Hf	0.990364	0.980132
⁹⁶ Ru	⁹⁷ Ru	0.991702	0.978811	$^{180}\mathrm{Hf}$	¹⁸¹ Hf	0.913130	0.837096
¹⁰² Ru	¹⁰³ Ru	0.938892	0.877634	¹⁸¹ Ta	^{182m} Ta	0.997216	0.992780
¹⁰⁴ Ru	¹⁰⁵ Ru	0.982706	0.958954	¹⁸⁶ W	¹⁸⁷ W	0.988597	0.977570
¹⁰³ Rh	^{104m} Rh	1.29702	1.11028	¹⁸⁵ Re	¹⁸⁶ Re	1.014020	0.998171
¹⁰⁸ Pd	^{109m} Pd	0.993450	0.987460	¹⁸⁷ Re	^{188m} Re	0.958039	0.921987
¹¹⁰ Pd	^{111m} Pd	0.989017	0.971347	¹⁹⁰ Os	^{191m} Os	0.891403	0.800890
¹⁰⁷ Ag	¹⁰⁸ Ag	0.934276	0.880183	¹⁹² Os	¹⁹³ Os	0.908020	0.831151
¹⁰⁹ Ag	^{110m} Ag	1.00012	0.990589	¹⁹³ Ir	¹⁹⁴ Ir	1.049670	1.015320
¹¹⁴ Cd	115Cd	0.994496	0.988007	¹⁹⁸ Pt	^{199m} Pt	0.987525	0.974821
¹¹³ In	^{114m} In	0.999628	0.993641	¹⁹⁷ Au	¹⁹⁸ Au	1.001300	0.990335
¹¹⁵ In	^{116m} In	1.07891	1.03788	¹⁹⁶ Hg	^{197m} Hg	0.493779	-0.32989
112 Sn	^{113m} Sn	0.995628	0.991087	²³⁸ U	²³⁹ U	1.0004	0.99725

Nuclide	Formed nuclide	Q_0	Ratio of Equation (5)/Equation (3)	Ratio of Equation (4)/Equation (3)
¹⁶⁴ Dy	¹⁶⁵ Dy	0.25	0.98	2.15
⁴⁵ Sc	⁴⁶ Sc	0.43	1.01	1.934
⁵⁰ Cr	⁵¹ Cr	0.53	1.042	1.708
51V	52V	0.55	1.052	1.665
²³ Na	²⁴ Na	0.59	1.037	1.6
²⁶ Mg	²⁷ Mg	0.64	1.05	1.59
⁵⁰ Ti	⁵¹ Ti	0.67	1,049	1.534
³⁷ Cl	³⁸ Cl	0.69	1.049	1.508
²⁷ Al	²⁸ Al	0.71	1.046	1.48
⁵⁹ Co	⁶⁰ Co	1.99	1.012	1.064
¹⁸⁶ W	^{187}W	13.8	1.001	1.008
⁹⁸ Mo	⁹⁹ Mo	53.8	1.0	1.002
⁹⁶ Zr	⁹⁷ Zr	248	1.0	1.0

Table 2. Ratio of $Q_0(\alpha)$ calculated by Equations (4) and (5) to Equation (3) of some nuclide in reaction (n, γ) using in NAA.

Table 3. The results calculated $Q_{0i}(\alpha)$ from three expression Equations (3)-(5) with α in interval [-0.2, 0.2] for ${}^{45}Sc(n, p){}^{46}Sc$.

