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ABSTRACT 

Automated falling detection is one of the important tasks in this ageing society. Such systems are supposed to have little 
interference on daily life. Doppler sensors have come to the front as useful devices to detect human activity without 
using any wearable sensors. The conventional Doppler sensor based falling detection mechanism uses the features of 
only one sensor. This paper presents falling detection using multiple Doppler sensors. The resulting data from sensors 
are combined or selected to find out the falling event. The combination method, using three sensors, shows 95.5% ac- 
curacy of falling detection. Moreover, this method compensates the drawbacks of mono Doppler sensor which encoun- 
ters problems when detecting movement orthogonal to irradiation directions. 
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1. Introduction 

In these days, the elderly population has been growing 
thanks to advances in the medical field. Healthy, safe and 
secure life is important particularly for the elderly. How- 
ever, we are faced with problem of increasing the old-age 
dependency ratio. The old-age dependency ratio is the 
ratio of the sum of the population aged 65 years or over 
to the population aged 20 - 64. The ratio is presented as 
the number of dependents per 100 persons of working 
age (20 - 64). According to estimates of the United Na- 
tions, for about 30 countries, this ratio is projected to 
reach 30% in 2020 [1]. In particular, it is expected to 
reach 52% in Japan. There is an urgent need to develop 
automated health care systems to detect some accidents 
for the elderly. 

Falling detection is one of the most important tasks to 
prevent the elderly from having crucial accidents. Yu [2] 
and Hijaz et al. [3] classified falling detection systems 
into three groups, wearable device approach, ambient 
sensors approach, and cameras approach. Wearable de- 
vices are easy to set up and operate. Devices can be at-
tached to chest, waist, armpit, and the back [4]. The 
shortcomings of these devices are that they are easily 
broken, and that they are intrusive. Furthermore, the 
older we become, the more forgetful we become. There- 
fore, no matter how sophisticated the algorithm imple-  

mented on wearable devices is, there is no meaning if 
they fail to wear them. On the other hand, ambient sen- 
sors such as pressure and acoustic sensors can also be 
used. These sensors are cheap and non-intrusive. More- 
over, they are not prone to privacy issues. However, 
pressure sensors cannot discern whether pressure is from 
the user’s weight, while acoustic sensors show high false 
alarm rate in a situation of loud noise [5]. Cameras en- 
able remote visual verification, and multiple persons can 
be monitored using a single setup. However, in private 
spaces such as bath and restroom, cameras are prohibited. 
Also in living room, many people do not want to be 
monitored by cameras. 

Doppler sensor is an inexpensive, palm-sized device. It 
is capable of detecting moving targets like humans. Us- 
ing this sensor, we can construct passive, non-intrusive, 
and noise tolerant systems. Activity recognition using 
Doppler sensor has been actively studied recently. Kim et 
al. proposed classification of seven different activities 
based on micro-Doppler signature characterized by arms 
and legs with periodic and active motion [7]. Subjects act 
toward sensor. An accuracy performance above 90% is 
achieved by using support vector machine (SVM). Tivive 
et al. [8] classified three types of motion, free arm-mo- 
tion, partial arm-motion, and no arm-motion. Based on 
arm-motion, they describe human activity status. Liu et 
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al. [9] show automatic falling detection. They use two 
sensors, which are positioned 1.8 m and 3.7 m away from 
the point of falling. The data of each sensor is independ- 
ently processed. Subjects act forward, back, left-side, and 
right-side fall. The directions of activities include be- 
tween two sensors, toward a sensor, and away from a 
sensor. 

