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We follow two of the many paths leading from Newton’s to Euler’s scientific productions, and give an 
account of Euler’s role in the reception of some of Newton’s ideas, as regards two major topics: mechan- 
ics and algebraic analysis. Euler contributed to a re-appropriation of Newtonian science, though trans- 
forming it in many relevant aspects. We study this re-appropriation with respect to the mentioned topics 
and show that it is grounded on the development of Newton’s conceptions within a new conceptual frame 
also influenced by Descartes’s views sand Leibniz’s formalism. 
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Algebraic Analysis 

Introduction 
The purpose of the present paper is to follow two of the 

many paths leading from Newton’s to Euler’s scientific produc- 
tions1 and to give, at least partly, an account of Euler’s role in 
the reception of Newton as regards two major topics: mechan- 
ics and algebraic analysis2. Euler contributed to a re-appropria- 
tion of Newtonian science. We will study this re-appropriation 
with respect to the mentioned topics and show that it is ground- 
ed on the development of Newton’s ideas within a new con- 
ceptual frame also influenced by Cartesian ideas and Leibnizian 
formalism. 

From Newtonian Geometric Mechanics to 
Analytic Mechanics 

Euler’s works on mechanics concern different domains, some 
of which are not considered in Newton’s Principia (Newton, 
1687). Beside his Mechanica (Euler, 1736)—a two-volume 

treatise on the motion of free or constrained punctual bodies— 
and a large number of papers on the same subject, Euler also 
much contributed to the mechanics of rigid and elastic bodies 
(Truesdell, 1960), the mechanics of fluids, the theory of ma- 
chines and naval science. We shall limit ourselves to some of 
his contributions to the foundation of the mechanics of discrete 
systems of punctual bodies. We shall namely consider his 
views on the physical explanation of forces, his reformulation 
of the basic notions of Newtonian mechanics, and his works on 
the principle of least action. 

The Explanation of Forces 
The third book of Newton’s Principia offers an explanation 

of the motion of planets around the sun and of the satellites 
around them. It is based on the assumption that the celestial 
bodies act upon each other according to an attractive force act- 
ing at a distance, the intensity of which depends on the mass of 
the attracting body and on its distance from the attracted one, 
and the effects of which are not influenced by a resistant me- 
dium. This is a special central force—a force attracting bodies 
along a straight line directed towards a fixed or moving cen- 
tre—characterised by the following well-known equality  
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C ,c
 is the force by which the body C  attracts the 

body c , m  and M  are, respectively, the masses of  c  and 
C , r  is the distance between (the centres of) them, and G  
is an universal constant. 

In the first book of the Principia Newton provides a purely 
mathematical theory of central forces acting in absence of a 
resistance of the medium. In the third book, he is thus able to 

1The quasi-totality of Euler’s works is available online at the (Euler Arc-
hive), where one may also find many notices and references. Among other 
recent books devoted to Euler, cf. (Bradley & Sandifer, 2007) and (Backer, 
2007). 
2For reasons of space, we will not address in this paper some related topics 
like Euler’s views on Newton’s gravitation theory and his own celestial me- 
chanics, particularly his lunar theory; Euler’s reflections about (absolute and 
relative) space and time; and Euler’s critical exposition of Newtonian sci- 
ence in his Lettres à une princesse d’Allemagne (Euler, 1768-1772). On 
Euler’s celestial mechanics, cf., for instance, (Schroeder, 2007). On this 
matter, it is relevant to note that Euler had doubts in the 1740s about the 
validity of Newton’s law of gravitation because of errors he observed in cal- 
culations of planetary perturbations: cf. (Euler, 1743), Kleinert’s discussion 
of this memoir, in (Euler, OO, ser. II, vol. 31, appendix), and (Schroeder, 
2007, pp. 348-379). On Euler’s views on space and time, cf. also (Cassirer, 
1907, Book VII, Chapter II, section II) and (Maltese, 2000). Finally, on 
Euler’s Lettres à une princesse d’Allemagne, cf. (Calinger, 1976). 
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give a mathematical theory of the world system by basing it 
only on the above assumption, that, according to him, is proved 
by empirical observations. Insofar as it allows the determina- 
tion of the trajectories of the relevant bodies according to the 
mathematical theory of the first book, no supplementary hy- 
pothesis about the nature of the relevant force is necessary. In 
Newton’s view, an hypothesis about forces is a conjecture con- 
cerning their qualitative nature and causes. His “Hypotheses 
non fingo”—famously claimed in the General Scholium of the 
second edition of the Principia—is just intended to declare that 
he does not venture any such conjecture, since this is not nec- 
essary to provide a satisfactory scientific explanation3. 

Apparently, this view is not shared by Euler. He seems to 
maintain that the notion of force cannot be primitive, and that a 
mathematical theory about forces cannot be separated from an 
account of their causes, even if this account depends more on 
“the province of metaphysics than of mathematics” and thus 
one cannot claim to undertake it with “absolute success”4. 

Euler’s account—on which, cf. (Gaukroger, 1982)—is based 
on a Cartesian representation of the world as a plenum of mat- 
ter. Here is what he writes in his 55th letter to a German Prin- 
cess5:  

As you see nothing that impels [small bits of iron and 
steel] toward the loadstone, we say that the loadstone at-
tracts them; and this phenomenon we call attraction. It 
cannot be doubted, however, that there is very subtle, 
though invisible, matter, which produces this effect by 
actually impelling the iron towards the lodestone [...]. 
Though this phenomenon be peculiar to the loadstone and 
iron, it is perfectly adapted to convey an idea of the signi-

fication of the word attraction, which philosophers so 
frequently employ. They allege then, that all bodies, in 
general, are endowed with a property similar to that of the 
loadstone, and that they mutually attract [...]. 

And then, in the 68th letter6:  

[...] as we know that the whole space which separates the 
heavenly bodies is filled with a subtle matter, called ether, 
it seems more reasonable to ascribe the mutual attraction 
of bodies to an action which the ether exercises upon them, 
though its manner of acting may be unknown to us, rather 
than to have recourse to an unintelligible property. 

The Cartesian vein of Euler’s account is even clearer in the 
Mechanica (Euler, 1736). It is very significant that in such a 
purely mathematical treatise, Euler devotes a scholium to dis- 
cuss the causes and origins of forces. This is the scholium 2 of 
definition 10: the definition of forces, according to which, “a 
force [potentia] is the power [vis] that either makes a body pass 
from rest to motion or changes its motion.”7 This definition 
does not explain where the forces come from; Scholium 2 dis- 
cusses the question. Euler begins by declaring that, among the 
real forces acting in the world, he only considers gravity. Then 
he argues that similar forces “are observed to exist in the mag- 
netic and electric bodies” and adds:  

Some people think that all these [forces] arise from the 
motion of a somehow subtle matter; others attribute [them] 
to the power of attraction and repulsion of the bodies 
themselves. But, whatever it may be, we certainly see that 
forces of this kind can arise from elastic bodies and from 
vortices, and we shall inquire, at the appropriate occasion, 
whether these forces can be explained through these phe-
nomena8.  

