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Abstract 
 
Protocol tunneling is widely used to add security and/or privacy to Internet applications. Recent research has 
exposed side channel vulnerabilities that leak information about tunneled protocols. We first discuss the 
timing side channels that have been found in protocol tunneling tools. We then show how to infer Hidden 
Markov models (HMMs) of network protocols from timing data and use the HMMs to detect when protocols 
are active. Unlike previous work, the HMM approach we present requires no a priori knowledge of the pro-
tocol. To illustrate the utility of this approach, we detect the use of English or Italian in interactive SSH ses-
sions. For this example application, keystroke-timing data associates inter-packet delays with keystrokes. We 
first use clustering to extract discrete information from continuous timing data. We use discrete symbols to 
infer a HMM model, and finally use statistical tests to determine if the observed timing is consistent with the 
language typing statistics. In our tests, if the correct window size is used, fewer than 2% of data windows are 
incorrectly identified. Experimental verification shows that on-line detection of language use in interactive 
encrypted protocol tunnels is reliable. We compare maximum likelihood and statistical hypothesis testing for 
detecting protocol tunneling. We also discuss how this approach is useful in monitoring mix networks like 
The Onion Router (Tor). 
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1. Introduction 
 
Communications protocols are typically described using 
either the 7-layer Open Systems Interconnect (OSI) model 
from the International Standards Organization (ISO) or the 
four layer Internet Engineering Task Force (IETF) Internet 
Protocol (IP) stack [1]. In both, each layer of the network 
stack, except the lowest physical layer, is a set of network 
protocols recursively tunneled within protocols at lower 
layers of the stack. This creates an adaptable design space 
where functionality missing at one layer can be provided at 
another layer of the stack. 

The original IP design largely ignored security issues. 
IPv4 sends data in clear text and data packets are not 
authenticated. Security is typically added to IP by either: 
 Using virtual private networks (VPNs) that add secu-

rity by tunneling standard IP packets through an en-
crypted virtual network connection [2], or 

 Using IPsec, which is part of the IPv6 standards. A 
major protocol in the IPSec suite is essentially a VPN 
that tunnels IPv4 packets through encrypted connec-
tions [2]. 

Mix networks like The Onion Router (Tor) and Invisi-
ble Internet Protocol (I2P) use tunneling to add both 
anonymity and security to IP [3]. 

Protocol tunneling can also be used to evade network 
security enforcement. Protocol tunneling through SSH1, 
HTTP, and even DNS has been used to circumvent secu-
rity enforcement by firewalls and application layer gate-
ways [4]. Since packets tunneled through SSH or SSL 
are encrypted, security enforcement tools are effectively 
unable to inspect their contents [4]. One impediment to 

1SSH is a standard Internet tool that opens a shell on a remote machine 
and secures interactions by encrypting the data stream. In this paper, tests 
used the current version of SSH; SSH 2.0. Previous work [1] used SSH
v1.0.
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IPv6 adoption is the fact that mandatory use of encrypted 
IPsec tunnels disables firewall deep packet inspection. 

On the other hand, current protocol tunneling tools 
have been found vulnerable to side-channel attacks, 
which do not directly compromise security measures. 
Instead, side-channels extract information by indirectly 
observing implementation artifacts. For example, a sig-
nificant timing side-channel vulnerability for SSH can 
extract the system password from interactive sessions [5]. 
This paper discusses how side-channel analysis can de-
tect the presence of protocols within tunneled connec-
tions.  

There are three main contributions of this paper. First, 
it provides a brief, up-to-date survey of current side- 
channel attacks on tunneled protocols. Second, an appli-
cation is presented that provides a practical example of 
how tunneled protocols can be detected. Third, the ap-
proach we present has significant advantages over pre-
vious approaches. It makes minimal assumptions about 
the protocol being attacked and requires no a priori in-
formation about the protocol. The use of statistical hy-
pothesis testing, instead of maximum likelihood com-
parisons, has multiple advantages that are explained in 
Section 3. 

The rest of this paper is organized as follows. Section 
2 provides a brief survey of current research literature on 
side-channel vulnerabilities in tunneled protocols that 
use security tools like SSH, SSL, Tor, and I2P. Section 3 
describes our approach to protocol detection. It uses 
zero-knowledge hidden Markov model inference [6,7] to 
extract models of network protocols from observed tim-
ing data. To illustrate how protocol detection works, we 
present an example application in Section 4. We show 
how inferred HMMs detect the language used in interac-
tive remote sessions tunneled through SSH. Section V 
analyzes the performance of our example application. 
Section VI discusses our results and presents our conclu-
sions.  