Doppler sensor is sensitive to the objects moving 
along irradiation directions; however, less sensitive to 
movements orthogonal to irradiation directions. For the 
practical use of Doppler sensors, we propose falling de- 
tection using multiple Doppler sensors to alleviate the 
moving direction dependency. By using sensors that have 
different irradiation directions, each sensor complements 
less sensitive directions of the other sensors. Sensor data 
are processed by feature combination or selection meth- 
ods. In the combination method, features of multiple 
sensors are simply combined. In the selection method, 
the sensor is selected based on the power spectral density 
of the particular bandwidth, which characterizes the fal- 
ling activity. After the process of each method, features 
are classified by using SVM or k-nearest neighbors (k- 
NN). We evaluate both methods in terms of the number 
of features, the number of sensors, and the type of classi-
fier. We also discuss the accuracy of each activity direc-
tion and the viability of these methods for the practical 
use. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce basic Doppler sensor system, 
how we can determine target velocity from Doppler shift. 
In Section 3, we explain about flow of the proposed  
falling detection algorithm using multiple Doppler sen-
sors. In Section 4, the sensor setup of the proposed 
method and the type of tested activities are explained. 
Our methods are evaluated by comparing them to the one 
sensor method. We discuss the accuracy of falling detec-
tion for each activity direction, and the viability of the 
proposed feature combination and selection methods in 
terms of the practical use. In Section 5, we draw conclu- 
sion. 

2. Doppler Sensor 

In this section, we discuss the basic information about 
Doppler sensor. Doppler sensor transmits a continuous 
wave and receives the reflected wave which has its fre- 
quency shifted the moving object. The Doppler shift is 
defined as 

2 c
d

f
f v

c v



                 (1) 

where v is the target velocity, c is the light velocity, and 
fc is the carrier frequency. In Equation (1), since c v , 
the target velocity is represented as c  



2 d
c

c
v

f
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fc and c are the given values. Only by observing the Dop-
pler shift fd, we can determine the target velocity v. 

3. Falling Detection Algorithm Using  
Multiple Doppler Sensors 

In this section, we show the proposed falling detection 
algorithm using multiple Doppler sensors. Figure 1 de- 
picts the algorithm of falling detection. Our approach 
involves four phases: 1) Decision of extraction time 
range, 2) Feature extraction, 3) Feature combination/se- 
lection, 4)Training and classification. 

3.1. Decision of Extraction Time Range 

This process is aimed at deciding the timing for extract- 
ing 4 second features from the voltage data of the sensors. 
Firstly, we compute spectrogram by using short time 
Fourier transform (STFT). It is reported that 25 - 50 Hz 
bandwidth features are suitable to distinguish falling and 
non-falling when the carrier frequency is 5 GHz [9]. As 
shown in Equation (2), Doppler shift is proportional to 
carrier frequency on the condition of the same target ve- 
locity. Our experiment uses 24 GHz carrier frequency so 
that bandwidth should be expanded by 4.8 times, i.e. to 
within 120 - 240 Hz. On each time bin, which is decided 
by discrete Fourier transform (DFT) points and window 
overlap, we calculate the power spectral density (PSD) of 
120 - 240 Hz. tmax, the time that the PSD of 120 - 240 Hz 
becomes maximum in 12 second experiment duration, 
indicates the time that remarkable event happens. Re- 
markable events mean activities involving a sudden quick 
movement using whole body. We specify the 4 second 
voltage data centered at tmax, and then extract features. 
Figures 2 and 3 show STFT spectrogram and PSD of 
120 - 240 Hz of experienced activities, respectively. 
Subjects act at about time 7 second. 
 

 

Figure 1. The proposed falling detection. 
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(a) Standing - Falling 

  
(b) Walking - Falling 

  
(c) Standing up - Falling 

Figure 2. Spectrogram (left) and PSD of 120 Hz - 240 Hz 
(right) of Falling. 

