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Abstract 
Enzyme kinetic parameters have been estimated using MATLAB software via the Wilkinson non-
linear regression technique. The MATLAB script file written to implement this technique is short 
and very straightforward. Several software tools are commercially available for this purpose, with 
many graphical user interface (GUI) features. A routine use of these packages might offer imme-
diate satisfaction of interactive hands-on experience; but in some cases the researcher might wish 
to write his/her own code and compare the results for further confirmation. Today MATLAB is in 
use in almost all the schools and laboratories as a standard software tool. So this paper is aimed at 
helping enzyme researchers to make use of this powerful software for estimation of parameters. It 
enables the incorporation of the analytical steps behind parameter estimation in an easy-to-follow 
manner and furnishes better visualization. 
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1. Introduction 
Over the past several years, different enzyme reactions governed by different equations have been identified in 
the field of biochemistry. Estimation of kinetic parameters of these enzyme reactions is one of the important 
problems [1]-[4]. The nonlinearity in the functional expression for the reaction rate, in terms of substrate con-
centration and other parameters, makes the parameter estimation problem difficult. Graphical techniques such as 
Lineweaver-Burk’s method and the use of Dixon plot to estimate parameters [5]-[7] were in vogue for some 
time. These methods rely on linearizing the Michaelis-Menten equation in the case of simple enzyme reactions. 
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For complex enzyme reactions, such techniques do not furnish reliable results. This has prompted Wilkinson to 
propose non-linear regression for the estimation of enzyme parameters [8]. Using Wilkinson non-linear regres-
sion coupled with a modified Fibonacci search method, Atkins outlined a computer program for fitting the Hill 
equation directly to experimental data [9]. Following this, numerous software packages have been developed 
[10]-[11] to perform parameter estimation interactively. Most of these packages have fixed menus and do not 
allow the user to incorporate possible changes to the underlying algorithm. 

The goal of this article is to explain the nonlinear regression technique briefly and show four simulation ex-
amples of enzyme reactions. The programming is done in MATLAB, a registered trade mark of MathWorks, Inc. 
MATLAB is a high-level language and interactive environment that enables one to perform computationally in-
tensive tasks faster than with traditional programming languages. The syntax of various functions in MATLAB 
makes implementing difficult, mathematical steps very straightforward.  

Today, use of MATLAB has almost become a de facto standard among engineers and computer scientists 
both in academia and industry. Faculty and students of biochemistry can easily learn this software using numer-
ous tutorials available on-line or introductory books such as [18]-[21]. Further, it is easy for biologists to devel-
op interaction with other engineers and scientists in the language of MATLAB. In this paper we shall discuss the 
basic principle behind nonlinear regression, and supplement it with simulation examples1. 

2. Parameter Estimation via Nonlinear Regression 
One of the challenges faced in a biochemistry laboratory while studying enzyme kinetics is to decide compre-
hensive levels of the substrate concentration. For example, it is hard to determine the maximum concentration, 
minimum concentration, and to know how best to space the intermediate levels and so on. In practice, one may 
have to plot the data and go through a few iterations before endorsing the data for further processing. After sa-
tisfactory acquisition of the data, which invariably carries measurement inaccuracies, enzyme parameters ap-
pearing in the governing model can be estimated using the non-linear regression technique.  

Let us consider a functional relationship that expresses the reaction rate v in terms of the independent varia-
ble(s) and some parameters. For example, in the case of a simple enzyme-substrate uninhibited reaction it is 
given by the Michaelis-Menten equation: 

max

m

V s
v

s K
 

=  + 
.                                    (1) 

In Equation (1) above, the substrate concentration s is the independent variable, and maxV  and mK  are en-
zyme parameters representing the maximum reaction velocity and the Michaelis constant respectively. Numeri-
cally, mK  equals s when max0.5v V= . In general, there may be more independent variables than s alone, which 
for convenience, could be put in a vector of N elements say, [ ]T1 2 Nx x x= x . Let the vector  