One could hope that Euler’s Cartesian view be made more 
precise in a memoir presented in 1750 the title of which is 
quite promising: “Recherches sur l’origine des forces” (Eu-
ler, 1750)9. But the content of this memoir is somewhat sur-
prising. 

Euler begins by arguing that impenetrability is an essential 
property of bodies, and that it “comes with a force sufficient to 
prevent penetration”10. It follows—he says—that, when two 

3Of course, we do not mean here that Newton had no views about the nature 
of forces, or never expressed them. In the same Principia, namely in the 
third of his Regulæ Philosophandi, opening the third book (only added in the 
second and third edition), he argues, for example, that inertia universally 
belongs to all bodies. And in his third letter to Bentley, he explicitly writes 
the following (we quote from (Newton, LB, pp. 25-26); a transcription of the 
original, kept at Trinity College Library, in Cambridge, is available online at 
the Newton Project website: www.newtonproject.sussex.ac.uk): 

“That gravity should be innate, inherent and essential to Matter, so that 
one Body may act upon another at a Distance thro’ a Vacuum, without the 
Mediation of any thing else, by and through which their Action or Force 
may be conveyed from one to another is to me so great an Absurdity, that I 
beleive no Man who has in philosophical Matters a competent Faculty of 
thinking can ever fall into it. Gravity must be caused by an Agent acting 
constantly according to certain Laws; but whether this Agent be material or 
immaterial I have left to the Consideration of my Readers.” 
The point is that Newton does consider that the explanation of the nature of 
forces is neither essential to his theory of gravitation, nor a fortiori to his 
mathematical theory of motion. The last lines in the quoted passage of the 
third letter to Bentley is, among many others, an explicit expression of this 
attitude. 
4cf. (Euler, LPAH, vol. I, p. 201). Here is Euler’s original (Euler, 1768-1772  
vol. I, lett. 68th, p. 265): “Il s’agit à présent d’approfondir la véritable source 
de ces forces attractives, ce qui appartient plutôt à la Metaphysique qu’aux 
Mathematiques; & je ne saurois me flatter d’y reussir aussi heureuse- 
ment.” 
5cf. (Euler, LPAH, vol. I, p. 165). Here is Euler’s original (Euler, 1768-1772  
vol. I, lett. 55th, pp. 219-220): “Comme on ne voit rien, qui les [de petits 
morceaux de fer ou d’acier] pousse vers l’aimant, on dit que l’aimant les 
attire, & l’action même, se nomme attraction. On ne sauroit douter cepen-
dant qu’il n’y ait quelque matiere très subtile, quoiqu’invisible, qui produise 
cet effet, en poussant effectivement le fer vers l’aiman; [...] Quoique ce 
phénomene soit particulier à l’aimant, & au fer, il est très propre à éclaircir 
le terme d’attraction, dont les Philosophes modernes se servent si frequem-
ment. Ils disent donc, qu’une propriété semblable à celle de l’aimant, con-
vient à tous les corps, en general, & que tous les corps au monde s’attirent 
mutuellement”. 

6cf. (Euler, LPAH, vol. I, p. 203). Here is Euler’s original (Euler, 1768-1772  
vol. I, lett. 68th, p. 268): “Puisque nous savons donc que tout l’espace entre 
les corps célestes est rempli d’une manière subtile qu’on nomme l’éther, il 
semble plus raisonnable d’attribuer l’attraction mutuelle des corps, â une 
action que l’éther y exerce, quoique la maniere nous soit inconnue, que de 
recourir a une qualité inintelligible.” On this same matter, cf. also the 75th 
letter: (Euler, 1768-1772, vol. I, pp. 297-298). 
7cf. (Euler, 1736, p. 39): “Potentia est vis corpus vel ex quiete in motum 
perducens vel motum eius alterans.” Here and later, we slightly modify I. 
Bruce’s translation available online at http://www.17centurymaths.com. 
8cf. (Euler, 1736, p. 40): “Similes etiam potentiae deprehenduntur in cor- 
poribus magneticis et electricis inesse, quae certa tantum corpora attrahunt. 
Quas omnes a motu materiæ cuiusdam subtilis oriri alii putant, alii ipsis 
corporibus vim attrahendi et repellendi tribuunt. Quicquid autem sit, vide- 
mus certe ex corporibus elasticis et vorticibus huiusmodi potentias originem 
ducere posse, suoque loco inquiremus, num ex inde phaenomena haec po- 
tentiarum explicari possint.” 
9cf. also (Euler, 1746) and (Euler, 1765, Introduction). The chapter 2 of 
(Romero, 2007) presents a detailed study of (Euler, 1746) and (Euler, 1750). 
In (Gaukroger, 1982, pp. 134-138), an overview of the relevant parts of 
(Euler, 1765) is offered. 
10cf. (Euler, 1750, art. XIX, p. 428): “Aussi-tot [...] qu’on reconnoit 
l’impénétrabilité des corps, on est obligé d’avoüer que l’impénétrabilité est 
accompagnée d’une force suffisante, pour empêcher la pénétration.” 
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bodies meet in such a way that they could not persist in their 
state of motion without penetrating each other, “from the im- 
penetrability of both of them a force arises that, by acting on 
them, changes [...] [this] state11.” This being admitted, Euler 
shows how to derive from this only supposition the well-known 
mathematical laws of the shock of bodies. This he considers 
enough to conclude that the changes in the state of motion due 
to a shock of two bodies “are produced only by the forces of 
impenetrability”12, so that, in this case, the origins (and cause) 
of forces are just the impenetrability of bodies. 

One would expect Euler to go on by describing a plausible 
mechanical model allowing him to argue that this is also the 
case of any other force, namely of central forces acting at a 
distance. But this is not so. He limits himself to considering the 
case of centrifugal forces which, not basing himself on any 
argument, he takes to being all reducible to the case where a 
body is deviated from its rectilinear motion because it meets a 
vaulted surface (Euler, 1750, art. LI, p. 443). Finally he 
writes13: 

If it were true, as Descartes and many other philosophers 
have maintained, that all the changes that bodies can suf- 
fer come either from the shock of bodies or from the 
forces named “entrifugal”, we would now have clear ideas 
about the origins of forces producing all these changes 
[...]. I even believe that Descartes’ view would not be a 
little reinforced by those reflections, since, after having 
eliminated many imaginary forces with which philoso- 
phers have jumbled the first principles of physics, it is 
very likely that the other forces of attractions, adherence, 
etc. are not better established. 
[...] For, though nobody has been able to establish mani- 
festly the cause of gravity and forces acting upon heav- 
enly bodies through the shock or some centrifugal forces, 
we should confess that neither has anybody proved the 
impossibility of it. [...] Now it seems as strange to reason 
since it is not proved by experience that two bodies sepa- 
rated by a completely empty space mutually attract one 
another through some forces14. Hence, I conclude that, 
with the exception of forces whose spirits are perhaps able 

to act upon bodies, which are probably of a quite different 
nature, there is no other force in the world beside those 
originated in the impenetrability of bodies.  