3.2. Feature Extraction 

Using the 4 second voltage data centered at tmax, we com
pute cepstral coefficients. M  cepstral coeffi-
cients (MFCC) ar -frequency is the 

mpresses higher frequency. MFCC is 
ysis of voice up to about 16 
otion, we found empirically 

e C0 is direct- 
current component. C7-C12 come from latter half of 0 - 

10

lled window. The window 
up

. 

a- 
 the selection 
 are compared 

- 
el-frequency

e applied in [9]. Mel
scale definition that emphasizes lower frequency 0 - 
1000 Hz and co
basically applied to the anal
kHz. On sensing falling m
that up to 500 Hz is enough to observe human activities 
on condition of 24 GHz carrier frequency. To compute 
MFCC, 0 - 1000 Hz frequency band is divided into line-
arly spaced blocks, which are called filter banks. Sam-
pling frequency is 1024 Hz so that there is almost no 
process to compress higher frequency. Strictly speaking, 
instead of MFCC, cepstral coefficients analysis is applied. 
To calculate cepstral coefficients, we use the Auditory 
Toolbox [10]. The method is as follows. 

1) Divide amplitude spectrogram into 13 linearly 
spaced filter banks. 

2) Compute fast Fourier transform (FFT) of amplitude 
spectrum of each filter bank.  

3) Compute discrete cosine transform (DCT) of the 
obtained data above. The result is called cepstrum.  

4) We use C1-C6 coefficients, wher

24 Hz, which is not focused on to observe human 
activity.  

Cepstral coefficient features are computed for each set 
of 256 DFT points which is ca

date frequency is defined as frame rate. As the frame 
rate becomes higher, the number of features increases

3.3. Feature Combination/Selection 

In our proposal, at most three sensors are used. We em- 
ploy two methods to make features using multiple Dop- 
pler sensors, a combination method and a selection 
method. In the combination method, cepstral coefficients 
of the sensors are simply associated. Figure 4(a) shows 
the example of feature structure using two sensors. “l
bel” represents the type of activity. In
method, the PSD of 120 - 240 Hz at tmax

among sensors before computing cepstral coefficients. 
 

  
(a) Walking 

  
(b) Standing – Lying down 

  
(c) Picking up 

  
(d) Sitting on a chair 

Figure 3. Spectrogram (left) and PSD of 120 Hz - 240 Hz 
(right) of Falling. 
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The sensor that has the largest PSD of 120 - 240 Hz at 
tmax is selected for feature extraction. The selected sensor 
is assumed to catch human motion better than the other 
sensors.  

3.4. Training and Classification 

To train and classify the feat res, we use SVM and k-NN
For classification by ATLAB, LIBSVM 

rnel behaves like RBF with some parameters 
ifficulty [14] so 

eneral. Kernel 

pillar. A dozen desks 
ar

Figure 6 shows how multiple sensors are deployed in 
the proposed methods. The room is rectangular, and its 
longer side is 10.5 m and shorter side is 7 m. In the mid- 
dle of the each longer side, there is 

e placed in the rear. The angle between positions X and 
Y is 135˚, and that between positions Y and Z is 90˚. We 
used three sensors that transmit continuous wave whose 
frequency band is 24 GHz. Each sensor uses a slightly 
different transmit frequency to prevent interference among 
the sensors. Sampling frequency is 1024 Hz. Sensors are 
1 m high from floor as shown in Figure 7, because 
strength of signal reflected from the torso is higher than 
that from any other parts of human body, and reflection 
on the floor cannot be negligible if they are deployed too 
close to the floor. 
 

u . 
 using SVM on M

[11] is available. SVM has a kernel function that decides 
boundaries of groups. As a kernel function, linear, 
polynomial, radial basis function (RBF), and sigmoid are 
able to be used on LIBSVM. We exploit the RBF kernel. 
A linear kernel is the special case of RBF [12], and 
sigmoid ke
[13]. Polynomial kernel has numerical d
that RBF is the most suitable kernel in g

 

has several parameters and they should be tuned by 
changing each parameter. When we classify by using 
k-NN, Euclidean distance between the features is used. 