 
2. Brief Survey of Side-Channel Attacks on 

Tunneled Protocols 
 
Figure 1 illustrates how protocol tunneling is done by 
virtual private networks. For example, many Linux 
VPNs create a virtual network interface TUN [2]. Ap-
plications connect to TUN, like they would connect to 
the Ethernet network interface. TUN multiplexes these 
sessions, encrypts them, and passes them to the real 
network interface. The network interface adds a rout-
ing header to the encrypted TUN packet and sends this 
new packet over the Internet. The network interface on 
the destination node removes the routing information 
and forwards the packet payload to its local TUN in- 

 

Figure 1. Notional illustration of protocol tunneling. 
 
terface, which demultiplexes and decrypts the sessions. 
This adds security to IP networks by encrypting the 
communications sessions and providing a private name 
space.  

For this procedure to work on the current Internet, 
routing information is not encrypted, which makes the 
system vulnerable to traffic analysis. Figure 2 shows 
how The Onion Router (Tor) attempts to make commu-
nications immune to traffic monitoring in order to pro-
vide anonymous communications [8,9]. The connection 
source (Alice) contacts a Tor directory node for a list of 
cooperating Tor relays. Alice chooses (typically) three 
Tor relay nodes. The final Tor node acts as a proxy for 
Alice in her connection with destination (Bob). Each hop 
within Tor is a tunneled connection encrypted with a 
different key. Each intermediate Tor node is only aware 
of its session key, the previous node, and the next node  
in the session relay. For each packet it receives, it strips 
off the routing data, decrypts the encapsulated packet, 
and relays the results of the decryption to the next node 
(see Figure 1). 

I2P uses an approach like Tor with a few additions 
[10,11]. User communications go through an encrypted 
proxy address embedded in the I2P cloud. Each user can 
 

 
Figure 2. Anonymous tunneling through Tor or I2P. 

Alice Bob 

Regular Packet
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have multiple active sessions multiplexed through the 
cloud. Where Tor has only a low latency mode that for-
wards packets as they arrive, I2P also provides medium 
and high latency modes. 

In addition to tunneling using encryption tools like 
SSH or SSL, sessions can be tunneled through other 
protocols like http and DNS [4]. This can go to ex-
tremes. DNS has been tunneled through SSH and SSH 
through DNS, leading to the recursive tunneling of 
DNS through DNS [12]. 

Protocol tunneling makes network monitoring difficult. 
When the tunnels are protected using encryption, it be-
comes necessary to either break the encryption scheme 
using cryptanalysis or resort to side-channel attacks. 
Since modern encryption protocols are designed to be 
prohibitively expensive to attack2, side-channel attacks 
that exploit implementation artifacts are attractive. 

For example, web browsers use SSL to encrypt net-
work traffic and protect user information from exposure. 
Unfortunately modern web pages consist of many com-
ponents, such as CSS style sheets, images, etc. The 
side-channel attack in [14] uses this information to de-
termine the sequence of web pages viewed by a user, 
even when SSL encrypts the network traffic. While en-
cryption effectively secures information entered into 
forms on web pages, the packet sizes of the SSL en-
crypted packets can be monitored. These sizes corre-
spond directly to web page elements and provide enough 
information to typically track the sequence of web pages 
visited during a user’s web browsing session. 

To maintain Quality of Service, SSH transmits key-
strokes as they are typed, preserving the inter-keystroke 
delays. One packet is transmitted for each keystroke 
from the user’s local machine to the remote host. Song et 
al. [5] use timing analysis to infer the system password 
from interactive SSH sessions. They manually con-
structed an HMM to represent interactive SSH sessions 
and trained the HMM using data collected by observing 
the individual doing remote system administration tasks. 
They then used a priori information particular to SSH 
version 1 to determine exactly which keystrokes corre-
spond to the password. The timing data corresponding to 
the sequence of characters for the password can then be 
entered into the trained HMM. An n-Viterbi algorithm is 
then used to find the n character sequences that most 
likely produced the timing signature. This information 
reduces the computational effort required to infer the 
password using traditional techniques by a factor of 50. 
This basic vulnerability is present in most secure com-

munications applications, including virtual private net-
works built on SSH cryptography protecting tunneled 
connections. 

A similar approach has been used to identify specific 
phrases in encrypted voice over IP (VOIP) traffic [15]. 
When variable bit rate encoding is used by the VOIP 
codec, the encodings of different classes of phonemes 
require predictable ranges of bit sizes; producing a vul-
nerability similar to the one in [14]. As in [5] in this at-
tack, HMMs are constructed and trained to recognize 
specific phases of interest. They determine the Viterbi 
path of observed phrases through the HMM and use a 
log-likelihood ratio metric comparing the observed path 
with random noise. Their test shows that phrases can be 
identified in encrypted data streams with probabilities 
ranging from 50% to 90%. 