Though advancing a non-Newtonian demand of explanation 
of the nature and causes of forces15 and sharing both the Carte- 
sian requirement of deriving “basic concepts of mechanics from 
the essence of body” (Gaukroger, 1982, p. 139), and a Cartesian 
conception of the world as a plenum of matter allowing a re-
duction of all forces to contact ones, Euler reaches thus a quite 
Newtonian (and non-Cartesian) attitude only disguised by rhe-
toric. His main point is finally clear, indeed: a mathematical 
science of motion is perfectly possible even in the ignorance of 
the actual causes of the forces of attraction, and the only way to 
ensure that there are reasons causing the forces are to show that 
the consideration of these reasons leads to the well-known ma-
thematical laws of motion. These laws—rather than any possi-
ble mechanical model—are thus finally understood as the only 
sure expression of the reality of the universe. 

The Reformulation of Newton’s Mechanics Using 
Leibniz’s Differential Calculus of and the 

Introduction of External Frames of Reference 
As is well known, Newton’s mechanics is essentially geo- 

metric. Curves are used to represent trajectories of punctual 
bodies and a theorem is proved ensuring that non-punctual 
bodies behave with respect to attractive forces as if their mass 
were concentrated in their centre of gravity. Instantaneous 
speeds are indirectly represented and measured by segments 
taken on the tangents of the curves-trajectories. They are taken 
to represent primarily the rectilinear space that a relevant point 
would cover in a given time, finite or infinitesimally small, if 
any force acting upon it ceased and the motion of this point 
were thus due only to its inertia. An analogous form of indirect 
representation and measure holds for any sort of force, or better 
for their accelerative punctual component. This provides a very 
simple way of composing forces and inertia, essentially based 
on the parallelogram law that is primarily conceived as holding 
for rectilinear uniform motions. When the consideration of time 
is relevant, this is typically represented and measured by ap- 
propriate geometric entities, like appropriate areas: for example 
the areas that are supposed to be swept in that time by a vector 
radius, in the case of a trajectory complying with Kepler’s sec- 
ond law. 

To solve mechanical problems, this fundamental geometric 
apparatus is of course not sufficient. Newton’s mechanics also 
includes two other fundamental ingredients. 

The first is a geometric method which allows to deal with 
punctual and/or instantaneous phenomena and to determine 
their macroscopic effects (like equilibrium configurations, ef- 
fective trajectories, and continuously acting forces). It is pro- 
vided by the method of prime and last ratios, together with a 
number of appropriate devices. 

The second ingredient is given by a number of fundamental 
laws expressing some basic relation between bodies (or better 
their masses), their motions, and the forces acting on them and 
because of them. It is provided by Newton’s well known laws 
of motion, occasionally supplemented by some principles—like 
the principle of maximal descent of the centre of gravity— 

11cf. (Euler, 1750, art. XXV, p. 431): “[...] à la rencontre de deux corps, qui 
se pénétreroient s’ils continuoient à demeurer dans leur état, il nait de l’im- 
pénetrabilité de l’un et de l’autre à la fois une force qui en agissant sur les 
corps, change leur état.” 
12cf. (Euler, 1750, art. XLVI, p. 441): “[...] dans le choc des corps [...], il est 
clair que les changements, que les corps y souffrent, ne sont produits que 
leurs forces d’impénetrabilité.” cf. also ibid. art. XLIV, p. 440. 
13cf. (Euler, 1750, arts. LVIII and LIX, pp. 446-447): “[...] s’il étoit vrai, 
comme Descartes et quantité d’autres Philosophes l’ont soutenu, que tous les 
changements, qui arrivent aux corps, proviennent ou du choc des corps, ou 
des forces nommées centrifuges; nous serions à present tout à fait éclaircis 
sur l’origine des forces, qui opérent tous ces changemens [...]. Je crois même 
que le sentiment de Descartes ne sera pas médiocrement fortifié par ces 
réflexions; car ayant retranché tant de forces imaginaires, dont les Philoso- 
phes ont brouillé les premiers principes de la Physique, il est très probable 
que les autres forces d’attraction, d’adhésion etc. ne sont pas mieux fondées. 
LIX. Car quoique personne n’ait encore été en état de démontrer évidem-
ment la cause de la gravité et des forces dont les corps celestes sont sollicités  
par le choc ou quelque force centrifugue; il faut pourtant avouer que per-
sonne n’en a non plus démontré l’impossibilité. [...] Or que deux corps 
éloignés entr’eux par un espace entiérement vuide s’attirent mutuellement 
par quelque force, semble aussi étrange à la raison, qu’il n’est prouvé par 
aucune expérience. A l’exception donc des forces, dont les esprits sont 
peut-être capables d’agir sur les corps, lesquelles sont sans doute d’une 
nature tout à fait différente, je conclus qu’il n’y a point d’autres forces au 
monde que celles, qui tirent leur origine de l’impénétrabilité des corps.” 
14About Euler’s opposition to action at distance, cf. (Wilson, 1992). 

15But we must keep in mind that Newton’s rejection of any hypotheses about 
the nature and the causes of the gravitational force only concerns the limited 
domain of the mathematical principles of natural philosophy. 
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which are taken to follow from them. 
Though these laws are still considered as the more funda- 

mental ingredients of classical mechanics, what we call today 
“Newtonian mechanics” is a quite different theory, reached 
through a deep transformation and reformulation of Newton’s 
original presentation. This transformation and reformulation 
mainly occurred during the 18th century and they were very 
much of Euler’s doing16. Giulio Maltese thus sums up the situa-
tion (Maltese, 2000, pp. 319-320): 

In fact, it was Euler who built what we now call the 
“Newtonian tradition” in mechanics, grounded on the 
laws of linear and angular momentum (which Euler was 
the first to consider as principles general and applicable to 
each part of every macroscopic system), on the concept 
that forces are vectors, on the idea of reference frame and 
of rectangular Cartesian co-ordinates, and finally, on the 
notion of relativity of motion.  