We use four persons (A, B, C, D), who are men from 
20’s to 30’s, as training and test subjects as shown in 
Table 1, and apply cross validation. This process gener- 
alizes the results of SVM and k-NN. In addition, features 
are normalized to prevent the greater values from having 
stronger effect on the results than the others. 

4. Performance Evaluation 

Figure 5 shows contents of the multiple Doppler sensors. 
They include client units, a base unit, and a PC. Clien

(a) Feature combination method 

 
(b) Feature selection method 

Figure 4. Feature structure. Ci is the ith cepstral coefficient. 
 

Table 1. Training and testing subject patterns. 

t 
units receive reflected microwave at Doppler module and 
CPU (MSP430F2618, Texas Instruments) outputs data to 
base unit. The connection between base unit and each 
client unit is connected by LAN cable. The collected data 
of each Doppler sensor are sent to PC through USB port. 
The data are processed MATLAB. 

Training subjects Test subject 

A, B, C D 

A, B, D C 

A, C, D B 

B, C, D A 

 

 

Figure 5. The diagram of sensing system of multiple Doppler sensors.   
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For evaluation of falling detection, subjects took seven 

activities listed in Table 2. Activities are roughly divided 
into two categories, “Falling” and “Non-Falling.” Falling 
includes three following activities. 
● Standing-Falling: Keep standing for seconds, then 

fall down toward each direction at the center, shown 
as circle in Figure 8. 

● Walking-Falling: Walk from a distance of 2.5 m 
from the center, then fall down at the center. 

● Standing up-Falling: Stand up, then fall down to- 
ward each direction at the center. This simulates 
lightheadedness. 

Non-Falling includes four following activities. 
● Walking: Walk from a distance of 2.5 m from the 

center, across the center, toward each activity direction. 
Totally 5 m walk. 

 

 

Figure 6. The deployment of multiple Doppler sensors. 
 

 

Figure 7. The image of a Doppler sensor.
 

Standing - Falling 

 

Table 2. Falling and Non-Falling activity. 

 

Figure 8. Deployment of multiple sensors. 
 
● Standing-Lying down: Keep standing for seconds, 

then lie down on the floor toward each direction. 
● Picking up: Pick up a pen on the floor. It is put 

he center toward activity 

● Sitting on a chair: the back of a chair is toward 
activity direction. 

These seven activities are tested in eight directions (A- 
H) as shown in Figure 8. 

The accuracy of falling detection is defined as 

about 30 cm apart from t
direction. 

Accuracy 100 [%]
TP TN

TP TN FP FN


 

  
     (3) 

Each variable has the following meaning. 
● TP (True Positive): Subject acts falling, and classi- 

fied as falling. 
● TN (True Negative): Subject acts non-falling, and 

classified as non-falling. 
● FP (False Positive): Subject acts n n-fal ing, and 

clas
 FN (False d clas- 

sifi

4.1. Frame R

Frame rate is the number of er second. 
The higher the frame rate be he larger the number 
of features becomes. Tabl lation be- 
tween frame cur ling detection. The 
results of one sensor metho mbination and 
selection methods using t re shown for 
comparison. 

When we choose k-NN as a classifier, the accuracy 
increases until frame rate reaches 8 windows/second. 
When frame rate is higher than 16 windows/second, the 
degree of increase in accuracy becomes moderate or stable 
for all methods. 

Referring the results using k-NN, we decide to set 
frame rate at 16 windows/second. We note that frame 
rate should not be too high because it increases the com- 
putation load. On the other hand, the low frame rate, 
which means lack of the features, causes the low accu- 

o l
sified as falling. 

● Negative): Subjects acts falling, an
ed as non-falling. 

ate 

 window updates p
comes, t

es 3-5 show the re
 rate and ac acy of fal

d and the co
hree sensors a

Walking - Falling Falling 

Standing up - Falling 

Walking 

Standing - Lying down 

Picking up 
Non-Falling 

Sitting on a chair 
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racy bec rs from 
e problem of high variance in the case of limited sam- 

cy 

, accuracy does not increase monotoni- 

s [13] so that it is generally 
th

optimum number of features 
sh n these 
results, we use the optimum frame rate 4 windows/sec- 
ond on SVM.  
 
