
Advances in Internet of Things, 2011, 1, 13-26
doi:10.4236/ait.2011.12003 Published Online July 2011 (http://www.SciRP.org/journal/ait)

Copyright © 2011 SciRes. AIT

Side-Channel Analysis for Detecting Protocol Tunneling

Harakrishnan Bhanu1, Jason Schwier1, Ryan Craven1, Richard R. Brooks1, Kathryn Hempstalk2,
Daniele Gunetti3, Christopher Griffin4

1Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, USA
2Department of Computer, The University of Waikato, Hamilton, USA

3Dipartimento di Informatica, Università degli Studi di Torin, Corso Svizzera, Torino, Italy
4Department of Mathematics, Pennsylvania State University, University Park, USA

E-mail: rrb@clemson.edu
Received May 28, 2011; revised June 30, 2011; accepted July 8, 2011

Abstract

Protocol tunneling is widely used to add security and/or privacy to Internet applications. Recent research has
exposed side channel vulnerabilities that leak information about tunneled protocols. We first discuss the
timing side channels that have been found in protocol tunneling tools. We then show how to infer Hidden
Markov models (HMMs) of network protocols from timing data and use the HMMs to detect when protocols
are active. Unlike previous work, the HMM approach we present requires no a priori knowledge of the pro-
tocol. To illustrate the utility of this approach, we detect the use of English or Italian in interactive SSH ses-
sions. For this example application, keystroke-timing data associates inter-packet delays with keystrokes. We
first use clustering to extract discrete information from continuous timing data. We use discrete symbols to
infer a HMM model, and finally use statistical tests to determine if the observed timing is consistent with the
language typing statistics. In our tests, if the correct window size is used, fewer than 2% of data windows are
incorrectly identified. Experimental verification shows that on-line detection of language use in interactive
encrypted protocol tunnels is reliable. We compare maximum likelihood and statistical hypothesis testing for
detecting protocol tunneling. We also discuss how this approach is useful in monitoring mix networks like
The Onion Router (Tor).

Keywords: Hidden Markov Models, Timing Side-Channel Attack, VPN Vulnerability

1. Introduction

Communications protocols are typically described using
either the 7-layer Open Systems Interconnect (OSI) model
from the International Standards Organization (ISO) or the
four layer Internet Engineering Task Force (IETF) Internet
Protocol (IP) stack [1]. In both, each layer of the network
stack, except the lowest physical layer, is a set of network
protocols recursively tunneled within protocols at lower
layers of the stack. This creates an adaptable design space
where functionality missing at one layer can be provided at
another layer of the stack.

The original IP design largely ignored security issues.
IPv4 sends data in clear text and data packets are not
authenticated. Security is typically added to IP by either:
 Using virtual private networks (VPNs) that add secu-

rity by tunneling standard IP packets through an en-
crypted virtual network connection [2], or

 Using IPsec, which is part of the IPv6 standards. A
major protocol in the IPSec suite is essentially a VPN
that tunnels IPv4 packets through encrypted connec-
tions [2].

Mix networks like The Onion Router (Tor) and Invisi-
ble Internet Protocol (I2P) use tunneling to add both
anonymity and security to IP [3].

Protocol tunneling can also be used to evade network
security enforcement. Protocol tunneling through SSH1,
HTTP, and even DNS has been used to circumvent secu-
rity enforcement by firewalls and application layer gate-
ways [4]. Since packets tunneled through SSH or SSL
are encrypted, security enforcement tools are effectively
unable to inspect their contents [4]. One impediment to

1SSH is a standard Internet tool that opens a shell on a remote machine
and secures interactions by encrypting the data stream. In this paper, tests
used the current version of SSH; SSH 2.0. Previous work [1] used SSH
v1.0.

H. BHANU ET AL. 14

IPv6 adoption is the fact that mandatory use of encrypted
IPsec tunnels disables firewall deep packet inspection.

On the other hand, current protocol tunneling tools
have been found vulnerable to side-channel attacks,
which do not directly compromise security measures.
Instead, side-channels extract information by indirectly
observing implementation artifacts. For example, a sig-
nificant timing side-channel vulnerability for SSH can
extract the system password from interactive sessions [5].
This paper discusses how side-channel analysis can de-
tect the presence of protocols within tunneled connec-
tions.

There are three main contributions of this paper. First,
it provides a brief, up-to-date survey of current side-
channel attacks on tunneled protocols. Second, an appli-
cation is presented that provides a practical example of
how tunneled protocols can be detected. Third, the ap-
proach we present has significant advantages over pre-
vious approaches. It makes minimal assumptions about
the protocol being attacked and requires no a priori in-
formation about the protocol. The use of statistical hy-
pothesis testing, instead of maximum likelihood com-
parisons, has multiple advantages that are explained in
Section 3.

The rest of this paper is organized as follows. Section
2 provides a brief survey of current research literature on
side-channel vulnerabilities in tunneled protocols that
use security tools like SSH, SSL, Tor, and I2P. Section 3
describes our approach to protocol detection. It uses
zero-knowledge hidden Markov model inference [6,7] to
extract models of network protocols from observed tim-
ing data. To illustrate how protocol detection works, we
present an example application in Section 4. We show
how inferred HMMs detect the language used in interac-
tive remote sessions tunneled through SSH. Section V
analyzes the performance of our example application.
Section VI discusses our results and presents our conclu-
sions.

2. Brief Survey of Side-Channel Attacks on

Tunneled Protocols

Figure 1 illustrates how protocol tunneling is done by
virtual private networks. For example, many Linux
VPNs create a virtual network interface TUN [2]. Ap-
plications connect to TUN, like they would connect to
the Ethernet network interface. TUN multiplexes these
sessions, encrypts them, and passes them to the real
network interface. The network interface adds a rout-
ing header to the encrypted TUN packet and sends this
new packet over the Internet. The network interface on
the destination node removes the routing information
and forwards the packet payload to its local TUN in-

Figure 1. Notional illustration of protocol tunneling.

terface, which demultiplexes and decrypts the sessions.
This adds security to IP networks by encrypting the
communications sessions and providing a private name
space.