T
1 2 pβ β β =  β denote a set of P parameters. Here the superscript T denotes the transpose. This gene-

ralization would become clearer after three more examples that are discussed in this paper. The dependence of v 
on x and β is denoted by ( );mv x β . Let my  stand for the mth data sample. The subscript m in all occurrences 
except in the Michaelis constant mK  indicates the mth observation. Since measurements are subject to experi-
mental errors, we shall write: 

( );m m my v ε= +x β                                   (2) 

where the measurement error, ( )2~ 0,m mε σN , is assumed to be a normally distributed random variable with a 
mean zero and a variance of 2

mσ . Given a set of measured values of Equation (2), the parameter estimation 
problem involves finding an estimate of β that reduces a measure of error, usually the sum of weighted (with the 
weights wm) residual squares WRSS, denoted by ( )J β :  

( ) ( ){ }2
;m m m

m
WRSS J w y v= = −∑β x β .                         (3) 

Our objective is to minimize ( )J β  with respect to β. It is hard to find the minimum of ( )J β  by explicitly 
differentiating and solving for global minimum. Iterative methods are usually employed. Nonlinear regression is 
a convenient technique [8] [22] that allows us to estimate the unknown parameters by linearizing Equation (2) at 

 

 

1The MATLAB script for one of the examples is shown in Appendix I. 
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each iteration starting from an initial guess 0β̂ . This is done by first expressing ( );mv x β  with the first two 
terms in its Taylor’s series expansion around an estimate, initially taken as 0β̂ . Then the mth element in Equa-
tion (2) can be written as: 

( ) ( ) ( ) ( )

0

11 10

21 20
0

1 2 ˆ

1 0

ˆ ˆ

ˆ ˆ; ; ;ˆ;

ˆ ˆ

m m m
m m m

p

p p

v v v
y v

β β

β β
ε

β β β

β β
=

 −
 

 ∂ ∂ ∂ − 
≈ + +   ∂ ∂ ∂    

 − 





β β

x β x β x β
x β            (4) 

here 
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21 20
1 0 0
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ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ
p p

β β

β β

β β

 −
 

− 
− = =  

 
 − 



β β β∆  is assumed to be a small increment in the parameter vector. This can be done 

for all the observations m = 1 to M.  
Now treating the vector ( )0

ˆ;m my v − x β  as the residual 0r  at 0th iteration, we can write: 

( ) ( ) ( ) ( ) [ ]
0

0 1 0
1 2 ˆ

; ; ; ˆ ˆm m m
m

p

v v v
ε

β β β
=

     ∂ ∂ ∂
≈ − +     ∂ ∂ ∂        



β β

x β x β x β
r β β               (5) 

This process can be iterated by replacing 0 and 1 with k and k + 1 respectively. Denoting the matrix involving 
the derivatives in Equation (5) at kth iteration by Gk we get,  

( ) [ ]1
ˆ ˆ

k k k k mε+≈ − +r G β β .                                (6) 

The weighted least squares solution for this can be written in terms of generalized inverse of Gk [23] [24] as: 

( ) 1T 1 T 1
1

ˆ ˆ
k k k k k k

−− −
+ = +β β G G G rΣ Σ                              (7) 

where 

[ ]( )cov mε=Σ                                      (8) 

is the covariance matrix of [ ]mε . 
Equation (7) helps in estimating the parameters of a given model recursively; but is in a generalized form. For 

the enzyme researchers or students to be able to code this in MATLAB, they need to understand each symbol in 
(7) and how to express the same for a given model. In the next section four types of enzyme models are consi-
dered and expressions for various elements of β , G , and r  are given as they relate to each model. In Appen-
dix I, MATLAB code is provided for Example III. For other examples, the same code could be edited with 
minimum effort by replacing the expressions of these vectors/matrices appropriately and could be executed. 
With this idea in mind, in the next section, Equation (7) is specialized for four different models. 