Ta racy of fal- 

ause the k-NN classifier generally suffe
th
pling [15].  

When SVM is chosen as a classifier, the best accura
for falling detection occurs when the frame rate is 4 
windows/second in all the methods. Unlike the case clas-
sified by k-NN
cally as frame rate increases. SVM is available to classify 
linearly non-separable feature

ought to be able to separate complicated features. This 
result indicates that the 

ould be found when SVM is applied. Based o

ble 3. Relation between frame rate and accu
ling detection (one sensor method). 

Accuracy [%] 

k-NN  
SVM 

k = 2 k = 3 k = 4 

1 76.8 71.0 73.2 73.2 

2 87.1 87.5 87.1 86.6 

4 88.
Frame rate 

8 89.3 88.8 88.4 

87.9 90.6 89.3 89.3 
[window(s)/second] 

8 

16 88.8 90.6 89.3 89.3 

 
Table 4. Relation between frame rate and accuracy of fal- 
ling detection (combination method, three sensors). 

Accuracy [%] 

k-NN  
SVM 

k = 2 k = 3 k = 4 

1 86.6 86.6 88.4 83.5 

2 90.2 92.4 93.8 91.5 

4 93.8 92.4 93.8 93.3 
Frame rate 

[window(s)/second] 

8 90.6 94.2 94.2 94.1 

16 86.6 94.6 93.8 95.5 

 
Table 5. Relation between frame rate and accuracy of fal- 
ling detection (selsection method, three sensors). 

Accuracy [%] 

k-NN  
SVM 

k = 2 k = 3 k = 4 

1 77.7 83.0 80.4 80.8 

2 87.5 87.9 90.2 88.4 

4 91.5 90.6 90.2 89.7 

8 90.2 90.6 92.4 91.5 

Frame rate 
[window(s)/second] 

16 90.6 90.6 92.4 93.3 

4.2. One Sensor Method 

Table 6 shows accuracy of falling detection using one 
nsor. The resulse t of each sensor is classified by SVM 

own in Figure 6, there 
are three positions, X, Y, and Z. ree sensors, 
No. 1, 2, and 3. Table 7 show on of each 
sensor in  deployme he result sh n Table 6 
is for deployment type i her fferences - 
curacy based on se or 

Figures 9-14 sh  th  wh  su  
mov olor show  stren  of PS n dB he 
s ld be c erized, in principle,  
lack of partiality of PSD ach ler  Ho r, 
several spectrogra  sh tron D i cifi p- 

ler shift, such as for deployment type ii, position Y (the 

nd 440 
Hz. To find out the factor of this ix different 
types of deployments are tested. When comp  six types 
of deploy ent, on eac tion, the str SD occurs 
on the similar Doppler shift. For nce ositi  a 
strong PSD appea on z D r sh gard of 
deployment type. o ly, tro D d ot 
occ  of device i rm he effect of 

 
Table 6. Accura of f et  us e se

Accuracy [%] 

and k-NN. The best accuracy of 90.6 % is achieved on 
sensor 1 using k-NN (k = 2). As sh

 We use th
s the positi

six nts. T
. T

own i
e are di  in ac

ns No. 
ow e spectrogram en no bject is

ing. The c s the
haract

gth D i . T
by apectrogram shou  

 on e  Dopp  shift. weve
ms ow s g PS n spe c Do

p
middle of Figure 10, at 100 Hz, or deployment type iv, 
position X (the left of Figure 12), at 60, 90, 160, a

strong PSD, s
aring

ong Pm h posi
 insta , in p on Y,

rs 100 H opple ift re less 
 Acc rding

mpai
the s
ents, but

ng PS
 by t

id n
 ur because

environment. 

cy alling d ection ing on nsor. 

k-NN Sensor No. 
SVM 

k = k = 4  2 k = 3 

1 88.8 90.6 8 89.3 9.3 

2 86.6 8 8 8

3 81. 87.