The Tunnel-Hunter approach [4] uses both inter- 
packet arrival rates and packet sizes to define protocol 
profiles. Training data is collected for one or more pro-
tocols tunneled through either SSH or http. As a network 
is monitored, observation data is used to construct a pro-
file matrix. Instead of using HMMs for protocol detec-
tion, they use Bayesian techniques to create maximum 
likelihood classifiers. If a timing profile matches a class 
of forbidden applications, then the tunneled session is 
terminated. The test results for this approach are promis-
ing. 

We now describe side-channel attacks on traffic using 
mix networks. Several researchers have used timing in-
formation to attack the anonymity provided by mix net-
works like Tor and I2P. If attackers can collect in-
ter-packet timing information at all network entry and 
exit points, interpacket timings can be cross-correlated to 
calculate the mutual information between entry-exit pairs. 
This reliably identifies the correct communications paths 
using sample sizes on the order of seconds to tens of 
seconds. Surprisingly, this attack works better on larger 
networks than on smaller ones [16]. This is an instance 
of the more general class of flow correlation attacks [17]. 
This type of attack does not have to be constrained to 
entry/exit nodes. The work in [18] analyzes traffic at 
global choke points to determine the global region where 
a given service is hosted. These attacks can best be 
countered by saturating the communications channels 
[19] leaving no available bandwidth for patterns to 
emerge. Due to the extreme resource requirements of 
channel saturation, this approach can only be used in 
extreme cases. 

The side-channel attacks presented thus far were all 
passive. It is also possible to extract timing information 
by either using malicious Tor nodes or actively inserting 
traffic into the network. One early approach inserted a 
malicious node into Tor [20], made the node attractive 

2Current implementations of tools like SSL do have vulnerabilities, but
these are mainly due to deficiencies in implementation or supporting
infrastructure [13], they are rarely due to deficiencies in the crypto-
graphic algorithm. 
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for use as a contact node, and used packet counting to 
identify the real identity of a node trying to be anony-
mous. In another approach a malicious node in the Tor 
network inserts traffic flow that deliberately slows down 
intermediate nodes [21]. By correlating the traffic flow 
of the session of interest with the disturbance traffic it 
becomes possible to identify the nodes that are being 
used as intermediates in the Tor session. This attack is 
called low-cost, since it does not require monitoring the 
entire network, like [16,17]. The congestion attack in [21] 
worked well in the small prototype Tor network, but fails 
to scale. To overcome these failings, it has been extended 
[21] in two ways. The first extension created long circu-
lar paths within Tor to generate congestion traffic. The 
second extension assumed that the user selects a mali-
cious proxy exit node. The proxy could then modify 
webpages being retrieved to include malicious Javascript 
code that generates traffic to help trace node traffic. A 
similar idea is presented in [22] which localizes client 
nodes by measuring the time difference between when a 
specific web-page is returned and the client requests an 
object embedded within the web-page. This attack allows 
nodes within Tor to determine if two sessions to the 
same host started at the same client.  

Suggestions for countering these active attacks [13,21] 
include removing the ability of participating nodes to 
discover the full list of participating nodes, introducing 
higher latency communications modes, and adding gar-
bage traffic to obscure patterns [23,24]. These sugges-
tions are problematic. If participating nodes are not ad-
dressable by malicious insiders, they will also be un-
available for use by legitimate users. I2P does interleave 
higher latency traffic with low-latency traffic, which is a 
possible countermeasure but Tor provides low-latency 
connections for usability reasons. Finally, adding random 
noise typically does not counteract correlation attacks; at 
best it increases the sample size necessary to reliably 
identify communications patterns.  

Timing side-channels are not always due to network 
latency. The timing skew due to changes in processor 
clock speeds can be remotely detected [25,26]. In [25] a 
machine is expected of hosting a service anonymized by 
Tor. Large volumes of traffic are requested by one node 
while another node continuously pings the suspect node. 
The heat generated by the additional workload detectably 
changes the processor’s clock speed, which is easily de-
tected in the ping messages. This basic attack is extended 
in [26], which no longer requires inducing a large work-
load. It is possible to simply detect the patterns in the 
clock variation, which produce a detectable fingerprint. 
This fingerprint can also be used to geo-locate the hidden 
service by correlating clock skew with the time of day 
and temperature variations.  

3. HMM Inference 
 
The approach we use resembles [5,16] in that we use 
HMM models to analyze side-channel information. 
However, we extend their work in important ways. As 
long as the protocol to be detected can be expressed with 
a finite number of states and state transition probabilities 
are stationary, our approach is valid [27]. Instead of us-
ing standard HMM approaches that require an a priori 
known state space for training, we require no prior 
knowledge. Instead of using maximum likelihood met-
rics [4,5,15-17], we combine HMMs with statistical hy-
pothesis testing which provides a theoretical basis for 
determining threshold values [28-30]. Hypothesis testing 
allows us to determine the statistical significance of the 
inferred model, which in turn indicates whether or not 
the volume of training data is sufficient [28-30]. Maxi-
mum likelihood approaches also typically consider all 
the available observed data for making a decision, which 
has a number of drawbacks. If the number of observa-
tions is large, the likelihood value computed by maxi-
mum likelihood is subject to underflow. The underflow 
danger can be countered by frequently renormalizing the 
likelihood value, which decreases the precision of the 
value being computed. In contrast, the values we use [28] 
become more precise as the volume of observation data 
increases. Our approach calculates values over a sliding 
window of observations. Methods for calculating win-
dow size are given in [29,30]. 