For this procedure to work on the current Internet,
routing information is not encrypted, which makes the
system vulnerable to traffic analysis. Figure 2 shows
how The Onion Router (Tor) attempts to make commu-
nications immune to traffic monitoring in order to pro-
vide anonymous communications [8,9]. The connection
source (Alice) contacts a Tor directory node for a list of
cooperating Tor relays. Alice chooses (typically) three
Tor relay nodes. The final Tor node acts as a proxy for
Alice in her connection with destination (Bob). Each hop
within Tor is a tunneled connection encrypted with a
different key. Each intermediate Tor node is only aware
of its session key, the previous node, and the next node
in the session relay. For each packet it receives, it strips
off the routing data, decrypts the encapsulated packet,
and relays the results of the decryption to the next node
(see Figure 1).

I2P uses an approach like Tor with a few additions
[10,11]. User communications go through an encrypted
proxy address embedded in the I2P cloud. Each user can

Figure 2. Anonymous tunneling through Tor or I2P.

Alice Bob

Regular Packet

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 15

have multiple active sessions multiplexed through the
cloud. Where Tor has only a low latency mode that for-
wards packets as they arrive, I2P also provides medium
and high latency modes.

In addition to tunneling using encryption tools like
SSH or SSL, sessions can be tunneled through other
protocols like http and DNS [4]. This can go to ex-
tremes. DNS has been tunneled through SSH and SSH
through DNS, leading to the recursive tunneling of
DNS through DNS [12].

Protocol tunneling makes network monitoring difficult.
When the tunnels are protected using encryption, it be-
comes necessary to either break the encryption scheme
using cryptanalysis or resort to side-channel attacks.
Since modern encryption protocols are designed to be
prohibitively expensive to attack2, side-channel attacks
that exploit implementation artifacts are attractive.

For example, web browsers use SSL to encrypt net-
work traffic and protect user information from exposure.
Unfortunately modern web pages consist of many com-
ponents, such as CSS style sheets, images, etc. The
side-channel attack in [14] uses this information to de-
termine the sequence of web pages viewed by a user,
even when SSL encrypts the network traffic. While en-
cryption effectively secures information entered into
forms on web pages, the packet sizes of the SSL en-
crypted packets can be monitored. These sizes corre-
spond directly to web page elements and provide enough
information to typically track the sequence of web pages
visited during a user’s web browsing session.

To maintain Quality of Service, SSH transmits key-
strokes as they are typed, preserving the inter-keystroke
delays. One packet is transmitted for each keystroke
from the user’s local machine to the remote host. Song et
al. [5] use timing analysis to infer the system password
from interactive SSH sessions. They manually con-
structed an HMM to represent interactive SSH sessions
and trained the HMM using data collected by observing
the individual doing remote system administration tasks.
They then used a priori information particular to SSH
version 1 to determine exactly which keystrokes corre-
spond to the password. The timing data corresponding to
the sequence of characters for the password can then be
entered into the trained HMM. An n-Viterbi algorithm is
then used to find the n character sequences that most
likely produced the timing signature. This information
reduces the computational effort required to infer the
password using traditional techniques by a factor of 50.
This basic vulnerability is present in most secure com-

munications applications, including virtual private net-
works built on SSH cryptography protecting tunneled
connections.

A similar approach has been used to identify specific
phrases in encrypted voice over IP (VOIP) traffic [15].
When variable bit rate encoding is used by the VOIP
codec, the encodings of different classes of phonemes
require predictable ranges of bit sizes; producing a vul-
nerability similar to the one in [14]. As in [5] in this at-
tack, HMMs are constructed and trained to recognize
specific phases of interest. They determine the Viterbi
path of observed phrases through the HMM and use a
log-likelihood ratio metric comparing the observed path
with random noise. Their test shows that phrases can be
identified in encrypted data streams with probabilities
ranging from 50% to 90%.

The Tunnel-Hunter approach [4] uses both inter-
packet arrival rates and packet sizes to define protocol
profiles. Training data is collected for one or more pro-
tocols tunneled through either SSH or http. As a network
is monitored, observation data is used to construct a pro-
file matrix. Instead of using HMMs for protocol detec-
tion, they use Bayesian techniques to create maximum
likelihood classifiers. If a timing profile matches a class
of forbidden applications, then the tunneled session is
terminated. The test results for this approach are promis-
ing.

We now describe side-channel attacks on traffic using
mix networks. Several researchers have used timing in-
formation to attack the anonymity provided by mix net-
works like Tor and I2P. If attackers can collect in-
ter-packet timing information at all network entry and
exit points, interpacket timings can be cross-correlated to
calculate the mutual information between entry-exit pairs.
This reliably identifies the correct communications paths
using sample sizes on the order of seconds to tens of
seconds. Surprisingly, this attack works better on larger
networks than on smaller ones [16]. This is an instance
of the more general class of flow correlation attacks [17].
This type of attack does not have to be constrained to
entry/exit nodes. The work in [18] analyzes traffic at
global choke points to determine the global region where
a given service is hosted. These attacks can best be
countered by saturating the communications channels
[19] leaving no available bandwidth for patterns to
emerge. Due to the extreme resource requirements of
channel saturation, this approach can only be used in
extreme cases.

The side-channel attacks presented thus far were all
passive. It is also possible to extract timing information
by either using malicious Tor nodes or actively inserting
traffic into the network. One early approach inserted a
malicious node into Tor [20], made the node attractive

2Current implementations of tools like SSL do have vulnerabilities, but
these are mainly due to deficiencies in implementation or supporting
infrastructure [13], they are rarely due to deficiencies in the crypto-
graphic algorithm.