3. Four Models 
3.1. Model I: A Simple Uninhibited Enzyme Substrate Reaction 
Let us first consider the case of a simple uninhibited enzyme substrate reaction. As mentioned earlier in the paper, 
s denotes the concentration of the substrate, Vmax the maximum reaction velocity, and Km the Michaelis constant, 
which equals the substrate concentration at half the maximum rate. 

Governing equation (Michaelis-Menten equation):  

( ) max;
m

V s
v

s K
 

=  + 
x β                                   (9) 

Variables and parameters:  
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max

m

s
K

V

= 


 =  
 

x

β
                                   (10) 

The mth element of the residue: 

max m
m m

m m

V s
r y

s K
  

= −  +   
                               (11) 

Elements of the mth row of G  matrix: 

[ ]
( ) ( )

max
1 2 2

m m
m m

m mm m

V s s
G G

s Ks K

 −
 =

+ + 
                        (12) 

3.2. Model II: Competitive Inhibitor Enzyme Substrate Reactions 
With other symbols remaining the same as in Model I, let i denote the concentration of inhibitor. The competi-
tive reaction is governed by the Michaelis-Menten equation:  

( ) max;
1m

I

V s
v

is K
K

 
 
 =   
 + +    

x β                               (13) 

Variables and parameters: 

max

m

I

s
i

K
K

V

 
=  
  


 
 =  
  

x

β
                                    (14) 

The mth element of the residue: 

max

1

m
m m

m m
I

V s
r y

is K
K

  
  
  = −   
  + +      

                            (15) 

Elements of the mth row of G  matrix: 

[ ] ( )
( ) ( ) ( )

max max
1 2 3 2 2 .I I m I

m m m
I m I mI m I m I m I m

V sK K i V sK i sKG G G
sK K K K isK K K K i sK K K K i

 − +
 =

+ + + + + + 
   (16) 

In passing, it might be mentioned that if the data points are collected for various inhibitor values, one could 
vectorize them into a single column. Accordingly, the value for i in Equation (16) should be substituted.  

3.3. Model III: Allosteric Monosubstrate Enzyme  
For our third model, the allosteric enzyme reaction is considered. This is governed by the Hill equation involv-
ing an empirical parameter n. 

( ) max;
n

n
m

V s
v

s K
 

=  
+ 

x β                                (17) 
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Variables and parameters:  

[ ]

max

m

s

K
n

V

=


 
 =  
  

x

β
                                  (18) 

The mth element of the residue: 

max
n
m

m m n
m m

V s
r y

s K
  

= −  
+   

                              (19) 

Elements of the mth row of G  matrix: 

[ ]
( ) ( ) ( )

max max
1 2 3 2 2

lnn n n
m m m m

m m m nn n
m mm m m m

V s V K s s s
G G G

K sK s K s

 − =
 ++ +  

               (20) 

3.4 Model IV: Allosteric Enzyme with Two Species of Ligand Sites  
This is governed by two Hill equations combined as:  

( )
1 2

1 2

max1 max 2

1 2

;
n n

n n

V s V s
v

s K s K
   

= +   
+ +   

x β                             (21) 

Variables and parameters:  

[ ]
1

1

max1

2

2

max 2

s

K
n
V
K
n
V

=


 
 
  
 = 
 
 
 
  

x

β
                                   (22) 

The mth element of the residue: 
1 2

1 2

max1 max 2

1 2

n n
m m

m m n n
m m

V s V s
r y

s K s K
    

= − −    
+ +     

                         (23) 

The six elements of the mth row of G  matrix: 

[ ]

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 2

1 21 1 2 2

1 2 3 4 5 6

max1 max1 1 max 2 max 2 2
2 2 2 2

1 21 1 2 2

ln ln

m m m m m m

n n n n n n
m m m m m m m m

n nn n n n
m mm m m m

G G G G G G

V s V K s s s V s V K s s s
K s K sK s K s K s K s

 − − =
 + ++ + + +  





    (24) 

In the next section four simulation examples are given based on the preceding four models. 