This quotation emphasizes some basic ingredients of the 
Newtonian mechanics of today. We shall come back in a mo- 
ment on some of them. We will then observe that the gradual 
emergence of these elements depends on a more basic trans- 
formation (though perhaps, not so fundamental in itself). We 
refer to the replacement of Newton’s purely geometric forms of 
representation of motions, speeds and forces and of the con- 
nected method of prime and last ratios by other forms of repre- 
sentation and expression employing appropriate algebraic tech- 
niques enriched by the formalism of Leibnitian differential 
calculus. 

This transformation is often described as a passage from a 
geometric to an analytic (understood as non-geometric) way of 
presenting Newton’s mechanics. This is only partially true, 
however. Though the use of algebraic and differential formal- 
ism indeed allows the expression of the relation between the 
relevant mechanical quantities through equations involving the 
two inverse operators d  and ∫  submitted to a number of 
easily applicable rules of transformation, these equations are 
part of mechanics only if the symbols that occur in them take 
on a mechanical meaning. It is just the way in which this 
meaning is explained—and not the mere use of this formal- 
ism—that decides whether the adopted presentation is geomet- 
ric or not. 

For example, it is not enough to identify the punctual speed  

of a certain motion with the differential ratio ds
dt

 to get a non-  

geometric definition of speed: whether this definition is geo- 
metric or not depends on the way in which this ratio, and 
namely the differential ds , are understood. If this differential 
is taken to be an infinitesimal difference in the length of a cer- 
tain variable segment represented by an appropriate geometric 
diagram and indicating the direction of the speed in respect to 
another component of this diagram, the definition is still geo- 
metric. 

This is exactly what happens in the first attempts to apply 
differential formalism to Newtonian mechanics, like those of 
Varignon, Johann Bernoulli, and Hermann17: the language of 
differential calculus is used to speak of mechanical configura- 

tions represented by appropriate geometric diagrams and its 
rules are applied in order to get the relevant quantitative rela- 
tions between the elements depicted in these diagrams (Panza, 
2002). Like in Newton’s Principia, mechanical problems are 
thus, in these essays, distinguished from each other according 
to specific features manifested by the corresponding diagrams. 
Hence, differences in the problems depend on differences in the 
diagrams. 

This fragmentation of mechanics into several problems geo- 
metrically different is still particularly evident in Hermann’s 
Phoronomia (Hermann, 1716), which Euler considers as the 
main treatise on dynamical matters written after the Principia. 
This is just what Euler wants to avoid in his Mechanica. Here is 
what he writes in the preface18:  

[...] what distracts the reader the most [in Hermann’s 
Phoronomia] is that everything is carried out [...] with 
old-fashioned geometrical demonstrations [...]. Newton’s 
Principia Mathematica Philosophiae are composed in a 
scarcely different way [...]. But what happens with all the 
works composed without analysis is particularly true with 
those which pertain to mechanics. In fact, the reader, even 
when he is persuaded of the truth of the things that are 
demonstrated, nonetheless cannot reach a sufficiently 
clear and distinct knowledge of them. So he is hardly able 
to solve the same problems with his own strengths, when 
they are changed just a little, if he does not research into 
the analysis and if he does not develop the same proposi- 
tions with the analytical method. This is exactly what of- 
ten happened to me, when I began to examine Newton’s 
Principia and Hermann’s Phoronomia. In fact, even 
though I thought that I could understand the solutions to 
numerous problems well enough, I could not solve prob- 
lems that were slightly different. Therefore, in those years, 
I strove, as much as I could, to arrive at the analysis be- 
hind those synthetic methods, and to deal with those 
propositions in terms of analysis for my own purposes. 
Thanks to this procedure I perceived a remarkable im- 
provement of my knowledge. 

A major purpose of Euler’s Mechanica is to use Leibnitian 
differential formalism (which is what he calls “analytic me- 
thod”) in order to generalise some of Newton’s results. Euler 
aims to arrive at some general procedures which allow him to 
solve large families of problems. He also looks for some rules 
for use in appropriate circumstances to determine, in a some- 
what automatic way, appropriate expressions for relevant me- 

16As N. Guicciardini has remarked (Guicciardini, 1999, p. 6), “after Euler 
the Principia’s mathematical methods belong definitely to what is past and 
obsolete.” 
17On these essays, cf. (Aiton, 1989), (Blay, 1992), (Guicciardini, 1995), 
(Guicciardini, 1996), (Mazzone & Roero, 1997). 

18A large part of this passage is quoted and translated by N. Guicciardini in 
(Guicciardini, 2004, p. 245). We quote his translation by adding a transla- 
tion of the part he does not quote that slightly differs from Bruce’s [cf. 
footnote 7]. Here is Euler’s original (Euler, 1736, Præfatio): “[...] quod 
lectorem maxime distinet, omnia more veterum [...] geometricis demonstra- 
tionibus est persecutus [...]. Non multum dissimili quoque modo conscripta 
sunt Neutoni Principia Mathematica Philosophiae [...]. Sed quod omnibus 
scriptis, quæ sine analysi sunt composita, id potissimum Mechanicis obtingit  
ut Lector, etiamsi de veritate eorum, quæ proferuntur, convincatur, tamen 
non satis claram et distinctam eorum cognitionem assequatur, ita ut easdem 
quaestiones, si tantillum immutentur, proprio marte vix resolvere valeat, nisi 
ipse in analysin inquirat easdemque propositiones analytica methodo evolvat  
Idem omnino mihi, cum Neutoni Principia et Hermanni Phoronomiam per- 
lustrare cœoepissem, usu venit, ut, quamvis plurium problematum solutiones 
satis percepisse mihi viderer, tamen parum tantum discrepantia problemata 
resolvere non potuerim. Illo igitur iam tempore, quantum potui, conatus sum 
analysin ex synthetica illa methodo elicere easdemque propositiones ad 
meam utilitatem analytice pertractare, quo negotio insigne cognitionis meae 
augmentum percepi”. 
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chanical quantities. 
In order to reach this aim, Euler identifies punctual speeds 

and accelerations with first and second differential ratios, re- 
spectively, and introduces an universal measure of a punctual 
speed given by the altitude from which a free falling body has 
to fall in order to reach such a speed. 

The basic elements of Newton’s mechanics appear in Euler’s 
treatise under a new form, quite different from the original. 
Nevertheless, in this treatise, mechanical problems are still 
tackled by relying on intrinsic coordinates systems: speeds and 
forces are composed and decomposed according to directions 
that are dictated by the intrinsic nature of the problem, for ex- 
ample so as to calculate the total tangential and normal forces 
with respect to a given trajectory. This approach is quite natural, 
but limits the generality of possible common rules and prin-
ciples. 