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 16

for use as a contact node, and used packet counting to
identify the real identity of a node trying to be anony-
mous. In another approach a malicious node in the Tor
network inserts traffic flow that deliberately slows down
intermediate nodes [21]. By correlating the traffic flow
of the session of interest with the disturbance traffic it
becomes possible to identify the nodes that are being
used as intermediates in the Tor session. This attack is
called low-cost, since it does not require monitoring the
entire network, like [16,17]. The congestion attack in [21]
worked well in the small prototype Tor network, but fails
to scale. To overcome these failings, it has been extended
[21] in two ways. The first extension created long circu-
lar paths within Tor to generate congestion traffic. The
second extension assumed that the user selects a mali-
cious proxy exit node. The proxy could then modify
webpages being retrieved to include malicious Javascript
code that generates traffic to help trace node traffic. A
similar idea is presented in [22] which localizes client
nodes by measuring the time difference between when a
specific web-page is returned and the client requests an
object embedded within the web-page. This attack allows
nodes within Tor to determine if two sessions to the
same host started at the same client.

Suggestions for countering these active attacks [13,21]
include removing the ability of participating nodes to
discover the full list of participating nodes, introducing
higher latency communications modes, and adding gar-
bage traffic to obscure patterns [23,24]. These sugges-
tions are problematic. If participating nodes are not ad-
dressable by malicious insiders, they will also be un-
available for use by legitimate users. I2P does interleave
higher latency traffic with low-latency traffic, which is a
possible countermeasure but Tor provides low-latency
connections for usability reasons. Finally, adding random
noise typically does not counteract correlation attacks; at
best it increases the sample size necessary to reliably
identify communications patterns.

Timing side-channels are not always due to network
latency. The timing skew due to changes in processor
clock speeds can be remotely detected [25,26]. In [25] a
machine is expected of hosting a service anonymized by
Tor. Large volumes of traffic are requested by one node
while another node continuously pings the suspect node.
The heat generated by the additional workload detectably
changes the processor’s clock speed, which is easily de-
tected in the ping messages. This basic attack is extended
in [26], which no longer requires inducing a large work-
load. It is possible to simply detect the patterns in the
clock variation, which produce a detectable fingerprint.
This fingerprint can also be used to geo-locate the hidden
service by correlating clock skew with the time of day
and temperature variations.

3. HMM Inference

The approach we use resembles [5,16] in that we use
HMM models to analyze side-channel information.
However, we extend their work in important ways. As
long as the protocol to be detected can be expressed with
a finite number of states and state transition probabilities
are stationary, our approach is valid [27]. Instead of us-
ing standard HMM approaches that require an a priori
known state space for training, we require no prior
knowledge. Instead of using maximum likelihood met-
rics [4,5,15-17], we combine HMMs with statistical hy-
pothesis testing which provides a theoretical basis for
determining threshold values [28-30]. Hypothesis testing
allows us to determine the statistical significance of the
inferred model, which in turn indicates whether or not
the volume of training data is sufficient [28-30]. Maxi-
mum likelihood approaches also typically consider all
the available observed data for making a decision, which
has a number of drawbacks. If the number of observa-
tions is large, the likelihood value computed by maxi-
mum likelihood is subject to underflow. The underflow
danger can be countered by frequently renormalizing the
likelihood value, which decreases the precision of the
value being computed. In contrast, the values we use [28]
become more precise as the volume of observation data
increases. Our approach calculates values over a sliding
window of observations. Methods for calculating win-
dow size are given in [29,30].

In the rest of this section, we describe our HMM in-
ference procedure. Section 3.1 we describe how to ex-
tract classes of observations from continuous timing data.
We show how to extract HMMs from training data in
Section 3.2. Section 3.3 explains the stopping criteria for
this process, which results in either producing a signifi-
cant model or collecting more training data. We conclude
this discussion with Section 3.4 explaining how the
models are used for protocol detection. Section 4 will
explain how this approach detects the languages used in
interactive SSH sessions. Consider the language typed as
an example of a complex network protocol.

3.1. Observation Class Inference

As Song et al. demonstrated, the delays between key-
strokes are preserved when using an SSH tunnel [5]. This
can be exploited without explicitly attacking the crypto-
graphic protocol by analyzing the sequence of delays in
the SSH data stream to detect behaviors. In our example
application, we extract typing statistics from data sets of
typing behaviors collected from native speakers of Eng-
lish [31] and Italian [32]. We then use knowledge of the
delays between specific keystroke pairs (ex. “a then s” vs.

Copyright © 2011 SciRes. AIT

H. BHANU ET AL.

Copyright © 2011 SciRes. AIT

17

“a then p”) to associate inter-packet delays in the SSH
stream to a set of potential clear-text equivalents.

We use the HMM inference approach discussed in the
remainder of this section to extract a Markov model of
the conditional probabilities inherent in English and Ital-
ian. For example, in English once the letter q has been
typed it is much more likely to be followed by the letter
u than the letter z. We used two methods to associate
observed packet delays with pairs of symbols.

HMM processing is based on symbolic observations.
For timing analysis, we need to find the classes of ob-
servations that best represent the data we collected. We
first collected statistically significant data sets of native
speakers of Italian typing Italian texts [32] and native
speakers of English typing English texts [31]. We veri-
fied that the volume of data we had was sufficient and
that the variance between typists was not large enough to
invalidate our results.

We initially plotted the Normal distribution models of
key-pair timing data using the means and variances ex-
tracted from the data. These plots are shown in Figures 3
and 4. Since the overlaps are too large to effectively dis-
tinguish between key-pairs, a clustering approach was
used [33] to find distinct classes of key-pairs. Growing
Neural Gas (GNG) identified 4 clusters for the Italian
keystroke data and 10 for the English. Ranges were de-
termined as shown in Table 1. In this paper, GNG hap-
pens to be the clustering algorithm that was used. We
expect that other approaches, such as k-means clustering,
self-organizing maps, etc. would probably have produced

similar results. A more rigorous explanation of this
symbolization process is in [33].

3.2. Hidden Markov Model Inference

States of a Hidden Markov Models (HMMs) are not di-
rectly observed. Instead, state outputs are observed.
Unlike common HMMs inference approaches [34], our
approach directly associates state output symbols with
state transitions.