Value of α	$Q_{0i}(\alpha)$ from Equation (3)	$Q_{0i}(\alpha)$ from Equation (5)	$Q_{0i}(\alpha)$ from Equation (4)	Value of α	$Q_{0i}(\alpha)$ from Equation (3)	$Q_{0i}(\alpha)$ from Equation (5)	$Q_{0i}(\alpha)$ from Equation (4)
-0,20	0.7072	0.6850	2.429	0.02	0.4263	0.4287	0.371
-0.18	0.6629	0.6554	2.048	0.04	0.4139	0.4178	0.313
-0.16	0.6242	0.6270	1.726	0.06	0.4026	0.4071	0.264
-0.14	0.5905	0.5998	1.455	0.08	0.3923	0.3967	0.222
-0.12	0.5607	0.5738	1.227	0.10	0.3828	0.3865	0.187
-0.10	0.5345	0.5490	1.034	0.12	0.3741	0.3767	0.158
-0.08	0.5112	0.5252	0.872	0.14	0.3661	0.3671	0.133
-0.06	0.4905	0.5025	0.7346	0.16	0.3587	0.3577	0.112
-0.04	0.4718	0.4807	0.619	0.18	0.3518	0.3486	0.095
-0.02	0.4551	0.4599	0.522	0.20	0.3455	0.3396	0.080

Notice: Equation (3): true expression; Equation (5): expression in this work; Equation (4): expression in paper [6] of J. Op De Beek.

From **Table 1**, it shows that coefficients a_i of nuclides having $Q_{0i} > 1$ are close to unity, but a_i of the nuclides having $Q_{0i} < 1$ differs more than unity. Therefore, the approximation of Equation (4) in paper [6] is only acceptable for the nuclides having $Q_{0i} > 1$, but for the nuclides having $Q_{0i} < 1$, it is not reliable.

In this work, we use the approximation expression; Equation (5), to evaluate influence of the uncertainties of α , f and \overline{E}_{ri} on the final element concentration in k_0 -method in the channels; 7 - 1, neutron trap of Dalat reactor (Vietnam) and channel 17 of THETIS reactor (Belgium) for the nuclides; ⁴⁵Sc, ⁵⁹Co, ⁹⁴Zr, ¹⁸⁶W, ¹⁹⁷Au, ⁹⁸Mo, ⁹⁶Zr. We choose these nuclides, because they differ considerably in Q_{0i} and \overline{E}_{ri} values. The numerical data

of concerning isotopes and irradiation channels used in this work are summarized in **Tables 4** and **5**.

3. Results and Discussion

The absolute uncertainty in ρ can be calculated from the uncertainties of the variables (denoted x_j) which determine ρ in Equation (1):

$$s_{\rho} = \sqrt{\sum_{j} s_{x_{j}}^{2} \left(\frac{\partial \rho}{\partial x_{j}}\right)^{2}}$$
(6)

where $\partial \alpha / \partial x_i$ are the corresponding partial derivatives.

According to the customary error propagation theory,

 Table 4. Characteristics of isotopes used in the calculations of this work.

Nuclide	$Q_0 = I_0 / \sigma_0$	\overline{E}_r (eV)
⁴⁵ Sc	0.44	5130
⁵⁹ Co	1.993	136
⁹⁴ Zr	5.05	6260
¹⁸⁶ W	13.7	20.5
¹⁹⁷ Au	15.7	5.65
⁹⁸ Mo	53.1	241
⁹⁶ Zr	248	338

Table 5. Characteristics of irradiation channels considered: channles 17 of Thetis reactor, Belgium [9], 7 - 1 channel and neutron trap of Dalat reactor, Vietnam.

Channel	α	f
Channel 7 - 1 (Dalat reactor)	-0.044 ± 0.004	14.2 ± 0.5
Neutron trap (Dalat reactor)	-0.031 ± 0.004	33.0 ± 0.5
Channel 17 (Thetis reactor)	-0.028	15.0

the error propagation functions can be written as:

$$Z_{\rho}\left(x_{j}\right) = \left|\left(\frac{\partial\rho}{\rho}\right) \middle/ \left(\frac{\partial x_{j}}{x_{j}}\right)\right| = \left|\frac{\partial\rho}{\partial x_{j}}\frac{x_{j}}{\rho}\right|$$
(7)

and relative error is:

$$s_{\rho}\left(x_{j}\right) = Z_{\rho}\left(x_{j}\right) \frac{\Delta x_{j}}{x_{j}}$$

$$\tag{8}$$

3.1. Influence of Uncertainty of \overline{E}_{ri} on NAA Results

From Equation (8), the uncertainty of the concentration (ρ) in k_0 -method due to the uncertainties of the effective resonace energies can be written by:

$$\frac{\Delta\rho}{\rho}\Big|_{\overline{E}_{ri}} = Z_{\rho} \left(\overline{E}_{ri}\right) \frac{\Delta\overline{E}_{ri}}{\overline{E}_{ri}}$$
(9)