In the rest of this section, we describe our HMM in-
ference procedure. Section 3.1 we describe how to ex-
tract classes of observations from continuous timing data. 
We show how to extract HMMs from training data in 
Section 3.2. Section 3.3 explains the stopping criteria for 
this process, which results in either producing a signifi-
cant model or collecting more training data. We conclude 
this discussion with Section 3.4 explaining how the 
models are used for protocol detection. Section 4 will 
explain how this approach detects the languages used in 
interactive SSH sessions. Consider the language typed as 
an example of a complex network protocol. 

 
3.1. Observation Class Inference 
 
As Song et al. demonstrated, the delays between key-
strokes are preserved when using an SSH tunnel [5]. This 
can be exploited without explicitly attacking the crypto-
graphic protocol by analyzing the sequence of delays in 
the SSH data stream to detect behaviors. In our example 
application, we extract typing statistics from data sets of 
typing behaviors collected from native speakers of Eng-
lish [31] and Italian [32]. We then use knowledge of the 
delays between specific keystroke pairs (ex. “a then s” vs. 

Copyright © 2011 SciRes.                                                                              AIT 
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“a then p”) to associate inter-packet delays in the SSH 
stream to a set of potential clear-text equivalents. 

We use the HMM inference approach discussed in the 
remainder of this section to extract a Markov model of 
the conditional probabilities inherent in English and Ital-
ian. For example, in English once the letter q has been 
typed it is much more likely to be followed by the letter 
u than the letter z. We used two methods to associate 
observed packet delays with pairs of symbols.  

HMM processing is based on symbolic observations. 
For timing analysis, we need to find the classes of ob-
servations that best represent the data we collected. We 
first collected statistically significant data sets of native 
speakers of Italian typing Italian texts [32] and native 
speakers of English typing English texts [31]. We veri-
fied that the volume of data we had was sufficient and 
that the variance between typists was not large enough to 
invalidate our results.  

We initially plotted the Normal distribution models of 
key-pair timing data using the means and variances ex-
tracted from the data. These plots are shown in Figures 3 
and 4. Since the overlaps are too large to effectively dis-
tinguish between key-pairs, a clustering approach was 
used [33] to find distinct classes of key-pairs. Growing 
Neural Gas (GNG) identified 4 clusters for the Italian 
keystroke data and 10 for the English. Ranges were de-
termined as shown in Table 1. In this paper, GNG hap-
pens to be the clustering algorithm that was used. We 
expect that other approaches, such as k-means clustering, 
self-organizing maps, etc. would probably have produced 

similar results. A more rigorous explanation of this 
symbolization process is in [33]. 
 
3.2. Hidden Markov Model Inference 
 
States of a Hidden Markov Models (HMMs) are not di-
rectly observed. Instead, state outputs are observed. 
Unlike common HMMs inference approaches [34], our 
approach directly associates state output symbols with 
state transitions. 

In [7] Schwier et al. show it is possible to construct 
HMMs without a priori knowledge of the system [27] to 
find patterns in a symbolic time series. We use the con-
ditional probabilities in data streams to infer a state space 
[27]. The algorithm starts by dividing the training data 
set into segments of length two. It computes the condi-
tional probabilities present in the data—e.g., P(u|q)— 
resulting in a conditional probability density function for 
each symbol observed. A χ2-square test3 at the desired 
confidence level finds a set of unique probability distri-
bution functions (pdfs). This set is the initial state space. 
In this work, we use a confidence level of 0.95. 

We then consider training data segments of increasing 
string length L. For example, with a string length L = 3 
and a two symbol (A and B) alphabet, the algorithm 
would compute conditional probabilities for BB, AB, BA, 
and AA, being followed by an A or a B. Each unique pdf 
is a state and the set of sequences of symbols that lead to 
that state is its history [27]. The values of the pdf associ-
ated with the state become the transition probabilities 
leading to new states. This process continues until a pre- 

 
Table 1. Symbolization of English and Italian keystroke statistics. The means shown in the table above are those identified by 
Growing Neural Gas (GNG). Bounds were determined by locating the midpoint between means. These bounds were then 
associated with symbols. All values in the table are in milliseconds. An upper bound of 10 seconds was used to prevent any 
symbols from being identified as “null”. 