In [7] Schwier et al. show it is possible to construct
HMMs without a priori knowledge of the system [27] to
find patterns in a symbolic time series. We use the con-
ditional probabilities in data streams to infer a state space
[27]. The algorithm starts by dividing the training data
set into segments of length two. It computes the condi-
tional probabilities present in the data—e.g., P(u|q)—
resulting in a conditional probability density function for
each symbol observed. A χ2-square test3 at the desired
confidence level finds a set of unique probability distri-
bution functions (pdfs). This set is the initial state space.
In this work, we use a confidence level of 0.95.

We then consider training data segments of increasing
string length L. For example, with a string length L = 3
and a two symbol (A and B) alphabet, the algorithm
would compute conditional probabilities for BB, AB, BA,
and AA, being followed by an A or a B. Each unique pdf
is a state and the set of sequences of symbols that lead to
that state is its history [27]. The values of the pdf associ-
ated with the state become the transition probabilities
leading to new states. This process continues until a pre-

Table 1. Symbolization of English and Italian keystroke statistics. The means shown in the table above are those identified by
Growing Neural Gas (GNG). Bounds were determined by locating the midpoint between means. These bounds were then
associated with symbols. All values in the table are in milliseconds. An upper bound of 10 seconds was used to prevent any
symbols from being identified as “null”.

English Italian

L. Bound U. Bound Mean Symbol L. Bound U. Bound Mean Symbol

0.00 125.00 95.14 A 15.32 0.00 28.00 A

126.00 182.00 153.17 B 38.88 29.00 45.00 B

183.00 236.00 209.04 C 49.98 46.00 59.00 C

237.00 287.00 261.29 D 67.19 60.00 10000.00 D

288.00 329.00 311.21 E

330.00 364.00 345.07 F

365.00 414.00 382.01 G

415.00 494.00 445.05 H

495.00 625.00 541.29 I

626.00 10000.00 707.73 J

3Each conditional probability is a Conditional random function. If the training data is sufficiently large, each Conditional pdf converges to a
Multi-Variate Normal pdf by the Central Limit Theorem. The chi-square test is the standard test for determining if two sets of conditional probabili-
ties are not the same.

H. BHANU ET AL. 18

Figure 3. English Keystroke Gaussian.

Figure 4. Italian Keystroke Gaussian.

scribed value of L is reached. We refer the reader to
[6,7,27] for details about the CSSR algorithm and [6,28]
to find L for a given process.

3.3. Stopping Criteria

As discussed in [6,28], HMM inference continues until
one of several conditions occurs; first, we infer the
HMM. We then test the inferred HMM for statistical
significance using the process in [6]. This considers each
conditional probability as a collection of Bernoulli ran-
dom functions. We verify that the sample sets used for
determining the values of these probabilities were suffi-
ciently large. If not, we determine how much additional
data is required and restart the process with a larger
training set. If sample sizes are sufficient, CSSR is re-

peated with the string length incremented by one. If this
model is also statistically significant, and identical to the
model produced by the earlier iteration, the process has
converged. As explained in [7], the HMM changes as the
length of the training string grows until we reach the
point where the correct model has been found. Figure 5
gives a flowchart of this process.

3.4. Problem Detection

Unlike traditional HMMs [34], the models we infer have
no starting state. To determine whether a HMM is con-
sistent with an observed symbol sequence, all starting
states are considered. If a symbol occurs in a state with-
out a corresponding transition, the combination of HMM
and start state is rejected.

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 19

Figure 5. How to determine HMM inference stopping crite-
ria.

To determine if a model produced a symbolized se-
quence, the maximum-likelihood forward-backward
method is typically used [34]. The forward-backward
procedure solves a classification problem; we are con-
cerned with detection. We discuss classification versus
detection in Section IV.

To solve the detection problem, we use the confidence
interval approach from [28]. The confidence interval
approach counts the number of times a particular state is
entered and creates confidence interval bounds for each
exiting transition by dividing exiting transition counts by
the entering transition count. The confidence interval for
the transition in question can then be found from Expres-
sion (1).

, , , ,
, /2 , /2

(1) (1)
,i j i j i j i j

i j i j
i

p p p p
p Z p Z

c 


 



 ic

 



 (1)

where pi,j is the transition probability from state i to state
j for a fixed symbol, ci is the entry-counter for state i, and
Z /2 is taken from the standard Normal distribution.
These probabilities were known to us, as we constructed
the models.

If the estimate falls within the confidence interval, we
accept it as being correct with a false positive rate of α. If
the frequencies, and hence the transition probabilities, do
not fall within this range, the model is rejected as it
should not have generated the string.

To map transition acceptance or failure across the
model, we follow the approach from [28] and use Re-
ceiver Operating Characteristic (ROC) curves to deter-

mine the ideal threshold for acceptance of false positives.
This is done by identifying the point on the curve nearest
to the point (0,1), corresponding to 0% false positives,
100% true positives. By allowing a false positive rate
equal to the threshold value, the true positive rate is
maximized. Consequently, if the rejection rate exceeds
this threshold, the model is similarly rejected. This is
because more false positives were encountered than ideal.
However, if the acceptance rate passes this threshold, the
model is accepted as a valid source for the presented
symbol sequence.

4. Language Detection

Our language structure HMMs were inferred from key-
stroke data [31,32] collected from native speakers of
English and Italian using their native keyboards. We ex-
tracted the keystroke dynamics of each language. How-
ever, the data did not include statistically significant
samples of all key-pairs. One data set did not include
upper case data. The keystroke pairs for which sufficient
data was available were classified by source and destina-
tion key. Their means and variances were determined.

For key-pairs where sufficient data were not available,
interpolation was performed: if the key-pair AU had no
samples, the delays for surrounding key-pairs AY, AJ,
AI and A7 were averaged. If none of these were present,
then QU, SU and ZU were averaged. That is to say, first
the neighbors of the destination key (U) were considered,
and then those of the source key (A). For reference,
keyboard layouts for New Zealand and Italy are shown in
Figures 6 and 7.

