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Abstract 
The Saccharomyces cerevisiae polyphosphatase PPN1 (uniprot/Q04119) degrades 
inorganic polyphosphates both by cleaving Pi from the chain end and by fragment-
ing long-chain polymers into shorter ones. In this study, we have found a new activ-
ity of this protein: it releases phosphate from dATP. The dATP phosphohydrolase 
activity of pure PPN1 was ~7-fold lower compared to the exopolyphosphatase activi-
ty. This activity was strongly stimulated by Co2+ ions, as well as by ammonium ions, 
and inhibited by heparin and pyrophosphate similar to the exopolyphosphatase ac-
tivity of PPN1. The Km value for dATP was 0.88 ± 0.14 mM. The dATP phosphohy-
drolase activity in the cells of PPN1-overexpressing yeast strain was several-fold 
higher than that in the parent strain. The other exopolyphosphatase of S. cerevisiae, 
PPX1, did not split Pi from dATP. 
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1. Introduction 

Inorganic polyphosphate (PolyP) is multifunctional biopolymer performing many cel-
lular functions in all living cells, from prokaryotic to human [1]-[8]. The ability of 
PolyP metabolizing enzymes to catalyze the conversion of other substrates is one of the 
causes of the involvement of these proteins in regulatory pathways. For example, the 
gppA exopolyphosphatase splits Pi from guanosine 5’-triphosphate, 3’-diphosphate and 
guanosine 5’-diphosphate, 3’-diphosphate, bacterial second messengers [9]. Some bac-
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terial exopolyphosphatases display NTPase activities [10]. The enzymes belonging to 
the polyphosphate kinase 2 subfamily catalyze nucleoside monophosphate phosphory-
lation [11]. The exopolyphosphatase of Pseudomonas aeruginosa is a polyphosphate: 
ADP phosphotransferase [12]. The Saccharomyces cerevisiae protein DDP1 (a diade-
nosine and diphosphoinositol polyphosphate phosphohydrolase) possess an endopoly-
phosphatase activity [13]. The exopolyphosphatase PPX1 of S. cerevisiae hydrolyzes 
adenosine-tetraphosphate phosphohydrolase and guanosine-tetraphosphate phos- 
phorhydrolase activities [14]. The polyphosphatase PPN1  
(http://www.uniprot.org/uniprot/Q04119) of S. cerevisiae degrades PolyP both by clea- 
ving Pi from the chain end and by fragmenting long-chain polymers into shorter ones 
[15] [16]. Pi release was predominant in the presence of Co2+, while the fragmentation 
of high-molecular PolyP was predominant in the presence of Mg2+ [16]. No other sub-
strates of this enzyme are known; the pyrophosphatase activity of PPN1 was extremely 
low [17]. We have attempted to use the pure recombinant PPN1 [18] to reveal PolyP in 
the PCR reaction products with the high level of pyrophosphate [19]. In these experi-
ments, the treatment of dNTP mixture with PPN1 resulted in Pi release; i.e., PPN1 cat-
alyzed the reaction: 

dNTP dNDP Pi→ +  
This study was aimed at characterizing the dNTP phosphohydrolase activity of PPN1 

with dATP as a substrate. 

2. Materials and Methods 
2.1. Strain Growth 

The ΔPPN1 mutant strain CRN of S. cerevisiae was obtained from N. Rao and A. 
Kornberg [15]. The strain CRN/pMB1_PPN1 Sc of S. cerevisiae overexpressing the po-
lyphosphatase PPN1 was designed by Eldarov and co-authors earlier [20]. Yeast strains 
were grown in a synthetic minimal YNB medium containing (per 1 l) 1.7 g of bacto 
yeast nitrogen bases (Difсo, Detroit, USA), 20 g of glucose, by 20 mg of L-tryptophane, 
L-histidine, L-methionine and adenine, and 60 mg of L-leucine. Uracyl (20 mg/l) was 
added for cultivation of the strain CRN. The cells were cultivated up to the stationary 
growth stage under shaking (145 rpm/h) at 29˚C. 

2.2. PPN1 Purification  

The cellular extracts were obtained as described [18]. The cellular extract of the strain 
CRN/pMB1_PPN1 Sc was used for purification of polyphosphatase PPN1 by a combi-
nation of the methods designed earlier for obtaining pure PPN1 [18]. The cellular ex-
tract was supplemented by ammonium sulfate up to 50% saturation and incubated for 1 
h, followed by centrifugation at 12,000 g for 20 min. The supernatant was absorbed on 
the Butyl-Toyopearl 650 M equilibrated with 50 mM Tris-HCl, pH 7.2, with 50% am-
monium sulfate. In 45 min, the resin was precipitated at 4000 g for 3 min and washed 
three times with 50 mM Tris-HCl, pH 7.2, containing 50% ammonium sulfate. For po-
lyphosphatase elution, the resin was washed four times with 50 mM Tris-HCl, pH 7.2, 