5.3 6.2 5.3 

3 86.6 1 86.2 

 
t  be pos and r N

 Pos

Table 7. Rela ion tween ition  senso o. 

ition 

 X Y Z 

i 1 2 3 

ii 1 3 2 

iii 2 1 3 

iv 2 3 1 

v 3 1 2 

Deployment type 

vi 3 2 1 
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Figure 9. Spectrogram when no subject is moving in dep
 

loyment type i. (left: Pos. X, middle: Pos. Y, right: Pos. Z). 

       

Figure 10. Spectrogram when no subject is moving in deployment type ii. (left: Pos. X, m ddle: . 
 

i Pos. Y, right: Pos. Z)

       

Figure 11. Spectrogram when no subject is moving in deployment type iii. (left: Pos. X, middle: Pos. Y, right: Pos. Z). 
 

       

Figure 12. Spectrogram when no subject is moving in deployment type iv. (left: Pos. X, middle: Pos. Y, right: Pos. Z). 
 

       

Figure 13. Spectrogram when no subject is moving in deployment type v. (left: Pos. X, middle: Pos. Y, right: Pos. Z). 
 

I
cular Doppler shift is reported when the Doppler sensor 

is used through the wall. This appears only on 60 Hz of 

the 
alternate current (AC). The transmitted microwave is 
attenuated through the wall, and the strong PSD becomes 

n [6,7], a similar type of constant strong PSD at par- Doppler shift, namely the strong PSD is caused by 
ti
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non-negligible. On the other hand, the strong PSD on the 
result of our experiment appears on several Doppler 
shifts. This means that it is not caused by AC component. 
It is considered that the strong PSD comes from the re- 
flection on the wall.  

Table 8 shows the accuracy of falling detection for ac- 
tivity directions. Direction A-H corresponds to 8 direc- 
tions in Figure 8. The relative position en from each 
sens

an
rection D relative to sensor 2. Regardless of sensor No., 

the accuracy decreases in direction orthogonal to irradia- 
tion direction, that is, directions C and G for sensor 1, 
directions B and F for sensor 2, and directions D and H 
for sensor 3. This comes from the characteristics that 
Doppler sensor can figure out the activity through irra- 
diation directions. The direction against the sensor also 
shows low accuracy. It is considered environ- 
ment
ann

4.3. Feature Combination Method 

Table 9 shows the accuracy of falling detection using the 
combination method. We test with two or three sensors. 
In particular, when we use two sensors, three types of 
sensor combinations are tested. In case of two sensors, 
92.9% accuracy is achieved when k-NN is used with k 
set to 4. Just like the result of one sensor method, in Ta- 
ble 6, accura epends on the position in which the 

nd 
3 are used, accuracy of falling detection is about 88%. 
On the other hand, when sensors 1 and 2 are used, an 
accuracy of 92.9% is achieved using k-NN (k = 4). 

By using three sensors, 95.5% accuracy is performed 
and this is 4.9% higher than the best accuracy of the 
method using one sensor. In the combination method, 
three sensors are appropriate for the stable accuracy of 
falling detection. 

Table 11 s s the relation between activity d n 
 4) 

 
d F, are the 

as se cy d
or, in the same row in Table 8, is the same. For in- 
ce, direction A relative to sensor 1 is the same as 

sensor is set. For instance, when sensors 2 and 3, or 1 a
st
di

that the how irectio
al noise, which comes from reflection on the wall, 
ot be negligible. When the subject moves far from 

and accuracy of falling detection. We use k-NN (k =
as a classifier and deployment type is i in Table 7. Asc

the sensor, the strength of microwave, which reflects on 
the body, decreases.  
 

seen from sensor 1, B and H, C and G, D an
same directions relative to the sensor. 