Using Equation (7) for the effective resonance energy of the nuclide i, we obtain:

$$Z_{\rho}\left(\overline{E}_{ri}\right) = \left| \alpha \left(\frac{a_{i}Q_{0i}}{Q_{0i} + f\left(\overline{E}_{ri}\right)^{a_{i}\alpha}} \right) \right|$$
(10)

The values of calculated $Z_{\rho}(\overline{E}_{ri})$ for chosen nuclides are presented in **Table 6**. The effect of the effective resonance energy on NAA result include the uncertainties of the effective resonance energies of analytical and comparator nuclides. In this case, Au used as comparator with \overline{E}_{Au} of 5.65 eV and uncertainty of 7.1%

from paper [5], the contribution of the uncertainty of \overline{E}_{Au} to the error of NAA result in channels 7 - 1, neutron trap of Dalat reactor and channel 17 of THETIS reactor is 0.17%, 0.077% and 0.13%, respectively. Clearly, the effect of the uncertainty of the effective resonance energy of Au is negligible and can be overlooked in the evaluation.

The analysis for 94 nuclides used in NAA showed that the uncertainties of their effective resonace energy are from 0 to 20%, except ⁷⁵As (34%) [4]. In this measure, we are able to realize that the effect of them on NAA result is also negligible. For example, ⁴⁵Sc ($\overline{E}_r = 5130$ eV, $\Delta \overline{E}_r = 17\%$) and ⁹⁵Zr ($\overline{E}_r = 338$ eV, $\Delta \overline{E}_r = 2.1\%$), the contribution of the uncertainty of the effective resonance energy to the error of NAA result in three above channels is less than 0.01% for ⁴⁵Sc and 0.1% for ⁹⁵Zr.

In epicadmium neutron activation analysis (ENAA), the f-term in Equation (10) should be omitted. The error propagation function of \overline{E}_{ri} can be written:

$$Z_{\rho}\left(\bar{E}_{i}\right) = \left|\alpha a_{i}\right| \tag{11}$$

The calculated results of $Z_{\rho}(\overline{E}_{ri})$ for the nuclides; ⁴⁵Sc, ⁵⁹Co, ⁹⁴Zr, ¹⁸⁶W, ¹⁹⁷Au, ⁹⁸Mo, ⁹⁶Zr in ENAA are carried in **Table 7**. In this case, the error propagation function is higher than in the one of irradiation without cadmium. Generally speaking, $a_i < 1$ and if $\alpha \ll 1$, the contribution of $\Delta \overline{E}_{ri}$ to the error of NAA result for almost analytical nuclides is less than 1% and can be omitted in the calculation.

3.2. Influence of Uncertainty of α on NAA Results

Also from Equation (8), the uncertainty of ρ due to the uncertainty of α can be written:

$$\frac{\Delta\rho}{\rho}\Big|_{\alpha} = Z_{\rho}(\alpha)\frac{\Delta\alpha}{\alpha}$$
(12)

and error propagation function of α .

$$Z_{\rho}(\alpha) = \left| -\alpha \left(\frac{a_{i}^{*} Q_{0i}^{*} \ln(\overline{E}_{ri}^{*})}{Q_{0i}^{*} + f(\overline{E}_{ri}^{*})^{a_{i}^{*}\alpha}} - \frac{a_{i} Q_{0i} \ln(\overline{E}_{ri})}{Q_{0i} + f(\overline{E}_{ri})^{a_{i}\alpha}} \right) \right|$$
(13)