English Italian 

L. Bound U. Bound Mean Symbol L. Bound U. Bound Mean Symbol 

0.00 125.00 95.14 A 15.32 0.00 28.00 A 

126.00 182.00 153.17 B 38.88 29.00 45.00 B 

183.00 236.00 209.04 C 49.98 46.00 59.00 C 

237.00 287.00 261.29 D 67.19 60.00 10000.00 D 

288.00 329.00 311.21 E     

330.00 364.00 345.07 F     

365.00 414.00 382.01 G     

415.00 494.00 445.05 H     

495.00 625.00 541.29 I     

626.00 10000.00 707.73 J 

 

    

3Each conditional probability is a Conditional random function. If the training data is sufficiently large, each Conditional pdf converges to a 
Multi-Variate Normal pdf by the Central Limit Theorem. The chi-square test is the standard test for determining if two sets of conditional probabili-
ties are not the same. 
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Figure 3. English Keystroke Gaussian. 

 

   
Figure 4. Italian Keystroke Gaussian. 

 
scribed value of L is reached. We refer the reader to 
[6,7,27] for details about the CSSR algorithm and [6,28] 
to find L for a given process. 
 
3.3. Stopping Criteria 
 
As discussed in [6,28], HMM inference continues until 
one of several conditions occurs; first, we infer the 
HMM. We then test the inferred HMM for statistical 
significance using the process in [6]. This considers each 
conditional probability as a collection of Bernoulli ran-
dom functions. We verify that the sample sets used for 
determining the values of these probabilities were suffi-
ciently large. If not, we determine how much additional 
data is required and restart the process with a larger 
training set. If sample sizes are sufficient, CSSR is re-

peated with the string length incremented by one. If this 
model is also statistically significant, and identical to the 
model produced by the earlier iteration, the process has 
converged. As explained in [7], the HMM changes as the 
length of the training string grows until we reach the 
point where the correct model has been found. Figure 5 
gives a flowchart of this process. 
 
3.4. Problem Detection 
 
Unlike traditional HMMs [34], the models we infer have 
no starting state. To determine whether a HMM is con-
sistent with an observed symbol sequence, all starting 
states are considered. If a symbol occurs in a state with-
out a corresponding transition, the combination of HMM 
and start state is rejected.  

Copyright © 2011 SciRes.                                                                              AIT 



H. BHANU  ET  AL. 19 
 

 
Figure 5. How to determine HMM inference stopping crite-
ria. 
 

To determine if a model produced a symbolized se-
quence, the maximum-likelihood forward-backward 
method is typically used [34]. The forward-backward 
procedure solves a classification problem; we are con-
cerned with detection. We discuss classification versus 
detection in Section IV. 

To solve the detection problem, we use the confidence 
interval approach from [28]. The confidence interval 
approach counts the number of times a particular state is 
entered and creates confidence interval bounds for each 
exiting transition by dividing exiting transition counts by 
the entering transition count. The confidence interval for 
the transition in question can then be found from Expres-
sion (1). 

, , , ,
, /2 , /2

(1 ) (1 )
,i j i j i j i j

i j i j
i

p p p p
p Z p Z

c 


 



 ic

 



 (1) 

where pi,j is the transition probability from state i to state 
j for a fixed symbol, ci is the entry-counter for state i, and 
Z /2  is taken from the standard Normal distribution. 
These probabilities were known to us, as we constructed 
the models. 

If the estimate falls within the confidence interval, we 
accept it as being correct with a false positive rate of α. If 
the frequencies, and hence the transition probabilities, do 
not fall within this range, the model is rejected as it 
should not have generated the string. 

To map transition acceptance or failure across the 
model, we follow the approach from [28] and use Re-
ceiver Operating Characteristic (ROC) curves to deter-

mine the ideal threshold for acceptance of false positives. 
This is done by identifying the point on the curve nearest 
to the point (0,1), corresponding to 0% false positives, 
100% true positives. By allowing a false positive rate 
equal to the threshold value, the true positive rate is 
maximized. Consequently, if the rejection rate exceeds 
this threshold, the model is similarly rejected. This is 
because more false positives were encountered than ideal. 
However, if the acceptance rate passes this threshold, the 
model is accepted as a valid source for the presented 
symbol sequence. 
 
4. Language Detection 
 
Our language structure HMMs were inferred from key-
stroke data [31,32] collected from native speakers of 
English and Italian using their native keyboards. We ex-
tracted the keystroke dynamics of each language. How-
ever, the data did not include statistically significant 
samples of all key-pairs. One data set did not include 
upper case data. The keystroke pairs for which sufficient 
data was available were classified by source and destina-
tion key. Their means and variances were determined. 