A new fundamental change occurs when extrinsic reference 
frames, typically constituted by triplets of orthogonal fixed 
Cartesian coordinates, are introduced and when the relativity of 
motion is conceived to be the invariance of its laws with respect 
to different frames submitted to uniform retailer motions. 
Though this change was in fact a collective and gradual trans- 
formation (Meli, 1993) and (Maltese, 2000, p. 6), Euler played 
a crucial role in it. Among other important contributions con- 
nected with this change—described and discussed in (Maltese, 
2000)—, it is important to consider his introduction of today’s 
usual form of Newton’s second law of motion. This is the ob- 
ject of a memoir presented in 1750: “Découverte d’un nou- 
veau principe de mécanique” (Euler, 1750). 

The argument that Euler offers in this memoir in order to jus- 
tify the introduction of his “new principle” is so clear and apt to 
elucidate the crucial importance of this new achievement that it 
deserves to be mentioned. The starting point of this argument is 
the insufficiency of the tools provided both by Newton’s Prin- 
cipia and by Euler’s own Mechanica for studying the rotation 
of a solid body around an axis continuously changing its posi- 
tion with respect to the elements of the body itself. To study 
this motion, Euler argues, new principles are needed and they 
have to be deduced from the “first principle or axioms” of me- 
chanics, which, he says, cannot but concern the rectilinear mo- 
tion of punctual bodies (Euler, 1750, art. XVIII, p. 194). The 
problem is precisely that of formulating these axioms in the 
most appropriate way to allow an easy deduction of all the oth-
er principles that are needed to study the different kinds of mo-
tion of the different kinds of bodies. According to Euler, these 
axioms are reduced to an unique principle, and his new one is 
just that. 

This principle is expressed by a triplet of equations that ex- 
press Newton’s second law with respect to the three orthogonal 
directions of a reference frame independent of the motions to be 
studied (Euler, 1750, art. XXII, p. 196): 

  2Md 2 x = Pdt2 ; 2Md 2 y = Qdt2 ; 2Md 2 z = Rdt2 ,  
where M  is the mass of the relevant punctual body, P , Q , 
and R  are the total forces acting along the directions of the 
threes axes and 2 is a factor of normalization. 

To understand the fundamental role that Euler assigns to 
this principle, a simple example is sufficient (Euler, 1750, 
art. XXIII, p. 196): from = = = 0P Q R , one gets, by inte- 
grating,  

  Mdx = Adt; Mdy = Bdt; Mdz = Cdt,  
where A , B , C  are integration constants. It is thus proved 

that, in this case, the speed is constant in any direction so that 
the motion of any body on which no force acts is rectilinear and 
uniform, as Newton’s first law asserts19. 

A New Sort of Principles: Euler’s Program for 
Founding Newton’s Mechanics on 

Variational Principles 
Though fairly powerful, Euler’s new principle only directly 

deals with single punctual bodies. Let’s consider a system of 
several punctual bodies mutually attracting each other and pos- 
sibly submitted to some external forces and internal constraints. 
In order to get the conditions of equilibrium or the equations of 
motions of such a system by relying on Euler’s principle, a 
detailed and geometric analysis of all the forces operating in 
this system is necessary. A fortiori, this is also the case of any 
other principle dealing with single punctual bodies set in New- 
ton’s Principia and in Euler’s Mechanica. Hence, the study of 
any particular system of several punctual bodies through these 
principles requires a geometrical analysis of forces that differs 
from system to system. Consequently, only fairly simple sys- 
tems can be studied in such a way. 

This is the reason why the need of a new sort of mechanical 
principles—directly concerned with whatever system of several 
punctual bodies—arose quite early. A similar principle, that 
would be later known as the principle of virtual velocities, was 
suggested by Johann Bernoulli in a letter to Varignon of Janu- 
ary, 26th 1711 (Varignon, 1725, vol. II, pp. 174-176). But a 
clear statement of the difference between these two kinds of 
principles only appears in a memoir presented by Maupertuis in 
174020: 

If Sciences are grounded in certain immediately easy and 
clear principles, from which all their truths depend, they 
also include other principles, less simple indeed, and often 
difficult to discover, but that, once discovered, are very 
useful. They are to some extent the Laws that Nature fol-
lows in certain combinations of circumstances, and they 
teach us what it will do in similar occasions. The former 
principles need no proof, because they become obvious as 
soon as the mind examines them; the latter could not have, 

19To appreciate the crucial difference between Euler’s new principle and 
Newton’s second law of motion, asserting that “A change in motion is pro- 
portional to the motive force impressed and takes place along the straight 
line in which the force is expressed [Mutationem motus proportionalem esse 
vi motrici impressæ, et fieri secundum lineam rectam qua vis illa imprimi- 
tur]” (Newton, PMCW, p. 12); (Newton, 1687, p. 416), remark that, by 
supposing the motive force to be null, one can only deduce from this last law 
that the relevant motion is not changed, that is, it is inertial, but not that it is 
rectilinear uniform. To reach this conclusion, one has also to rely on New- 
ton’s first law, which just fixes the nature of inertial motion: “Every body 
preserves in its state of being at rest or of moving uniformly straight forward  
except insofar as it is compelled to change its state by forces impressed 
[Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter 
in directum, nisi quatenus a viribus impressis cogitur statum illum mutare]” 
(ibid.). 
20cf. (Maupertuis, 1740, p. 170): “Si les Sciences sont fondées sur certains 
principes simples et clairs dès le premier aspect, d’où dépendent toutes les 
vérités qui en sont l’objet, elles ont encore d’autres principes, moins simples 
à la vérité, etsouvent difficiles à découvrir, mais qui étant une fois décou- 
verts, sont d’une très-grande utilité. Ceux-ci sont en quelque façon les Loix 
que la Nature suit dans certaines combinaisons de circonstances, et nous 
apprennent ce qu’elle fera dans de semblables occasions. Les premiers 
principes n’ont guére besoin de Démonstration, par l’évidence dont ils sont 
dès que l’esprit les examine; les derniers ne sçauroient avoir de Démonstra-
tion physique à la rigueur, parce qu’il est impossible de parcourir générale-
ment tous les cas où ils ont lieu.” 
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strictly speaking, a physical proof, since it is impossible to 
consider in general all cases to which they apply.  

The aim of Maupertuis’s memoir is to suggest a new princi- 
ple of the second kind, asserting that the equilibrium of any 
system of n  punctual bodies is obtained if an appropriate sum 
is maximal or minimal. This sum is  

  
Mi

i=1

n

∑ Pi dpi∫ +L + Wi dwi∫   

where iM  is the mass of the i -th body, iP , ... , iW  are the 
forces acting upon it, and ip , ..., iw  are the distances of this 
body from the centres of these forces, respectively. This is the 
first, static, version of the principle of least action. 

Maupertuis’s memoir originated quite an important program 
concerned with the foundation of mechanics, leading—through 
d’Alembert, Euler, and Lagrange, among others—to Hamil- 
ton’s well-known version of Newton’s mechanics (Fraser, 
1983), (Fraser, 1985), (Szabó, 1987), (Pulte, 1989), (Panza, 
1995), (Panza, 2003). 