The values of the error propagation function of α in the channels; 7 - 1 and neutron trap of Dalat reactor (Vietnam) and channel 17 of THETIS reactor (Belgium) for the nuclides; ⁴⁵Sc, ⁵⁹Co, ⁹⁴Zr, ¹⁸⁶W, ¹⁹⁷Au, ⁹⁸Mo, ⁹⁶Zr were shown in **Table 8**. From **Table 8**, for the nuclides having $Q_0 < Q_{0Au}$ in three these channels, the contribution of the uncertainty of α to the error of NAA result is not significant, about less than 1%. But for nuclides having $Q_0 \gg Q_{0Au}$, this effect is noticeable. For instance, in channel 7 - 1 of Dalat reactor ($\alpha = -0.044$, $\Delta \alpha = 12\%$

Table 6. Calculation results of $Z_{\rho}(\overline{E}_{i})$ for chosen nuclides.

Nuclide	7 - 1 channel (Dalat reactor)	Neutron trap (Dalat reactor)	Channel 17 (THETIS reactor)
⁴⁵ Sc	0.000316	0.000102	0.000185
⁵⁹ Co	0.005765	0.001939	0.00329
⁹⁴ Zr	0.01430	0.005304	0.008004
^{185}W	0.02278	0.01025	0.01379
¹⁹⁷ Au	0.02396	0.01106	0.01467
⁹⁸ Mo	0.03620	0.02163	0.02244
⁹⁶ Zr	0.04601	0.03065	0.02671

Table 7. Calculated results of $Z_{\rho}(\overline{E}_{n})$ for the nuclides in ENAA.

Nuclide	7 - 1 channel (Dalat reactor)	Neutron trap (Dalat reactor)	Channel 17 (THETIS reactor)
⁴⁵ Sc	0.00991	0.00743	0.00631
⁵⁹ Co	0.03958	0.02969	0.02519
⁹⁴ Zr	0.04213	0.03160	0.02681
^{185}W	0.04350	0.03262	0.02768
¹⁹⁷ Au	0.04406	0.03304	0.02803
⁹⁸ Mo	0.04382	0.03286	0.02788
⁹⁶ Zr	0.04396	0.03329	0.02797

Table 8. Calculation results of $Z_o(\alpha)$ for chosen nuclides.

Nuclide	7 - 1 channel (Dalat reactor)	Neutron trap (Dalat reactor)	Channel 17 (THETIS reactor)
⁴⁵ Sc	0.03571	0.01684	0.02241
⁵⁹ Co	0.01755	0.01022	0.01055
⁹⁴ Zr	0.03379	0.01083	0.02489
^{185}W	0.02154	0.00916	0.01390
¹⁹⁷ Au	0.000	0.000	0.000
⁹⁸ Mo	0.11340	0.07016	0.07294
⁹⁶ Zr	0.19924	0.14750	0.12751

[7,8]), the contribution of the uncertainty of α on the error of result of ⁴⁵Sc ($Q_0 = 0.44$) is 0.42%, but for ⁹⁹Mo and ⁹⁶Zr is 1.36% and 2.4%, respectively. As a comment, for RNAA using ¹⁹⁷Au comparator, the systematic effect for α value up to 0.1 is practically negligible for all nuclides with a low enough Q_0 value (e.g. ⁴⁵Sc, ⁵⁹Co, ⁵⁸Fe, ect.). On the other hand, for nuclides with a relatively large Q_0 value, a correction for the α effect becomes really necessary. To reduce the α effect, it is either to develop more accurate and precise techniques for α determination or to choose the irradiation channels with the

 α value low enough.