For key-pairs where sufficient data were not available, 
interpolation was performed: if the key-pair AU had no 
samples, the delays for surrounding key-pairs AY, AJ, 
AI and A7 were averaged. If none of these were present, 
then QU, SU and ZU were averaged. That is to say, first 
the neighbors of the destination key (U) were considered, 
and then those of the source key (A). For reference, 
keyboard layouts for New Zealand and Italy are shown in 
Figures 6 and 7. 

Training data for HMM construction were collected 
from Project Gutenberg. Recent, (1900 or later), texts 
were taken and preprocessed to remove case and special 
characters. Training and testing data sets were estab-
lished. The zero-knowledge approach from [7] was used 
to extract HMMs from the training set. The resulting 
HMMs are shown in Figures 8 and 9. 

For the Italian data, a reconstruction with a string 
length L = 3 was possible. We could only use L = 1 for 
the English data. Our training sets had approximately 1.1 
million key-pairs. Our clustering approach gave us 10 
distinct key-pair clusters for English. We used the ap-
proach from [6] to determine both the significance of the 
models and the volume of data necessary for creating a 
significant model. Creating a significant model for L = 1 
would have required a training set of over 11 million 
key-pairs. This was due to the existence of a number of 
low probability transition events. We were forced to stop 
HMM inference and use the approximate model that we 
inferred with 1.1 million key-pairs and L = 1. Therefore, 
the English model only considers conditional probability  

Copyright © 2011 SciRes.                                                                              AIT 
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Figure 6. New Zealand Keyboard Layout (Source: http://wapedia.mobi/en/File:KB_United_States-NoAltGr.svg). Reproduced 
from Wapedia under the Creative Commons Attribution/Share-Alike License and GNU Free Documentation License. 
 

 

Figure 7. Italian Keyboard Layout (Source: http://wapedia.mobi/en/File:KB_Italian.svg). Reproduced from Wapedia under 
the Creative Commons Attribution/Share-Alike License and GNU Free Documentation License. 
 

 
Figure 8. English HMM (10 states, 100 transitions) 

 
histories of one letter. 

Italian only had 4 clusters, which made it possible to 
achieve a statistically significant reconstruction with L = 3 
and a similar volume of training data. Since there were a 
smaller number of possible transitions from each state, 
there were fewer low-probability state transitions. The 
training process had a larger sample set available for de-
termining probability distributions. For Italian, the ob-
served string increased to 4 symbols, meaning that condi-
tional probability histories of up to 5 letters were consid-
ered. 

Using window-size calculations from [6], we found 
the minimum string length needed to differentiate be-

tween the two models, with a 95% true-positive rate, was 
77 symbols [29]. We therefore split the testing data into 
windows of 77 symbols and selected 400 windows. A set 
of 800 English and Italian windows were chosen to use 
for testing. 

We used the test data to determine the ability of the 
English and Italian models to detect the language being 
used in interactive SSH sessions. 
 
5. Detection Results 
 
The testing data was sent through interactive SSH v2 
connections following the keystroke pair delay distribu- 

Copyright © 2011 SciRes.                                                                              AIT 
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Figure 9. Italian HMM (64 states, 253 transitions). 

 
tions described in Section 2.1. The detection procedure 
redirected the output of a parsed tshark4 capture to a cus-
tom detection routine. The detection routine used our 
English and Italian HMMs with maximum likelihood and 
confidence interval detection criteria. 

The ROC curves for the tests are shown in Figures 
10-13: 
 Circular points compare English and Italian data 

streams. 
 Square points are for Malagasy (the national language 

of Madagascar) data streams, and 
 Diamond points are for English (Italian) data trans-

mitted with Italian (English) timing. 
The latter tests were used to help clarify the relation-

ship between timing and language letter sequence condi-
tional probabilities. 

From the plots denoted by circular markers in the 
ROC curves, where English and Italian are compared, it 
is clear both the CI and maximum likelihood approaches 
are able to detect the language used. It was found that 

with strings of 77 symbols, a threshold of 89.0% for us-
ing the HMM to detect English and 0.0% for using the 
HMM to detect Italian were optimal. 

Since the range of Italian key-stroke delays is a subset 
of English, all English inputs produced impossible tran-
sitions within 77 symbols. The Italian conditional prob-
abilities were consistent enough that Italian text never 
produced probabilities outside the 95% confidence in-
terval. No impossible transitions occurred when Italian 
text was parsed by the English Markov Model. Also, the 
English conditional probabilities were less homogeneous. 
When English text was parsed it would often produce 
observed transition probabilities outside the 95% confi-
dence interval. While this is to be expected approxi-
mately 5% of the time, our observations can be explained, 
in part, as an artifact of using the L = 1 approximation of 
the true process. However the conditional probabilities in 
Italian text were quite different from English conditional 
probabilities, explaining the optimal 89% threshold, as 
shown in Table 2 this threshold was able to reliably dif-
ferentiate between the two languages as shown in Figure 4http://sourceforge.net/projects/wireshark/ 
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Table 2. ROC statistics for English vs. Italian (left) and Cross-Symbolization (right) with Confidence Intervals. The last col-
umn in the above tables, “Distance,” is the distance from the curve at that point to the point (1, 0) on the axes. The ideal 
threshold is reached when this distance is minimized. 