Euler’s contributions to this program were essential and con- 
cerned three major aspects:  
 the elaboration of an appropriate mathematical tool for 

dealing with extremality conditions relative to integral forms 
including unknown functions;  

 the generalisation of Maupertuis’s principle so as to get a 
general principle apt to provide the equations of motion of 
any system of several punctual bodies and also applicable, 
mutatis mutandis, to the solution of other mechanical prob- 
lems;  

 the justification of such a principle. 
In Euler’s view, these three aspects are intimately connected. 

His first contribution to this matter comes from his Methodus 
inveniendi (Euler, 1744): a treatise providing the first systema- 
tisation of what is known, after Lagrange, as the calculus of 
variations21. The two appendixes to this treatise are solely de- 
voted to enquiring the possibility of studying, respectively, the 
behaviour of an elastic band and the motion of an isolated body 
when they are submitted to forces, by relying on a general prin- 
ciple asserting that “absolutely nothing happens in the world, in 
which a condition of maximum or minimum does not reveal 
itself”22. Euler’s main aim is not to find new results concerned 
with these problems, but to show how some already known 
results can be derived from a condition of maximum or mini- 
mum for an integral form. The particular nature of this condi- 
tion in the cases considered is taken to clarify the way in which 
a principle, which is analogous to Maupertuis’s one, can be 
stated in these cases and then, if possible, generalised. This 
same approach also governs Euler’s other works on the prince- 
ple of least action: cf. in particular (Euler, 1748), (Euler, 1748), 
(Euler, 1751), (Euler, 1751), and (Euler, 1751). 

Euler’s and Maupertuis’s approaches are contrastive. Mau- 
pertuis is mainly interested in looking for metaphysical and 
theological arguments (Maupertuis, 1744), (Maupertuis, 1746), 
(Maupertuis, 1750), (Maupertuis, 1756). Indeed, he aims to 
support his claim to have found the very quantity in which Na- 
ture is thrifty, and thus the real final cause acting in it. Euler is 
looking for mathematical invariances of the form 

  
Z dz∫ = Max Min  

emerging in different conditions and from which already known 
results regarding different mechanical problems can be drawn. 

Euler’s main idea is thus that of looking for an appropriate 
mathematical way to state a new principle that, being in agree- 
ment with several results obtained through Newton’s original 
method of analysis of forces, could be generalised so as to get a 
principle of a new sort, namely a general variational principle. 

This research constituted a major event in the history of me- 
chanics for it allowed to pass from a geometrical-based study of 
a particular concrete system to an analytical treatment of any 
sort of system based on an unique and general equation. In our 
view, these are the most fundamental origins of analytical me- 
chanics (Panza, 2002). Lagrange’s first general formulation of 
the principle of least action (Lagrange, 1761) essentially de- 
pends on the results obtained by Euler in this way. 

Algebraic Analysis 
Among the many well-known differences between Newton’s 

and Leibniz’s approaches to calculus, a fairly relevant one deals 
with their opposite conceptions about its relation with the 
whole corpus of mathematics. Whereas Leibniz often stressed 
the novelty of his differential calculus, notably because of its 
special concern with infinity. Newton always conceived his 
results on tangents, quadratures, punctual speeds and connected 
topics as natural extensions of previous mathematics. 

Newton’s first research on these matters was explicitly based 
on the framework of Descartes’ geometry and geometrical al- 
gebra provided in La Géométrie (Descartes, 1637). It mainly 
dates back to the years 1664-1666 (Panza, 2005), but culmi- 
nates with the composition of the De analysis in 1669 (Newton, 
MWP, vol. II, pp. 206-247) and of the De methodis in 1671 
(Newton, MWP, vol. III, pp. 32-353), where the new theory of 
fluxions is exposed. 

Later, Newton famously changed his mind about the respec- 
tive merits of Descartes’ new way of making geometry and the 
classical (usually considered as synthetic) approach, especially 
identified with the style of Apollonius’ Conics (Galuzzi, 1990; 
Guicciardini, 2004), and based the Principia on the method of 
first and ultimate ratios, which he took to be perfectly compati- 
ble with this last approach23. Finally, in the more mature pres- 
entation of the theory of fluxions, the De quadratura curvarum 
(Newton, 1704)24, Newton stresses explicitely25: 

[...] To institute analysis in this way and to investigate the 
first or last ratios of nascent or vanishing finites is in 
harmony with the geometry of the ancients, and I wanted 
to show that in the method of fluxions there should be no 
need to introduce infinitely small figures into geometry.  

The De methodis begins as follows26:  

21On Euler’s version of the calculus of variations, cf. (Fraser, 1994). C. 
Fraser has also devoted many works to the history of the calculus of varia-
tion. A general survey of his result is offered in (Fraser, 2003). 
22cf. (Euler, 1744, p. 245): “nihil omnino in mundo contingint, in quo non 
maximi minimive ratio quæ piam eluceat.” 

23In the concluding lemma of the section I of book I of the Principia, New-
ton claims that he proved the lemmas to which his method pertains “in order 
to avoid the tedium of working out lengthy proofs by reductio ad absurdum 
in the manner of the Ancient geometers” (Newton, PMCW, p. 441). 
24See also (Newton, MWP, Vol. VIII, pp. 92-168). 
25cf. (Newton, MWP, VIII, p. 129): “[...] Analysin sic instituere, & finite- 
rum nascentium vel evanescentium rationes primas vel ultimas investigare, 
consonum est Geometriæ Veterum: & volui ostendere quo in Methodo 
Fluxionum non opus sit figuras infinite parvas in Geometriam introducere.” 
26cf. (Newton, 1670-1671, pp. 32-33): “Animadvertenti plerosque Geo- 
metras [...] Analyticæ excolendæ plurimum incumbere, et ejus ope tot tan- 
tasque difficultates superasse [...]: placuit sequentia quibus campi analytici 
terminos expandere juxta ac curvarum doctrinam promovere possem 
[...].” 
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Observing that the majority of geometers [...] now for the 
most part apply themselves to the cultivation of analysis 
and with its aid have overcome so many formidable diffi- 
culties [...] I found it not amiss [...] to draw up the fol- 
lowing short tract in which I might at once widen the 
boundaries of the field of analysis and advance the doc- 
trine of curves.  

In the early-modern age, the term “analysis” and its cognates 
were used in mathematics in different, though strictly con- 
nected, senses. Two of them were dominant in the middle of 
17th century. Analysis, in the first sense, refers to the first part 
of a twofold method—the method of analysis and synthesis— 
paradigmatically expounded in the 7th book of Pappus Mathe- 
matical Collection (Pappus, CMH). In the second sense, it re-
fers to a new domain of mathematics the introduction of which 
was typically ascribed to Viète, who had explicitly identified it 
with a “new algebra” (Viete, 1591). 