       

ment type vi. (left: Pos. X, middle: Pos. Y, right: Pos. Z). Figure 14. Spectrogram when no subject is moving in dep
 

Table 8. Relation between activity directions and

Sensor 1 Sen

loy

 ac

sor

curacy of falling detection (one sensor method). 

 2 Sensor 3 

Direction Accuracy [%] Direction Accuracy [%] Direction Accuracy [%] 

A 96.4 D 92.9 F 89.3 

B, H 96.4 C, E 

C, G 75.0 B, F 

D, F 94.6 A, G 

E 85.7 H 

87.5 E, G 87.5 

73.2 D, H 80.4 

94.6 C, A 89.3 

78.6 B 85.7 

 
Table 9. Accuracy of falling detection using the combination 
method. 

Accuracy [%] 

k-NN Number of sensors 

Table 10. Accuracy of falling detection using the selection 
method. 

Accuracy [%] 

k-NN Number of sensors 
SVM

k = 2 k = 3 k = 4 
SVM 

k = 2 k = 3 k = 4 

two (sensors 1 & 2) 93.8 92.4 92.4 95.5 two (sensors 1 & 2) 92.0 92.0 92.0 92.9 

two (sensors 2 & 3) 92.4 88.8 88.8 88.4 

two (sensors 1 & 3) 88.4 91.1 89.7 88.8 

three 93.8 94.6 93.8 95.5 

two (sensors 2 & 3) 90.2 87.1 87.9 89.7 

two (sensors 1 & 3) 89.3 90.6 88.4 91.1 

three 91.5 90.6 92.4 93.3 
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The accuracy of directions C and G in one sensor 
method is 75.0%. This is 21.4% lower than the direction 
A, which is the direction that the subject acts toward the 
sensor. In the combination method using three sensors, 
the accuracy of directions C and G is 94.6%. This result 
indicates that the combination method compensates the 
drawback of Doppler sensor. When using two sensors, 
the accuracy of directions C and G is im ed compared 
to t

ends on the deployment. Thus, three sensors are needed 
for high acc
ency on deploym ur experiment. 

4.4. F electio

Table 10 he accuracy of falling detectio sing 
the selection method. The uracy of falling 
detectio 5.5%, which o  when two sen (1 & 
2) are d the featu re classified NN. 
However s mentioned in t e sensor method d the 
ombination method, the difference in accuracy appears 

the effect of sensor dependency, we choose three 
sensor method. Accordingly, th racy in the 
sel s 93.3%, whic hree sensor 
me ed N (k = 4). 

The relation between activity tion is 
sh o red e se eth e 
ac dir  o ona irra n 
di ed. Howeve is st ely low 
in co her d s is is cau ed 

tion direction, the combination method out- 
performs the selection method. H  may not be 
alw n practical situation nsider, for 
example, the case that we are u u  sens
one of them is obstructed by en objects such as 
fu it ine een t get 
an  obstructed r c t rec the 
D n d t  ta oti he  

features of the combination method are constructed using 
features obtained from all the sensors. Thus, the obstructed 
sensor produces features that are different from the 
training data. This means that the system that simply 
combines the features is not tolerant to a situation that 
the sensors are obstructed by some objects. 

Alternatively, the selection method has an advantage 
in the situati at a part of the sensors is obstructed. 

me 
objects, the selection method excludes the data of the 

of which 
or to choose is based on the sel of the largest 

D of 120 - 240 Hz at t . Th  the obstructed 
se the data vironme are 
no ta  moving around hus, the PSD o  - 240 
Hz b es smaller than that of the senso  is not 
obstr . Therefore, th ion method i re suit- 
able for practical use. 