Training data for HMM construction were collected
from Project Gutenberg. Recent, (1900 or later), texts
were taken and preprocessed to remove case and special
characters. Training and testing data sets were estab-
lished. The zero-knowledge approach from [7] was used
to extract HMMs from the training set. The resulting
HMMs are shown in Figures 8 and 9.

For the Italian data, a reconstruction with a string
length L = 3 was possible. We could only use L = 1 for
the English data. Our training sets had approximately 1.1
million key-pairs. Our clustering approach gave us 10
distinct key-pair clusters for English. We used the ap-
proach from [6] to determine both the significance of the
models and the volume of data necessary for creating a
significant model. Creating a significant model for L = 1
would have required a training set of over 11 million
key-pairs. This was due to the existence of a number of
low probability transition events. We were forced to stop
HMM inference and use the approximate model that we
inferred with 1.1 million key-pairs and L = 1. Therefore,
the English model only considers conditional probability

Copyright © 2011 SciRes. AIT

H. BHANU ET AL.20

Figure 6. New Zealand Keyboard Layout (Source: http://wapedia.mobi/en/File:KB_United_States-NoAltGr.svg). Reproduced
from Wapedia under the Creative Commons Attribution/Share-Alike License and GNU Free Documentation License.

Figure 7. Italian Keyboard Layout (Source: http://wapedia.mobi/en/File:KB_Italian.svg). Reproduced from Wapedia under
the Creative Commons Attribution/Share-Alike License and GNU Free Documentation License.

Figure 8. English HMM (10 states, 100 transitions)

histories of one letter.

Italian only had 4 clusters, which made it possible to
achieve a statistically significant reconstruction with L = 3
and a similar volume of training data. Since there were a
smaller number of possible transitions from each state,
there were fewer low-probability state transitions. The
training process had a larger sample set available for de-
termining probability distributions. For Italian, the ob-
served string increased to 4 symbols, meaning that condi-
tional probability histories of up to 5 letters were consid-
ered.

Using window-size calculations from [6], we found
the minimum string length needed to differentiate be-

tween the two models, with a 95% true-positive rate, was
77 symbols [29]. We therefore split the testing data into
windows of 77 symbols and selected 400 windows. A set
of 800 English and Italian windows were chosen to use
for testing.

We used the test data to determine the ability of the
English and Italian models to detect the language being
used in interactive SSH sessions.

5. Detection Results

The testing data was sent through interactive SSH v2
connections following the keystroke pair delay distribu-

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 21

Figure 9. Italian HMM (64 states, 253 transitions).

tions described in Section 2.1. The detection procedure
redirected the output of a parsed tshark4 capture to a cus-
tom detection routine. The detection routine used our
English and Italian HMMs with maximum likelihood and
confidence interval detection criteria.

The ROC curves for the tests are shown in Figures
10-13:
 Circular points compare English and Italian data

streams.
 Square points are for Malagasy (the national language

of Madagascar) data streams, and
 Diamond points are for English (Italian) data trans-

mitted with Italian (English) timing.
The latter tests were used to help clarify the relation-

ship between timing and language letter sequence condi-
tional probabilities.

From the plots denoted by circular markers in the
ROC curves, where English and Italian are compared, it
is clear both the CI and maximum likelihood approaches
are able to detect the language used. It was found that

with strings of 77 symbols, a threshold of 89.0% for us-
ing the HMM to detect English and 0.0% for using the
HMM to detect Italian were optimal.

Since the range of Italian key-stroke delays is a subset
of English, all English inputs produced impossible tran-
sitions within 77 symbols. The Italian conditional prob-
abilities were consistent enough that Italian text never
produced probabilities outside the 95% confidence in-
terval. No impossible transitions occurred when Italian
text was parsed by the English Markov Model. Also, the
English conditional probabilities were less homogeneous.
When English text was parsed it would often produce
observed transition probabilities outside the 95% confi-
dence interval. While this is to be expected approxi-
mately 5% of the time, our observations can be explained,
in part, as an artifact of using the L = 1 approximation of
the true process. However the conditional probabilities in
Italian text were quite different from English conditional
probabilities, explaining the optimal 89% threshold, as
shown in Table 2 this threshold was able to reliably dif-
ferentiate between the two languages as shown in Figure 4http://sourceforge.net/projects/wireshark/

Copyright © 2011 SciRes. AIT

H. BHANU ET AL.22

Table 2. ROC statistics for English vs. Italian (left) and Cross-Symbolization (right) with Confidence Intervals. The last col-
umn in the above tables, “Distance,” is the distance from the curve at that point to the point (1, 0) on the axes. The ideal
threshold is reached when this distance is minimized.

10.

In cross-symbolization, English was symbolized with
the Italian delay statistics and the Italian symbol-space
and vice-versa. This was done to see which of the two
phases of our process (symbolization or HMM parsing)
dominated the process. When the symbolizations were
switched, the opposite language was identified. That is,
for the English case, Italian was identified. From the re-
sults, shown by the plots with diamond markers in Fig-

Figure. 10. English Confidence Interval results—English vs.
Italian (circle), Cross-Symbolization (diamond), and Mala-
gasy (square).

Figure. 11. English Maximum Likelihood results—English
vs. Italian (circle), Cross-Symbolization (diamond), and
Malagasy (square).

ures 10-13, it was clear that the symbolization process
dominated our approach. However, it wasn’t clear if the
behavior identified was a function solely of the symboli-
zation or also due to language structure. We note that
while English is a Germanic derivative language and
Italian is a Latin derivative, both are in the Indo-Euro-
pean family and hence have substantial similarities.