http://www.uniprot.org/uniprot/Q04119


N. Andreeva et al. 
 

146 

containing 25% ammonium sulfate. Triton X-100 (0.05%) was added to the prepara-
tion. After ultrafiltration through an YM-10 membrane, the solution was applied to a 
DEAE-Toyopearl 650 M column (1.5 × 7.5 cm) equilibrated with 25 mM Tris-HCl, pH 
7.2, with 0.1% Triton X-100. The column was washed with 50 ml of the same buffer and 
then with 50 ml of 0.1 M KCl in the same buffer. The polyphosphatase was eluted at a 
flow rate of 24 ml/h with an increasing KCl concentration (0.1 - 0.8 M) in the same 
buffer. The gradient volume was 200 ml. The fractions with the polyphosphatase activ-
ity were pooled, concentrated by ultrafiltration, and incubated with heparin-agarose for 
2 h. The resin was pre-equilibrated with 25 mM Tris-HCl, pH 7.2, with 0.1% Triton 
X-100. The heparin-agarose washed with 10 ml of the buffer and then 5-fold with 5 ml 
of 0.5 M KCl in the same buffer, using centrifugation at 1500 g for 5 min. Then the re-
sin was washed twice with 5 ml of 0.7 M KCl in the buffer; the exopolyphosphatase was 
desorbed with 5 ml (4-fold) of 1 M KCl in the same buffer. The preparation had a spe-
cific activity with polyP 208 - 2000 E/mg of protein. The protein was assayed with 
Pierce Bradford reagent after precipitation with trichloroacetic acid. The preparation 
was stored at −20˚C.  

2.3. Enzyme Activities Assay  

The enzyme activities were assayed at 30˚ in 0.1 ml of 50 mM Tris-HCl, pH 7.2, con-
taining 0.1 mM CoSO4 and 200 mM NH4Cl. The concentrations of MgSO4, MnSO4, 
ZnSO4, and other additives are indicated in the legends to the tables and figures. The 
amount of the enzyme releasing 1 nmole of phosphate (Pi) per 1 min was taken as a 
unit of enzyme activity (mU). Inorganic polyphosphate with an average chain length of 
208 phosphate residues (polyP208) (Monsanto, USA) was used as a substrate of exopo-
lyphosphatase at the concentration of 2.5 mM (the concentration was estimated by 
phosphorus). PolyP208 was purified from pyrophosphate and orthophosphate as de-
scribed [21]. The dATP (GE Healthcare Bio-Sciences Corp, Lithuania), ATP, ADP and 
pyrophosphate (Sigma) were used at the concentration of 2 mM. Heparin was from 
Spofa, Czech Republic. The released Pi was assayed with malachite green [22] with an 
immunoplates spectrometer (Sapfir, Russia). The Pi content in the samples without the 
enzyme was assayed as a control.  

2.4. Statistics 

The assays were performed in triplicate; the mean values and standard deviations were 
calculated by Excel. The correlation coefficient was calculated using  
http://www.alcula.com/calculators/statistics/correlation-coefficient/. 

3. Results 

The purified PPN1 catalyzed the release of Pi from dATP (Table 1). The other exopo-
lyphosphatase of S. cerevisiae, PPX1 (kindly provided by L. Lichko) [23], did not split 
Pi from dATP (Table 1). It is surprising, because PPX1 is more active with polyP3 [23] 
and with adenosine-tetraphosphate and guanosine-tetraphosphate [14]. The PPN1 ac-
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tivity was maximal with long-chain PolyP and weak with PolyP3 [17] [18]. The dATP 
phosphohydrolase activity of pure PPN1 was ~7-fold lower compared to the exopoly-
phosphatase activity (Table 1). The activity of PPN1 with ATP was nearly twofold low-
er than with dATP; the activity with ADP and PPi was still lower (Table 2). The con-
centration dependence of dATPase activity of this enzyme corresponded to the Michae-
lis-Menten equation, and Km was 0.88 ± 0.14 mM. 

The exopolyphosphatase activity of PPN1 displays the non-Michaelis kinetics, with 
the apparent Km of 0.0035 and 1.1 mM with PolyP208 and PolyP3, respectively [17]. The 
substrate affinity and hydrolysis rate of PolyP3 [17] and dATP were similar. Both ex-
opolyphosphatase and dATPase activities of PPN1 were stimulated by NH4Cl (200 mM) 
nearly twofold (not shown).  

Figure 1 shows the dependence of dATPase activity on the concentration of divalent 
cations. Co2+ was more effective than Mn2+; Mg2+ and Zn2+ had no stimulatory effects. 
Heparin and PPi inhibited this activity and the inhibitory effect of ADP was low (Figu- 
re 2). The effects of divalent cations and the above inhibitors on the dATPase (Figure 
1, Figure 2) and exopolyphosphatase [18] activities of PPN1 were similar. 