 
10. 

In cross-symbolization, English was symbolized with 
the Italian delay statistics and the Italian symbol-space 
and vice-versa. This was done to see which of the two 
phases of our process (symbolization or HMM parsing) 
dominated the process. When the symbolizations were 
switched, the opposite language was identified. That is, 
for the English case, Italian was identified. From the re-
sults, shown by the plots with diamond markers in Fig-  
 

 
Figure. 10. English Confidence Interval results—English vs. 
Italian (circle), Cross-Symbolization (diamond), and Mala-
gasy (square). 

 
Figure. 11. English Maximum Likelihood results—English 
vs. Italian (circle), Cross-Symbolization (diamond), and 
Malagasy (square). 
 
ures 10-13, it was clear that the symbolization process 
dominated our approach. However, it wasn’t clear if the 
behavior identified was a function solely of the symboli-
zation or also due to language structure. We note that 
while English is a Germanic derivative language and 
Italian is a Latin derivative, both are in the Indo-Euro- 
pean family and hence have substantial similarities. 

To address this issue, we compared the modern lan-
guages with ancestor languages. This experiment found  

Threshold True Pos False Pos True Neg False Neg Distance Threshold True Pos False Pos True Neg False Neg Distance

0.00 401 401 0 0 1.000 0.00 401 401 0 0 1.000 

Repeated 79 times Repeated 78 times 

0.80 401 401 0 0 1.000 0.80 401 400 1 0 0.998 

0.81 401 392 9 0 0.978 0.81 401 400 1 0 0.998 

0.82 401 371 30 0 0.925 0.82 401 371 30 0 0.925 

0.83 401 294 107 0 0.733 0.83 401 297 104 0 0.741 

0.84 401 201 200 0 0.501 0.84 401 195 206 0 0.486 

0.85 401 103 298 0 0.257 0.85 401 105 296 0 0.262 

0.86 401 40 361 0 0.100 0.86 401 37 364 0 0.092 

0.87 401 9 392 0 0.022 0.87 400 7 394 1 0.018 

0.88 399 3 398 2 0.009 0.88 395 0 401 6 0.015 

0.89 399 0 401 2 0.005 0.89 389 0 401 12 0.030 

0.90 397 0 401 4 0.010       
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Figure. 12 Italian Confidence Interval results—English vs. 
Italian (circle), Cross-Symbolization (diamond), and Mala-
gasy (square). 
 

 
Figure. 13. Italian Maximum Likelihood results—English 
vs. Italian (circle), Cross-Symbolization (diamond), and 
Malagasy (square). 
 
that when Old English5 and Latin were symbolized like 
their younger languages, they were detected as their 
younger counterparts. It appears that related languages 
can be identified using our approach6. This further sup-
ported our hypothesis that detection was primarily based 
on symbolization. The final experiment used Malagasy, 
the national language of Madagascar. Malagasy was se-
lected as it uses no diacritical marks, can be represented 
with the Latin character set, and does not originate from 

Sanskrit (as English and Italian do); it is a member of the 
Austronesian language family. The only text available in 
Malagasy was a copy of The Bible [35]. This test pro-
duced curious results. For this experiment, the book of 
Genesis was symbolized with both the English and Ital-
ian statistics and symbol-space. These symbolized strings 
are then analyzed using confidence intervals and maxi-
mum likelihood. 

The results of these comparisons are presented in the 
plots with square markers in Figures 10-13. From these 
curves, it appeared that detection is strongly influenced 
by language structure and not solely symbolization as 
was indicated by the English-Italian cross-symbolization 
tests. 

At first glance, it appeared that the ROC curves in 
Figures 10-13 favored the existing maximum likelihood 
measure over the confidence interval approach proposed 
by Schwier. However, this was only because the strings 
presented are 77 symbols long. Floating-point underflow 
is possible with longer strings. While there are methods 
to avoid this, such as normalization at every step and the 
use of logarithms, these methods introduce more noise 
into an already noisy calculation. 

It should also be noted that the confidence interval ap-
proach is for detection, not for classification as maxi-
mum likelihood is. CI methods indicate the presence of a 
specific behavior in a given sample string. It can be used 
as a classifier, but that isn’t its intended use. As said ear-
lier, to do so would require ROC curve inspection to de-
termine a suitable threshold between behaviors. 

In [6,28], Schwier et al. pointed out that with confi-
dence intervals there is a marginally higher false positive 
rate. This is due to less noise being introduced than with 
maximum likelihood. 