To address this issue, we compared the modern lan-
guages with ancestor languages. This experiment found

Threshold True Pos False Pos True Neg False Neg Distance Threshold True Pos False Pos True Neg False Neg Distance

0.00 401 401 0 0 1.000 0.00 401 401 0 0 1.000

Repeated 79 times Repeated 78 times

0.80 401 401 0 0 1.000 0.80 401 400 1 0 0.998

0.81 401 392 9 0 0.978 0.81 401 400 1 0 0.998

0.82 401 371 30 0 0.925 0.82 401 371 30 0 0.925

0.83 401 294 107 0 0.733 0.83 401 297 104 0 0.741

0.84 401 201 200 0 0.501 0.84 401 195 206 0 0.486

0.85 401 103 298 0 0.257 0.85 401 105 296 0 0.262

0.86 401 40 361 0 0.100 0.86 401 37 364 0 0.092

0.87 401 9 392 0 0.022 0.87 400 7 394 1 0.018

0.88 399 3 398 2 0.009 0.88 395 0 401 6 0.015

0.89 399 0 401 2 0.005 0.89 389 0 401 12 0.030

0.90 397 0 401 4 0.010

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 23

Figure. 12 Italian Confidence Interval results—English vs.
Italian (circle), Cross-Symbolization (diamond), and Mala-
gasy (square).

Figure. 13. Italian Maximum Likelihood results—English
vs. Italian (circle), Cross-Symbolization (diamond), and
Malagasy (square).

that when Old English5 and Latin were symbolized like
their younger languages, they were detected as their
younger counterparts. It appears that related languages
can be identified using our approach6. This further sup-
ported our hypothesis that detection was primarily based
on symbolization. The final experiment used Malagasy,
the national language of Madagascar. Malagasy was se-
lected as it uses no diacritical marks, can be represented
with the Latin character set, and does not originate from

Sanskrit (as English and Italian do); it is a member of the
Austronesian language family. The only text available in
Malagasy was a copy of The Bible [35]. This test pro-
duced curious results. For this experiment, the book of
Genesis was symbolized with both the English and Ital-
ian statistics and symbol-space. These symbolized strings
are then analyzed using confidence intervals and maxi-
mum likelihood.

The results of these comparisons are presented in the
plots with square markers in Figures 10-13. From these
curves, it appeared that detection is strongly influenced
by language structure and not solely symbolization as
was indicated by the English-Italian cross-symbolization
tests.

At first glance, it appeared that the ROC curves in
Figures 10-13 favored the existing maximum likelihood
measure over the confidence interval approach proposed
by Schwier. However, this was only because the strings
presented are 77 symbols long. Floating-point underflow
is possible with longer strings. While there are methods
to avoid this, such as normalization at every step and the
use of logarithms, these methods introduce more noise
into an already noisy calculation.

It should also be noted that the confidence interval ap-
proach is for detection, not for classification as maxi-
mum likelihood is. CI methods indicate the presence of a
specific behavior in a given sample string. It can be used
as a classifier, but that isn’t its intended use. As said ear-
lier, to do so would require ROC curve inspection to de-
termine a suitable threshold between behaviors.

In [6,28], Schwier et al. pointed out that with confi-
dence intervals there is a marginally higher false positive
rate. This is due to less noise being introduced than with
maximum likelihood.

It should be noted that confidence interval analysis can
be performed online. This is not the case for maximum
likelihood testing. Furthermore, presenting the data in
windows is necessary for online use [6], and for the dif-
ferentiation between languages. While this windowing is
not needed for maximum likelihood, it can be applied to
it.

6. Conclusions and Future Work

Protocol tunneling is the basis of most protocol stacks. It
can be used to add security and anonymity to networks
by tunneling insecure protocols within other protocols.
This may be used positively (ex. VPNs), or negatively
(to circumvent network security measures). Side channel
vulnerabilities are able to detect the use of protocol tun-
neling and in some cases counteract the reasons for using
tunnels.

5Beowulf
6 This would assume that native speakers of Italian (English) would type
Latin (Beowulf) with the same speed as their native language, which is
likely not to hold in practice. Our test was run solely to see how sensitive
this process was to the conditional probability structure of the language
as opposed to typing dynamics. We provided a brief, but comprehensive survey of

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 24

known side channel vulnerabilities for protocol tunneling.
We then provided a tutorial for our HMM approach to
protocol detection. This approach is more general than
the other approaches in the literature, since it is data
driven. As an illustrative example, we show how lan-
guage use can be detected in interactive SSH sessions.
Our experimental results show that the example applica-
tion was very successful.

6.1. Tor Analysis

In [36] we used the approach given in Sections 4 and 5 to
trace network flows through Tor. While the details of
that application are outside the scope of this paper, the
results of that work are consistent with the survey given
in Section 2. Our approach was passive and did not re-
quire a malicious Tor node. We found that, as with Eng-
lish, it was impossible to find the value of L for the Tor
model. This was due to intermittent session reinitializa-
tions within Tor inserting large network delays that were
not associated with the underlying protocol. We were
able to construct a practical model that included only
statistically significant states and transitions. Using this
model and the Viterbi path traced by observed network
streams, we were able to accurately classify 95% of the
packets as belonging to the same network session. This
was without requiring either additional network traffic or
a global view of the network.

6.2. SSH Side-Channel Attacks

For language detection, we wrote a detector using Java.
By redirecting the output of a parsed tshark capture to it,
it is possible to detect the presence of English and Italian
in real-time. To test the functionality of this application,
the samples from Project Gutenberg were sent across an
SSH tunnel to the client machine which was monitoring
communication with the detector.

The test was successful: using a threshold of 0.0%
with the Italian HMM and 89.0% with the English HMM
it is possible to detect the presence of either language in
a given sample string. That is, if the CI analysis shows
that more than 89.0% of the behavior of the English
HMM is exhibited by the string, it is English with a 5%
false positive rate. This detection was performed in
real-time and can be done from a third node as well as
the packet contents were not needed, merely the delays
between them.