4. Simulation Examples 
4.1 Example I―Simple Uninhibited Reaction  
Data consisting of 10 samples are simulated in case of a hypothetical enzyme with Km = 240 nM and Vmax = 80 
mmol/min/mg substrate using MATLAB. A zero mean unit variance random number with Gaussian density is 
added as measurement error. The substrate and the reaction rate are shown in Table 1. We shall take ∑ as a 10 × 
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10 unit matrix. Thus, WRSS can be called RSS.  
The parameters estimated using the program written in MATLAB are: 
ˆ 237.10mK = , max

ˆ 80.24V = , and the RSS = 0.142. Figure 1 shows the enzyme reaction rate versus substrate 
concentration in the units specified in Table 1. In order to render a better visualization, we have provided the re-
lief of the error surface defined in Equation (2) with unity weights in Figure 2(a). Also, Figure 2(b) shows the 
contours of the same plot. Note that the contours are ever widening ellipses with the global minimum shown by 
an asterisk. Also plotted in this figure is the learning trajectory obtained by joining all the estimated parameters 
over 6 iterations, starting from a provisional guess of Km(0) = 20 and Vmax(0) = 25.  

This simulation is repeated using the software Prism 5, a registered trademark of GraphPad, as well as the 
EXCEL template called anemona published in [12]. It was assuring to find that the parameters estimated were 
identical viz., ˆ 237.10mK = , and max

ˆ 80.24V = .  
 
Table 1. Simulated data consisting of 10 samples in case of a hypothetical enzyme with Km = 240 nM and Vmax = 80 
mmol/min/mg substrate for enzyme reaction model I.                                                             

Substrate Concentration, s (nM) Reaction Rate v (μmol/min/mg substrate) 

0 0.00 

50 14.12 

100 23.86 

150 31.10 

200 36.69 

400 50.33 

600 57.47 

800 61.87 

1000 64.84 

10000 78.45 

 

 
Figure 1. Reaction rate curve for Model I. The circles are simulated measure-
ments, solid line is the theoretical curve, stars show the model using the esti-
mated parameters.                                                     

 

 

2We denote the estimated value of a parameter by the hat symbol; for example, ˆ
mK  is the estimate of mK . 



S. R. Nelatury et al. 
 

 
20 

 
(a)                                                     (b) 

Figure 2. (a) Showing the relief of the error J(β) as a function of the parameters.(b) Showing the contours of the error J(β) 
as a function of the parameters. The global minimum is shown by an asterisk. Also shown is the learning trajectory.         

4.2. Example II―Enzyme Competitive Inhibitor Case 
As a second example, the data found in the GraphPad user manual [14] is used. It is reproduced in Table 2 for 
convenience. The parameters for this data as given by Prism 5 are: 

max
ˆ ˆ ˆ236.70, 2.74, 79.92m iK K V= = = . 

The parameters estimated by using MATLAB program via non-linear regression are: 

max
ˆ ˆ ˆ237.12, 2.75, 79.94m iK K V= = = . 

Figure 3 shows the plot of reaction curves.  
A visual display of the surface of the cost function J is not possible as it is now a function of three variables: 

Vmax, Km and Ki. So an attempt is made to visualize this optimization problem in two steps. First, we note that 
when i = 0, Model II degenerates to Model I; as such, Km and Vmax are found using the data of the first and 
second columns of Table 2. Secondly, using these parameters in the remaining data, J is plotted in Figure 4. 
The global minimum is found at Ki = 2.75 in conformity with the method of non-linear regression. In MATLAB, 
the min command obtains minimum of a given vector. Further, it may be pointed out that the modified Fibonac-
ci search method used by Atkins in [9] also readily finds application to accomplish this. 

4.3. Example III―pNPP Hydrolysis by Alkaline Phosphatase (Hill Equation)  
Determination of kinetic parameters for the hydrolysis of p-nitrophenylphosphate (pNPP) by alkaline phospha-
tase was reported in [17] using a program called SigrafW. Figures 5(a), (b) show the familiar structure of pNPP 
and AP. For convenience, the data points of Table 1 in [17] are reproduced in Table 3 and are used in this ex-
ample. The parameters obtained by SigrafW, and those obtained through MATLAB simulations, as well as 
Prism 5 of GraphPad, are shown in Table 4.  