In our view, this discipline should be considered more as a 
family of techniques for making both arithmetic and geometry 
(Panza, 2007a), than as a separate theory somehow opposed to 
arithmetic and geometry. In the previous passage, Newton is 
undoubtedly referring to this discipline and he is claiming that 
his treatise aims to extend it so as to make it appropriate for 
studying curves. 

However, this extension crucially depends not only on the 
addition of new techniques, based on Descartes’ algebraic for- 
malism, but also on a new conception about quantities, accord- 
ing to which mathematics should deal not only with particular 
sorts of quantities, such as numbers, segments, etc., but also 
with quantities purely conceived, that is, with fluents (Panza, 
2012). 

Hence, in the De methodis, the extended “field of analysis” 
no longer presents itself as a family of powerful techniques, but 
it rather takes the form of a new theory dealing with quantities 
purely conceived. These quantities are supposed to belong to a 
net of operational relations expressed through Descartes’ alge- 
braic formalism appropriately extended so as to include infini- 
tary expressions like series. 

Euler’s Theory of Functions 

Newton’s later opposition to Descartes’ way of doing ge- 
ometry and the independence of the mathematical method of 
first and ultimate ratios from the analytic formalism of the the- 
ory of fluxions—in the presence of the well-known Newton- 
Leibniz priority quarrel and its consequences—lead, in the 18th 
century, to a polarisation between two ways of understanding 
calculus. A Newtonian way, based on a classic conception of 
geometry, conceives fluxions as ratios of vanishing quantities. 
A Leibnitian way, based on the introduction of an appropriate 
new formalism, deals with infinitesimals. 

Maclaurin’s Treatise of fluxions (Maclaurin, 1742) is usually 
pointed out as the major example of the Newtonian view. “Flu- 
xional ‘computations’ are not presented as a blind manipulation 
of symbols, but rather as meaningful language that could al- 
ways be translated into the terminology of [...] [a] kinematic- 
geometric model” (Guicciardini, 2004, pp. 239-240). 

In contrast, Euler’s trilogy composed by the Introductio in 
analysin infinitorum, the Institutiones calculi differentialis, and 
the Institutionum calculi integralis (Euler, 1748), (Euler, 1755), 
(Euler, 1768) is indicated as the major example of the Leibni- 

tian view. 
Nonetheless the two traditions were not as opposed, and the 

respective scientific communities were not as separated as it 
has been too often claimed. A clear example of this—which is 
mainly relevant here—is provided by Euler’s approach. 
Though there is no doubt that the theory expounded by Euler in 
the Institutiones and in the Institutionum uses Leibniz’s differ- 
ential and integral formalism, some of the basic conceptions it 
is founded on derive from Newton’s views. 

Some of these conceptions are strictly internal to the organi- 
sation of the theory. An example is provided by Euler’s idea 
that the main objects of differential calculus are not differen- 
tials of variables quantities but differential ratios of functions 
conceived as ratios of vanishing differences (Ferraro, 2004). As 
he writes in the preface of the Institutiones27: 

Differential calculus [...] is a method for determining the 
ratio of the vanishing increments that any functions take 
on when the variable, of which they are functions, is given 
a vanishing increment [...] Therefore, differential calculus 
is concerned not so much with vanishing increments, 
which indeed are nothing, but with their mutual ratio and 
proportion. Since these ratios are expressed as finite quan- 
tities, we must think of calculus as being concerned with 
finite quantities. 

In this way, Euler unclothes Newton’s notion of prime or ul- 
timate ratio of its classically geometric apparel and transfers it 
to a purely formal domain using the language of Leibniz’s dif- 
ferential calculus. 

Another strictly connected example comes from Euler’s defi- 
nition of integrals as anti-differentials and of the integral calcu- 
lus as the “method” to be applied for passing “from a certain 
relation among differentials to the relation of their quantities”, 
that is, in the simplest case (Euler, 1768), definitions 2 and 1, 
respectively, from  

=dy z
dx

 

to 
( )= = .y f x zdx∫  

These definitions—which contrast with Leibniz’s conception 
of the integral as a sum of differentials—are instead clearly in 
agreement with the second problem of Newton’s De methodis: 
“when an equation involving the fluxions of quantities is exhib- 
ited, to determine the relation of the quantities one to an- oth-
er”28. 

The closeness of Euler’s and Newton’s views in both those 
examples depends on a more fundamental concern: the idea that 
both differential and integral calculus are part of a more general 
theory of functions (Fraser, 1989). 

This theory is exposed by Euler in the first volume of the In- 
27We slightly modify Blanton’s translation (Euler, ICDB , p. vii). Here is 
Euler’s original (Euler, 1755, p. VIII): “[...] calculi Differentialis [...] est 
methodus determinandi rationem incrementorum evanescentium, quæ func- 
tiones qæ cunque accipiunt, dum quantitati variabili, cuius sunt functiones, 
incrementum evanescens tribuitur [...]. Calculus igitur differentialis non tam 
in his ipsis incrementis evanescentibus, quippe quæ sunt nulla, exquirendis, 
quam in eorum ratione ac proportione mutua scrutanda occupatur: et cun hæ 
rationes finitis quantitabus exprimantur, etiam hic calculus circa quantitates 
finitas versari est censendus.” 
28cf. (Newton, 1670-1671, pp. 82-83): “Exposita Æquatione fluxiones 
quantitatum involvente, invenire relationem quantitatum inter se”. On 
Newton’s notion of primitive, cf. (Panza, 2005, pp. 284-293, 323-325 
and 439-460). 
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troductio (Euler, 1748). According to him, it is not merely a 
mathematical theory among others. It is rather the fundamental 
framework of the whole of mathematics. Differential calculus is 
thus not conceived by Euler as a separated theory characterised 
by its special concern with infinity, as in Leibniz’s conception, 
but rather as a crucial part of an unitary building the founda- 
tions of which consist of a theory of functions (Panza, 1992). 

As a matter of fact, this theory comes in turn from a large 
and ordered development of the results that Newton had pre- 
sented in his De methodis before attaching the two main prob- 
lems of the theory of fluxions, and that provided for him the 
base on which its extended “field of analysis” was grounded. A 
function is identified with an expression indicating the opera- 
tional relations about two or more quantities and expressing a 
quantity purely conceived (Panza, 2007b). And the fundamental 
part of the theory concerns the power series expansions of 
functions. 

Though the language and the formalism that are used in Eu-
ler’s trilogy openly come back to the Leibnitian tradition, such 
a trilogy should thus be viewed, for many and fundamen- tal 
reasons, as a realisation of the unification program that Newton 
had foreseen in the De methodis, a realisation that re- lies, 
moreover, on the basic idea underlying Newton’s method of 
prime and last ratios. 