6.3. Zero-knowledge HMM Detection of Protocol

Tunnels

From the results of our tests, it is apparent that our HMM
inference approach accurately detects complex tunneled

applications. It is also possible to use these models to
detect languages in real-time. Typing dynamics have
been used as a form of biometrics for user identifica-
tion/authentication for quite some time [5,31,32]. Our
results show a possible broader application for this.

The symbolization phase is particularly important as it
affects both the construction of the HMM as well as de-
tection process. From the tests performed in this work, it
is clear that symbolization affects the identification of
behaviors present in a string. Given the number of
key-pairs considered, it wasn’t possible to symbolize
based solely on the plots of the Gaussians approximation.
Consequently, we used a clustering approach to identify
centers of activity within the set of all delays. Further-
more, we recognized that as the symbol-space grows
larger, the data required to build an HMM increases ex-
ponentially.

6.4. Future Work

Future work could look at increasing the efficiency of the
recognition. The most important thing to note is that this
analysis is made possible through the timing vulnerabili-
ties present in most secure communication channels. As
services seek to maintain a high quality of service, they
attempt to minimize any introduced latency.

This is a major vulnerability and will likely be present
for some time into the future [35]. The HMM inferencing
approach we present is general and can be used to design
tunnel detection routines for protocols that fulfill our as-
sumptions. The stationary probability assumption is not
very restrictive. Adding random noise to the probabilities
simply produces a new probability distribution. Steadily
decreasing delays would be problematic, except that a
minimal delay will quickly be reached. Increasing delays
uniformly would make the tunneled application unusable.

We are interested, however, in relaxing the finite state
assumption. We are working at adapting this approach to
probabilistic grammars. It would also be interesting to
move further up the Chomsky hierarchy and look at
probabilistic recursively enumerable processes.

7. Acknowledgements

This material is based upon work supported by, or in part
by, the Air Force Office of Scientific Research con-
tract/grant number FA9550-09-1-0173. Opinions expre-
ssed are those of the author and not the US Department
of Defense. We thank the reviewer for their input, which
improved the paper.

8. References

[1] J. Walrand and P. Varaiya, “High-Performance Commu-

Copyright © 2011 SciRes. AIT

H. BHANU ET AL. 25

nications Networks,” Morgan-Kaufmann, San Francisco,
1996.

[2] O. Kolesnikov and B. Hatch, “Building Linux Virtual
Private Networks (VPNs),” New Riders, Indianapolis,
2002.

[3] R. Craven, C. Abbott, H. Bhanu, J. Deng and R. R.
Brooks, “Orwell was an Optimist,” 6th Annual Cyber
Security and Information Intelligence Workshop, Oak
Ridge, 21-23 April 2010.

[4] M. Dusi, M. Crotti, F. Gringoli and L. Sagarelli, “Tunnel
Hunter: Detecting Application-Layer Tunnels with Statis-
tical Fingerprinting,” Communications Networks, Vol. 53,
No. 1, 2009, pp. 81-97. doi:10.1016/j.comnet.2008.09.010

[5] D. X. Song, D. Wagner and X. Tian, “Timing Analysis of
Keystrokes and Timing Attacks on SSH,” SSYM’01:
Proceedings of the 10th conference on USENIX Security
Symposium, Vol. 10, 2001, p. 25.

[6] J. Schwier, “Pattern Recognition for Command and Con-
trol Data Systems”, Ph.D. Dissertation, ECE Department,
Clemson University, Clemson, 2009.

[7] J. Schwier, R. R. Brooks, C. Griffin and S. Bukkapatnam,
“Zero Knowledge Hidden Markov Model Inference,”
Pattern Recognition Letters, Vol. 30, No. 14, 2009, pp.
1273-1280. doi:10.1016/j.patrec.2009.06.008

[8] R. Dingledine, N. Mathewson and P. Syverson, “Deploy-
ing Low-Latency Anonymity: Design Challenges and
Social Factors,” IEEE Security Privacy, Vol. 5, No. 5,
October 2007, pp. 83-87. doi:10.1109/MSP.2007.108

[9] R. Dingledine, “Current Events in Tor Development,”
24th Chaos Communication Congress (24C3), Berlin,
27-30 December 2007.

[10] R. Craven, C. Abbot, H. Bhanu, J. Deng and R. R.
Brooks, “Orwell Was an Optimist,” Cyber Security and
Information Intelligence Research Workshop 2010, Oak
Ridge, 21-23 April 2010.

[11] N. Leavitt, “Anonymization Technology Takes a High
Profile,” IEEE Computer, Vol. 42, No. 11, 2009, pp.
15-18.

[12] D. Kaminsky, “Why We Were So Vulnerable to the DNS
Vulnerability,” 25th Chaos Computer Congress, Berlin,
17 January 2009.
http://dewy.fem.tu-imenau..de/CCC/25C3/video_h264_7
20x756/25c3-2906-en-why_were_we_so_vulnerable_to_t
he_dns_vulnerability.mp4.torrent

[13] N. S. Evans, R. Dingledine and C. Grothoff, “A Practical
Congestion Attack on Tor Using Long Paths,” 18th
USENIX Security Symposium, Berkeley, 2009.

[14] A. Hintz, “Fingerprinting Websites Using Traffic Analy-
sis,” Proceedings of the Workshop on Privacy Enhancing
Technologies 2002, Berlin, 10 May 2002.

[15] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose and G.
M. Masson, “Uncovering Spoken Phrases in Encrypted
Voice over IP Conversations,” ACM Transactions on In-
formation and Systems Security, Vol. 13, No. 4, 2010, pp.
35:1-35:30.