In the case of the epicadmium neutron activation, Equation (13) can be changed into:

$$Z_{\rho}(\alpha) = \left| -\alpha \left(a_i^* \ln\left(\overline{E}_{ii}^*\right) - a_i \ln\left(\overline{E}_{ii}\right) \right) \right|$$
(14)

The values of the error propagation of α in this case were carried in **Table 9**. In this case, it clearly shows the inaccuracy of the approximation expression in [6] (Equation (4) in this report). Really, according to Equation (4), the error propagation function of α in the irradiation with cadmium can be written:

$$Z_{\rho}\left(\alpha\right) = \left|-\alpha\left(\ln\left(\overline{E}_{ri}^{*}\right) - \ln\left(\overline{E}_{ri}\right)\right)\right|$$
(15)

Equation (15) is different to Equation (14) by the correctional coefficients a_i . However, the value of the error propagation function in channel 7 - 1 of Dalat reactor, for ⁴⁵Sc is 0.0083 from Equation (14) and 0.2997 from Equation (15). If the uncertainty of α in experiment is 100%, the contribution of uncertainty of α on NAA result is 0.83% and 29.97%, respectively. It differs by a factor of 30 (!). Similarly, in channel 17 of Thetis reactor, the error propagation function for ⁴⁵Sc is 0.0053 and 0.1907. The difference is huge. This comment is also correct for nuclides having $Q_0 < 1$. It once more confirms that the approximation expression in paper [6] is not good for nuclides having $Q_0 < 1$.

From Equation (13) or Equation (14), we easily estimate the influence of α on NAA results, if we know uncertainty of α in the irradiation channel. However, for ENAA (epicadmium neutron activation analysis) the situation is much more dramatic, especially for nuclides with low Q_0 value.

3.3. Influence of Uncertainty of *f* **on NAA Results**

The error propagation function $Z_{\rho}(f)$ can be written:

$$Z_{\rho}(f) = \left| -f \frac{Q_{0i}^{*}(\bar{E}_{ri})^{a_{i}\alpha} - Q_{0i}(\bar{E}_{ri}^{*})^{a_{i}^{*}\alpha}}{\left(Q_{0i}^{*} + f(\bar{E}_{ri}^{*})^{a_{i}^{*}\alpha}\right) \left(Q_{0i} + f(\bar{E}_{ri})^{a_{i}\alpha}\right)} \right|$$
(16)

The values of the error propagation function of f in the channels; 7 - 1 and neutron trap of Dalat reactor and channel 17 of THETIS reactor for the nuclides; ⁴⁵Sc, ⁵⁹Co, ⁹⁴Zr, ¹⁸⁶W, ¹⁹⁷Au, ⁹⁸Mo, ⁹⁶Zr were carried in **Table 9**. The uncertainty of f contributes on the error of NAA results is:

$$\frac{\Delta\rho}{\rho} = Z_{\rho} \left(f \right) \frac{\Delta f}{f} \tag{17}$$

Generally seeing, the uncertainty of f in experiment is about less than 4%, therefore, from **Table 10**, the contribution of the uncertainty of f on the error of NAA result

Table 9. Calculation results of $Z_{\rho}(\alpha)$ for the nuclides in ENAA.

Nuclide	7 - 1 channel (Dalat reactor)	Neutron trap (Dalat reactor)	Channel 17 (THETIS reactor)
⁴⁵ Sc	0.00835	0.00626	0.00531
⁵⁹ Co	0.11817	0.08863	0.07520
⁹⁴ Zr	0.2920	0.2190	0.18584
^{186}W	0.05509	0.04132	0.03506
¹⁹⁷ Au	0.000	0.000	0.000
⁹⁸ Mo	0.1640	0.1230	0.10439
⁹⁶ Zr	0.17969	0.13477	0.11435

Table 10. Calculation results of $Z_{\rho}(f)$ for chosen nuclides.

Nuclide	Channel 7-1 (Dalat reactor)	Neutron trap (Dalat reactor)	Channel 17 (THETIS reactor)
⁴⁵ Sc	0.512	0.321	0.494
⁵⁹ Co	0.398	0.2697	0.393
⁹⁴ Zr	0.204	0.167	0.225
¹⁸⁵ W	0.0202	0.0208	0.0252
¹⁹⁷ Au	0.0	0.0	0.0
⁹⁸ Mo	0.282	0.323	0.281
⁹⁶ Zr	0.413	0.566	0.428

is about less than 2%.