The dATP phosphohydrolase (dATPase) activity of cellular extract of the PPN1- 
overexpressing yeast strain was several-fold higher than that in the parent strain (Table 
3). This increase was comparable with the increase in exopolyphosphatase activity. In 
addition, the dATPase and exopolyphosphatase activities of the cellular extract of trans- 
formant cells were similarly inhibited by heparin, the known suppressor of polyphos-
phatases [1], while the dATPase activity of the cellular extract of ΔPPN1 mutant was 
little affected by heparin. Probably, some other enzymes perform the dATPase activity 
in this strain. 

 
Table 1. The exopolyphosphatase and dATP phosphohydrolase activities of pure PPN1 and 
PPX1 of S. cerevisiae. 

Enzyme 
Activity with different substrates 

Substrate Activity, mU/ml 

PPN1 PolyP208 244.0 ± 28.5 

PPN1 dATP 34.9 ± 3.9 

PPX1 PolyP208 311 ± 32.0 

PPХ1 dATP 0 

 
Table 2. Pi release by PPN1 from some substrates (2 mM). 

Substrate Pi release, % of control 

dATP 100 ± 5.0 

ATP 57 ± 5.0 

ADP 20.0 ± 2.1 

PPi 11.0 ± 1.0 
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Figure 1. The effects of Co2+ (white squares), Mg2+ (open circles), Zn2+ 
(black triangles), and Mn2+ (open triangles) on the dATP phosphohydrolase 
activity of polyphosphatase. 

 

 
Figure 2. The effects of inhibitors on the dATP phosphohydrolase activity 
of polyphosphatase PPN1. The activity was assayed in 50 mM Tris-HCl, 
pH 7.2, containing 0.1 mM CoSO4 and 200 mM NH4Cl. 

 
Table 3. The hydrolysis of PolyP208 and dATP by the cellular extracts of ΔPPN1 and PPN1- 
overexpressing strains of S. cerevisiae. 

Enzyme activity, mU/mg protein 
Yeast strain 

ΔPPN1 PPN1-overexpressing strain 

Polyphosphatase 88 ± 9.0 3640 ± 10 

Polyphosphatase, 10 mg/l heparin 88 ± 7.0 420 ± 30 

dATP phosphohydrolase 30 ± 2.8 370 ± 62 

dATP phosphohydrolase, 10 mg/l heparin 26 ± 1.0 55 ± 4.0 
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4. Discussion 

In this study, we have found the dATP phosphohydrolase activity of the S. cerevisiae 
protein РРN1. The activity is similar to the exopolyphosphatase activity of this protein 
in the dependence on divalent cations, stimulation by NH4 ions, and inhibition by he-
parin and PPi. The activity decreased in the following order: dATP > ATP > ADP. The 
preliminary data on the hydrolysis of dNTP mixture suggest the ability of hydrolysis of 
other dNTP. It should be noted that the PPX1 exopolyphosphatase of S. cerevisiae hy-
drolyzes neither dATP (this study) nor dNTP mixture [19].  

The catabolism of dNTPs is performed by many enzymes. First, the alkaline and acid 
phosphatases are able to hydrolyze these substrates (http://www.brenda-enzymes.org). 

Second, the DEAH-box splicing factor Prp22 of yeasts can hydrolyze all common 
NTPs and dNTPs with a comparable efficiency [24], catalyzing the reaction:  

(d) nucleoside triphosphate + H2O → (d) nucleoside diphosphate + phosphate (EC 
3.6.1.15). Finally, deoxynucleotide triphosphate triphosphohydrolases (dNTPases) hy-
drolyze deoxynucleotide triphosphates (dNTPs) into nucleosides and tripolyphosphate  
(3.1.5.B1, http://www.brenda-enzymes.org). In mammalian cells, the sterile alpha motif 
and HD domain-containing protein 1 (SAMHD1) is a dNTPase and a major regulator 
of cellular dNTP levels [25]. This protein prevents the infection of nondividing cells by 
retroviruses, including HIV, by depleting the cellular dNTP pool [25]. The importance 
of dNTP metabolism and SAMHD1 in cancer development was discussed [26]. It seems 
that the dNTP catabolism becomes particularly important under the conditions when a 
decrease in proliferative activity is necessary for the survival of an organism or a cell 
population. For further investigation of the role of PPN1 as a putative regulator of cel-
lular dNTP level in yeast cells, it is necessary to take into account the following two 
facts. First, PPN1 gene is responsible for the exopolyphosphatase activity in yeast nuclei 
[27]. Second, ΔPPN1 mutants displayed the impairment of the cell cycle when the cells 
were grown under Pi limitation [4].  

5. Conclusion 

Yeast polyphosphatase PPN1 is deoxyadenosine triphosphate phosphohydrolase while 
the exopolyphosphatase PPX1 did not split Pi from dATP. The exopolyphosphatase 
and deoxyadenosine triphosphate phosphohydrolase activities of this protein are simi-
lar in ion and inhibitor effects.  
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