It should be noted that confidence interval analysis can 
be performed online. This is not the case for maximum 
likelihood testing. Furthermore, presenting the data in 
windows is necessary for online use [6], and for the dif-
ferentiation between languages. While this windowing is 
not needed for maximum likelihood, it can be applied to 
it. 
 
6. Conclusions and Future Work 
 
Protocol tunneling is the basis of most protocol stacks. It 
can be used to add security and anonymity to networks 
by tunneling insecure protocols within other protocols. 
This may be used positively (ex. VPNs), or negatively 
(to circumvent network security measures). Side channel 
vulnerabilities are able to detect the use of protocol tun-
neling and in some cases counteract the reasons for using 
tunnels.  

5Beowulf 
6 This would assume that native speakers of Italian (English) would type 
Latin (Beowulf) with the same speed as their native language, which is 
likely not to hold in practice. Our test was run solely to see how sensitive 
this process was to the conditional probability structure of the language 
as opposed to typing dynamics. We provided a brief, but comprehensive survey of 
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known side channel vulnerabilities for protocol tunneling. 
We then provided a tutorial for our HMM approach to 
protocol detection. This approach is more general than 
the other approaches in the literature, since it is data 
driven. As an illustrative example, we show how lan-
guage use can be detected in interactive SSH sessions. 
Our experimental results show that the example applica-
tion was very successful. 
 
6.1. Tor Analysis 
 
In [36] we used the approach given in Sections 4 and 5 to 
trace network flows through Tor. While the details of 
that application are outside the scope of this paper, the 
results of that work are consistent with the survey given 
in Section 2. Our approach was passive and did not re-
quire a malicious Tor node. We found that, as with Eng-
lish, it was impossible to find the value of L for the Tor 
model. This was due to intermittent session reinitializa-
tions within Tor inserting large network delays that were 
not associated with the underlying protocol. We were 
able to construct a practical model that included only 
statistically significant states and transitions. Using this 
model and the Viterbi path traced by observed network 
streams, we were able to accurately classify 95% of the 
packets as belonging to the same network session. This 
was without requiring either additional network traffic or 
a global view of the network. 

 
6.2. SSH Side-Channel Attacks 

 
For language detection, we wrote a detector using Java. 
By redirecting the output of a parsed tshark capture to it, 
it is possible to detect the presence of English and Italian 
in real-time. To test the functionality of this application, 
the samples from Project Gutenberg were sent across an 
SSH tunnel to the client machine which was monitoring 
communication with the detector. 

The test was successful: using a threshold of 0.0% 
with the Italian HMM and 89.0% with the English HMM 
it is possible to detect the presence of either language in 
a given sample string. That is, if the CI analysis shows 
that more than 89.0% of the behavior of the English 
HMM is exhibited by the string, it is English with a 5% 
false positive rate. This detection was performed in 
real-time and can be done from a third node as well as 
the packet contents were not needed, merely the delays 
between them. 
 
6.3. Zero-knowledge HMM Detection of Protocol 

Tunnels 
 
From the results of our tests, it is apparent that our HMM 
inference approach accurately detects complex tunneled 

applications. It is also possible to use these models to 
detect languages in real-time. Typing dynamics have 
been used as a form of biometrics for user identifica-
tion/authentication for quite some time [5,31,32]. Our 
results show a possible broader application for this. 

The symbolization phase is particularly important as it 
affects both the construction of the HMM as well as de-
tection process. From the tests performed in this work, it 
is clear that symbolization affects the identification of 
behaviors present in a string. Given the number of 
key-pairs considered, it wasn’t possible to symbolize 
based solely on the plots of the Gaussians approximation. 
Consequently, we used a clustering approach to identify 
centers of activity within the set of all delays. Further-
more, we recognized that as the symbol-space grows 
larger, the data required to build an HMM increases ex-
ponentially. 
 
6.4. Future Work 
 
Future work could look at increasing the efficiency of the 
recognition. The most important thing to note is that this 
analysis is made possible through the timing vulnerabili-
ties present in most secure communication channels. As 
services seek to maintain a high quality of service, they 
attempt to minimize any introduced latency.  

This is a major vulnerability and will likely be present 
for some time into the future [35]. The HMM inferencing 
approach we present is general and can be used to design 
tunnel detection routines for protocols that fulfill our as-
sumptions. The stationary probability assumption is not 
very restrictive. Adding random noise to the probabilities 
simply produces a new probability distribution. Steadily 
decreasing delays would be problematic, except that a 
minimal delay will quickly be reached. Increasing delays 
uniformly would make the tunneled application unusable. 

We are interested, however, in relaxing the finite state 
assumption. We are working at adapting this approach to 
probabilistic grammars. It would also be interesting to 
move further up the Chomsky hierarchy and look at 
probabilistic recursively enumerable processes. 
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