3.4. Collective Influence of Uncertainties of α , \overline{E}_{ri} and f on NAA Results

In view of the above, we can estimate the influence of the uncertainties of α , \overline{E}_{ri} and f on final NAA results. The contribution of these parameters on the errors of the analysis results is written as:

$$\frac{\Delta\rho}{\rho}\Big|_{\alpha,\overline{E_r,\alpha}} = \sqrt{\left(\frac{\Delta\rho}{\rho}\Big|_{\alpha}\right)^2} + \left(\frac{\Delta\rho}{\rho}\Big|_{\overline{E_r}}\right)^2 + \left(\frac{\Delta\rho}{\rho}\Big|_{f}\right)^2 \quad (18)$$

However, as discussion above, the \overline{E}_r effect is negligible and can be omitted in Equation (18). Thus, the contribution on error of NAA results in this case is primarily due to the uncertainties of α and f. Finally, as well as estimation above, this overall contribution of α and f is about 2% on the error of NAA results. It was also confirmed by actual analysis.

4. Conclusion

For α in the irradiation position relatively small ($\alpha \ll 1$), Equation (5) is a good approximation to estimate influence of the neutron flux characteristics on NAA result using the k_0 standardization method. From this approximative expression, the error propagation functions of the parameters were presented. They can be used for the estimation of the errors on NAA due to the uncertainty of the neutron flux characteristic parameters at the irradiation position. From the results of this report, it was also confirmed that the approximation in paper [6] is only acceptable for the nuclides having $Q_{0i} > 1$, but not for the nuclides having $Q_{0i} < 1$.

REFERENCES

- A. Simonits, F. De Corte and J. Hoste, "Single-Comparator Methods in Reactor Neutron Activation Analysis," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 24, No. 1, 1975, pp. 31-46. doi:10.1007/BF02514380
- [2] A. Simonits, L. Moens, F. De Corte, A. De Wispelaere, A. Elek and J. Hoste, "k₀-Measurements and Related Nuclear Data Comilation for (n, *γ*) Reactor Neutron Activation Analysis," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 60, No. 2, 1980, pp. 461-516. doi:10.1007/BF02518906
- [3] L. Moens, F. De Corte, A. De Wispelaere, J. Hoste, A. Simonits, A. Elek and J. Szabo, "k₀-Measurements and Related Nuclear Data Comilation for (n, *i*) Reactor Neutron Activation Analysis," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 82, No. 2, 1984, pp. 385-452. doi:10.1007/BF02037061
- [4] F. De Corte, A. Simonits, F. De Wispelaere and J. Hoste, "A Compilation of k₀-Factors and Related Nuclear Data for 94 Radionuclides of Interest in NAA," INW/KFKI Interim Report, 1986.
- [5] F. De Corte, A. Simonits, A. De Wispelaere and J. Hoste, "Accuracy and Applicability of the k₀-Standardization Method," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 113, No. 1, 1987, pp. 145-161. doi:10.1007/BF02036056
- [6] J. Op De Beek, "Critical Evaluation of the Effective Resonance Energy Concept and the Epithemal Neutron Spectrum Shape-factor α for Reactor NAA Purposes," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 89, No. 1, 1985, pp. 169-190.
- [7] T. V. Hung, "Determination of α Factor of Epithemal Neutron Flux in Dalat Reactor, Vietnam, Based on Neutron Spectrum Calculated Using MCNP Code," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 283, No. 2, 2010, pp. 707-711. doi:10.1007/s10967-010-0457-0
- [8] T. V. Hung, "Modified Method of α Determination in the $1/E^{1+\alpha}$ Epithermal Neutron Spectrum of Reactor," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 285, No. 2, 2010, pp. 331-336. doi:10.1007/s10967-010-0549-x
- [9] F. De Corte, L. Moens, A. Simonits, K. Sordo-el Hammami, A. De Wispelaere and J. Hoste, "The Effect of the Epithermal Neutron Flux Distribution on the Accuracy of Absolue and Comparator Standardization Method in (n,γ) Activation Analysis," *Journal of Radioanalytical and Nuclear Chemistry*, Vol. 72, No. 1-2, 1982, pp. 275-286.