The Classification of Cubics and Algebraic Curves 
The second volume of the Introductio (Euler, 1748) is de- 

voted to algebraic curves: the curves expressed by a polynomial 
equation in two variables when referred to a system of rectilin- 
ear coordinates. Euler relies on some results obtained in the 
first volume to show that algebraic curves can be studied and 
classified without making use of calculus: as a matter of fact, 
this marks the birth of algebraic geometry. 

The problem of the classification of curves is quite ancient 
(Rashed, 2005). However, in his Géométrie (Descartes, 1637), 
Descartes returns to it in a new form: he concentrates only on 
algebraic curves (that he calls “geometric”, whereas he recom- 
mends to reject from geometry other curves, termed “mechani- 
cal”) and bases his classification on the degree of the corre- 
sponding equation (Bos, 2001, pp. 356-357), (Rashed, 2005, pp. 
32-50). This is, in fact, quite a broad classification, since equa- 
tions of the same degree can express curves which look very 
different from each other. The classification of (non-degenerate) 
conics (the algebraic curves whose equations are the irre- 
ducible ones of degree 2) is well known: they split up into 
ellipses (including circles), parabolas and hyperbolas. But 
what about curves expressed by equations of higher de- 
grees? 

Newton answers the question for cubics (the algebraic curves 
whose equations are the non-reducible ones of degree 3), in a 
tract appeared in 1704 as an appendix to the Opticks (Newton, 
1704), but the different stages of composition of which pre- 
sumably date back to 1667-1695 (Newton, MWP, vol. VII, p. 
565-655): the Enumeratio Linearum Tertii Ordinis (Newton, 
1704). 

In the second volume of the Introductio, Euler tackles the 
same problem using a quite different method, and shows that 
Newton’s classification is incomplete (Euler, 1748, vol. II, Ch. 
9). He also provides an analogous classification of quartics (the 
algebraic curves whose equations are the non-reducible ones of 
degree 4), and explains how the method used for classifying 
cubics and quartics can, in principle, be applied to algebraic 

curves of any order (Euler, 1748, Vol. II, ch. 11 and 12-14, 
respectively). 

Whereas Newton’s classification of cubics is based on their 
figure in a limited (i.e. finite) region of the plane and depends 
on the occurrences of points or line singularities as for instance 
nodes, cusps, double tangents, Euler suggests classifying alge- 
braic curves of any order by relying on the number and on the 
nature of their infinite branches. Here is what he writes29:  

Hence, we reduced all third order lines to sixteen species, 
in which, therefore, all those of the seventy-two species in 
which Newton divided the third order lines are con- 
tained30. It is not odd, in fact, that there is such a differ- 
ence between our classification and Newton’s, since we 
obtained the difference of species only from the nature of 
branches going to infinity, while Newton considered also 
the shape of curves within a bounded region, and estab- 
lished the different species on the basis of their diversity. 
Although this criterion may seem arbitrary, however, by 
following his criteria Newton could have derived many 
more species, whereas using my method I am able to draw 
neither more nor less species. 

Euler’s last remark alludes to much more than what it says. 
He rejects Newton’s criterion because of the impossibility of 
applying it as the order of curves increases, since so great a 
variety of shapes arise, as witnessed by the mere case of cubics. 
Indeed, a potentially general criterion has to deal with some 
properties of curves that can be systematically and as exhaus- 
tively as possible explored in any order, like those of infinite 
branches, according to Euler. 

This task could be difficult, however, if these curves were 
studied through their equations taken as such, since the com- 
plexity of a polynomial equation in two variables increases very 
quickly with its order. Insofar as a polynomial equation in two 
variables cannot be transformed by changing its global degree 
so that it continues to express the same curve, Euler shows how 
to determine the number and nature of infinite branches of a 
curve by considering its equation for some appropriate trans- 
formations that lower its degree in one variable, namely “both 
by choosing the most convenient axis and the most apt inclina- 
tion of the coordinates”, and attributing to a variable a conven- 
ient value31. 
29We slightly modify Blanton’s translation (Euler, IAIB, Vol. II, p. 147). 
Here is Euler’s original (cf. Euler, 1748, Vol. II, 236, p. 123): “Omnes ergo 
Lineas tertii ordinis reduximus ad Sedeciem Species, in quibus propterea 
omnes illæ Species Septuaginta dua, in quas Newtonus Lineas tertii ordinis 
divisit, continentur. Quod vero inter hanc nostram divisionem ac Newtonia-
nam tantum intercedat discrimen mirum non est; hic enim tantum ex ramo-
rum in infinitum excurrentium indole Specierum diversitatem desumsimus, 
cum Newtonus quoque ad statum Curvarum in spatio finito spec- tasset, 
atque ex hujus varietate diversas Species constituisset. Quanquam autem hæ 
c divisionis ratio arbitraria videtur, tamen Newtonus suam tandem rationem 
sequens multo plures Species producere potuisset, cum equidem mea me-
thodo utens neque plures neque pauciores Species eruere queam.” 
30This is the reason why Euler prefers to use the term “genre” instead of 
“species” in order to indicate his classes of curves. The latter terms is re- 
served to distinguish curves of a given genre according to their shape in a 
limited region of the plane (Euler, 1748, vol. II, §  238, p. 126). 
31Once again, we slightly modify Blanton’s translation (Euler, IAIB, Vol. II, 
p. 176). Here is Euler’s original (Euler, 1748, Vol. II, 272, p. 150): “Nego-
tium autem hoc per reductionem æ quationis ad formam simpliciorem, dum 
et Axis commodissimus, et inclinatio Coordinatarum aptissima assumitur, 
valde sublevari potest: tum etiam, quia perinde est, utra Coordinatarum pro 
Abscissa accipiatur, labor maxime diminuetur, si ea Coordinatarum, cujus 
paucissimæ dimensiones in æ quatione occurrunt, pro Applicata assu-
matur.” 
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Conclusion 
Euler’s results of which we have given an account, both in 

the case of foundation of mechanics and in that of algebraic 
analysis, depend on the effort to carry out or to extend a New- 
tonian program. But in both cases, this is done by relying on 
Cartesian and Leibnitian conceptions and tools. C. A. Truesdell 
has summed up the situation about mechanics by saying that 
Euler inaugurated the tradition of Newtonian mechanics be- 
cause he “put most of mechanics in their modern form”32. Mu- 
tatis mutandis, the same also holds for Euler’s theory of func- 
tions. In both cases the following question naturally arises: 
what does remain, then, of Newton’s conceptions in Euler’s 
theories? This is too difficult a question to hope to offer a com- 
plete answer in a single paper. We merely hope to have pro- 
vided some elements for such an answer. 
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