[16] Y. Zhu, X. Fu, R. Bettatli and W. Zhao, “Anonymity
Analysis of Mix Networks Against Flow Correlation At-

tacks,” Proceedings IEEE Global Communications Con-
ference (GLOBECOM), College Station, 28 Novenber-2
December 2005

[17] Y. Zhu, X. Fu, B. Graham, R. Bettati and W. Zhao,
“Correlation-Based Traffic Analysis Attacks on Ano-
nymity Networks,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 21, No. 7, May 2010, pp.
954-967. doi:10.1109/TPDS.2009.146

[18] S. J. Murdoch and P. Zielinski, “Sampled Traffic Analy-
sis by Internet-Exchange-Level Adversaries,” Privacy
Enhancing Technologies LNCS, Springer, Berlin, 2007.
doi:10.1007/978-3-540-75551-7_11

[19] Y. Guan, X. Fu, D. Xuan, P. U. Shenoy, R. Bettati and W.
Zhao, “Netcamo: Camouflaging Network Traffic for
QoS-Guaranteed Mission Critical Applications,” IEEE
Transactions on Systems, Man, and Cybernetics: Part A:
Systems and Humans, Vol. 31, No. 4, July 2001, pp.
253-265. doi:10.1109/3468.935042

[20] L. Overlier and P. Syverson, “Locating Hidden Servers,”
IEEE Symposium on Security and Privacy, No. 1, 2006,
pp. 100-114.

[21] S. Murdoch and G. Denezis, “Low-Cost Traffic Analysis
of Tor,” 2005 IEEE Symposium on Security and Privacy,
Oakland, 8-11 May 2005.

[22] L. Xin and W. Neng, “Design Improvement for Tor
Against Low-Cost Traffic Attack and Low-Resource
Routing Attack,” 2009 WRI International Conference on
Communications and Mobile Computing, Vol. 3, January
2009, pp. 549-554. doi:10.1109/CMC.2009.18

[23] R. Wiangsripanawan, W. Susilo and R. Safavi-Naini,
“Design Principles for Low Latency Anonymous Net-
work Systems Secure against Timing Attacks,” ACSW’07
Proceedings of the 5th Australasian Symposium on
ACSW Frontiers, Vol. 68, 2007, pp. 183-191.

[24] S. J. Murdoch, “Hot or Not: Revealing Hidden Services
by their Clock Skew,” Proceedings of the 13th ACM
conference on Computer and Communications Security,
CCS 06, Alexandria, 30 October-3 November 2006, pp.
27-36.

[25] S. Zander and S. J. Murdoch, “An Improved Clock-Skew
Measurement Technique for Revealing Hidden Services,”
SS’08 Proceedings of the 17th conference on Security
Symposium, San Jose, 28-30 April 2008, pp. 211-225.

[26] C. R. Shalizi, K. L. Shalizi and J. P. Crutchfield, “An
Algorithm for Pattern Discovery in Time Series,” The
Computing Research Repository, October 2002.
cs.LG/021005: http://arxiv.org/abs/cs.LG/021005.

[27] R. R. Brooks, J. M. Schwier and C. Griffin, “Behavior
Detection Using Confidence Intervals of Hidden Markov
Models,” IEEE Transactions on SMC Part B, Vol. 39, No.
6, 2009, pp. 1484-1492.

[28] N. Hopper, E. Y. Vasserman and E. Chan-Tin, “How
Much Anonymity Does Network Latency Leak,” ACM
Transactions on ACM Transactions on Information and
System Security (TISSEC), Vol. 13, No. 2, 2010, pp.
13:1-13:28.

[29] J. Schwier, R. R. Brooks and C. Griffin, “Methods to

Copyright © 2011 SciRes. AIT

http://dx.doi.org/10.1016/j.comnet.2008.09.010
http://dx.doi.org/10.1016/j.patrec.2009.06.008
http://dx.doi.org/10.1109/MSP.2007.108
http://dewy.fem.tu-imenau..de/CCC/25C3/video_h264_720x756/25c3-2906-en-why_were_we_so_vulnerable_to_the_dns_vulnerability.mp4.torrent
http://dewy.fem.tu-imenau..de/CCC/25C3/video_h264_720x756/25c3-2906-en-why_were_we_so_vulnerable_to_the_dns_vulnerability.mp4.torrent
http://dewy.fem.tu-imenau..de/CCC/25C3/video_h264_720x756/25c3-2906-en-why_were_we_so_vulnerable_to_the_dns_vulnerability.mp4.torrent
http://dx.doi.org/10.1109/TPDS.2009.146
http://dx.doi.org/10.1007/978-3-540-75551-7_11
http://dx.doi.org/10.1109/3468.935042
http://dx.doi.org/10.1109/CMC.2009.18

H. BHANU ET AL.

Copyright © 2011 SciRes. AIT

26

Window Data to Differentiate between Markov Models,”
IEEE Transactions on System Man and Cybernetics, Part
B: Cybernetics, Vol. 41, No. 3, 2010, pp. 650-663.
doi:10.1109/TSMCB.2010.2076325

[30] J, Schwier, “Pattern Recognition for Command and Con-
trol Data Systems,” PhD Dissertation, Holcombe De-
partment of Electrical and Computer Engineering, Clem-
son University, Clemson, July 2009.

[31] K. Hempstalk, “Continious Typist Verification Using
Machine Learning,” Ph.D. Dissertation, Department of
Computer Science, University of Waikato, Hamilton,
2009

[32] D. Gunetti and C. Picardi, “Keystroke Analysis of Free
Text,” ACM Transactions on Information and System

Security, Vol. 8, No. 3, 2005, pp. 312-347.
doi:10.1145/1085126.1085129

[33] B. Fritzke, “Fast Learning with Incremental RBF Net-
works,” Neural Processing Letters, Vol. 1, No. 1, 1994,
pp. 2-5. doi:10.1007/BF02312392

[34] L. R. Rabiner, “A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition,” Pro-
ceedings of the IEEE, Vol. 77, No. 2, 1989, pp. 257-286.
doi:10.1109/5.18626

[35] http://www.madabibliq.org/ (last visited May 2010).

[36] R. Craven, “Traffic Analysis of Anonymity Systems,”
MS Thesis, Holcombe Department of Electrical and
Computer Engineering, Clemson University, Clemson,
May 2010.

http://dx.doi.org/10.1145/1085126.1085129
http://dx.doi.org/10.1007/BF02312392
http://dx.doi.org/10.1109/5.18626