4.5. True Positive Rate and False Positive Rate 

When analyzing systems of falling detection, true posi- 
rate (FPR) are often 

prov on th
hat of one sensor method. However, the accuracy de- Even if one of the multiple sensors is obstructed by so

p
uracy of falling detection and less depend- obstructed sensor. This is because the decision 

ent in o

eature S n Method 

 shows t n u
highest acc

n is 9 ccurs sors 
used, an res a by k-

, a he on  an
c
in the feature selection methods using two sensors. To 
alleviate 

e best accu
h is in the tection methods i

thod and classifi by k-N  
 direc  and accuracy 

own in Table 11. C mpa to on nsor m od, th
curacy in the ection rthog l to diatio
rection is improv

mp n with th
r, it ill relativ

ariso
gorit

e ot
ect fe

irection
e fro

. Th
ly on

s
nsor. by the al hm to sel atur m on e se

In the view of the robustness in the direction orthogonal 
to irradia

owever, that
ays the case i s. Co

sing m
 fall

ltiple ors, and 

rniture or plants. W hout l  of sight betw he tar
d the sensor, the senso anno eive 
oppler informatio relate o the rget m on. T

sens
PS

ection 
e data ofmax

in the ennsor is like nt that there 
rgets . T f 120
ecom r that
ucted e select s mo

tive rate (TPR) and false positive 
used. TPR and FPR are calculated as follows. 

,  
TP FP

TPR FPR
TP FN FP TN

 
 

      (4) 

when FN becomes 0, TPR is equal to 1. Considering that 
FN is critical on falling detection system, TPR should be 
near 1. On the other hand, FPR should be near 0 because 
FP indicates over care. However, there sometimes exists 
trade-off between TPR and FPR. For practical systems, it 
is ideal that TPR reaches 1 and FPR reaches 0. 

Figure 15 shows FPR and 1-TPR in each method. 
Both values should be near 0. Abbreviations “NoS,” “mtd 
= s,” and “mtd = c” in this figure means “Number of 
sensors,” “method = selection,” and “method = combina- 
tion,” respectively. Comparing to the conventional me- 
thod using individual Doppler sensor data, in the pro- 
posed method using multiple Doppler sensor data, FPR 
and 1-TPR decrease.  

 
ect

od 

Table 11. Relation between activity dir

One sensor method Combination meth

ions and accuracy of falling detection. 

Selection method 

Direction 
Sensor 1 

Two sensors 
(sensors 1 & 2) 

Two sensors 
(sensors 1 & 3)

Three sensors
Two sensors 

(sensors 1 & 2)
Two sensors 

(sensors 1 & 3) 
Three sensors

A 96.4 96.4 89.3 96.4 96.4 96.4 92.9 

B, H 96.4 91.1 89.3 

C, G 75.0 89.3 87.5 

D, F 94.6 98.2 89.3 

E 85.7 89.3 

94.6 94.6 94.6 91.1 

94.6 91.1 80.4 89.3 

98.2 98.2 96.4 96.4 

89.3 92.9 100 89.3 100 
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d True positive rate on eFigure 15. Results of False positive rate an ach method. 

. Conclusion 

This paper pro detection us
Doppler sen e the combinat
t ds to e ures. ati
achieves 95.5% accuracy of fa  
(k = . In this m , three sens re used. D er 
sens s are less sen e to the di  orthogon  
the irradiation di  than the o directions
ev e combin  method co sates this draw- 
ba oppler r and shows gh accu n 
eac rection. T e achieves % 
accuracy using k-NN (k = 4). In th ethod, three sen-
sors e used. Thi so improves the accuracy of 
the direction orthogonal to the irradiation direction. 
However, the accuracy of the direction is still relatively 
low compared to the other directions. Although the se- 
lection method does not outperform the combination 
method in the view of the robustness of activity direction, 
we consider the idea of selection method to be useful for 
the practical use. The selection method excludes data of 
the echoless sensor such as accidentally obstructed by 
furniture or plants. Our future work is to construct the 
hybrid method between the combination and selection 
method. 
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