This exercise has been attempted using anemona reported in [12], but this tool has yielded absurd results. 
Both the MATLAB program and Prism are found to yield identical values for the parameters. 

Using MATLAB we find that RSS is less and correlation is better. Figure 6 shows the reaction rate curves 
using both the results. We note that the curve obtained using the parameters reported in [17] does not pass 
through the observations as accurately as reported therein. The MATLAB script file for this representative ex-
ample is given in Appendix I. Modifying the code for other examples is straightforward as mentioned earlier.  

4.4 Example IV―ATP Hydrolysis by Alkaline Phosphatase (Sum of Two Hill Equations) 
Again we take the data available in [17] for the ATP hydrolysis by alkaline phosphatase. This reaction is cha-
racterized by the sum of two Hill equations. Figure 5(c) depicts the ATP structure. The measured data is found  
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Table 2. Data for competitive enzyme reaction (Model II) taken from the GraphPad user manual [14]. Here i denotes the 
concentration of inhibitor.                                                                                    

Reaction velocity for various inhibitors 

Substrate Concentration s, (nM) i = 0 (nM) i = 3 (nM) i = 10 (nM) i = 30 (nM) 

0 0.00 0.00 0.00 0.00 

50 17.00 7.20 3.60 0.00 

100 22.00 13.30 8.10 0.10 

150 30.60 17.80 13.60 4.80 

200 33.60 25.10 10.80 5.20 

400 50.40 38.00 21.90 14.60 

600 58.40 45.00 25.50 13.50 

800 62.70 50.50 31.80 15.90 

1000 63.50 52.60 38.10 20.90 

10000 81.00 74.30 70.90 61.70 

 

 
Figure 3. Reaction rate curves for Model II for various values of inhibitor 
concentrations. Circles: i = 0, diamonds i = 3, squares i = 10, stars i = 30. The 
solid line is obtained with values given by prism, dots are using MATLAB.      

 
in Table 2 of [17] reproduced here for convenience in Table 5.  

For better numerical accuracy, all the substrate values are first up-scaled uniformly by the factor 108 before 
parameter estimation. They are later scaled down by the same factor. The parameters reported in [17], and those 
obtained through MATLAB program, as well as Prism 5 are shown in Table 6. Note that MATLAB and Prism 5 
yield identical results except for a miniscule difference in n2 and RSS.  

The reaction rate curves are shown in Figure 7. In SigrafW reported in [17] for the purpose of a good fit, a 
baseline concept is used. This amounts to a form of piece-wise regression. But the work in this paper does not 
rely on any baseline, as we treat the reaction as a single phenomenon. Reaction rate curve, using the parameters 
in [17] without the baseline, is also plotted in Figure 7. It does not pass through the measured data as seen in 
Figure 7. 
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Table 3. Hydrolysis of PNPP by alkaline phosphatase in 50 mM of 2-amino-2-hydroxymethylpropane 1 - 3 diol buffer, pH 
9.4 containing 2 mM MgCl2 [17].                                                                            

[PNPP] (M) Reaction rate (nmol/min/mg) 

5.00e-5 1.60 

1.00e-4 3.20 

2.00e-4 5.50 

3.00e-4 8.40 

5.00e-4 13.50 

7.00e-4 16.60 

1.00e-3 19.00 

2.00e-3 29.00 

3.00e-3 36.00 

5.00e-3 43.00 

7.00e-3 43.50 

1.00e-2 45.70 

1.50e-2 47.00 

2.00e-2 48.00 

 

 
Figure 4. Plot of Cost J as a function of Ki given the values of Km and Vmax.      

 

         
(a)                             (b)                                        (c) 

Figure 5. Structures of (a) para-Nitrophenylphosphate (pNPP) (b) Alkaline Phosphatase (AP)             
(source: http://pfam.sanger.ac.uk//family/PF00245) (c) Adenosine triphosphate (ATP)                   
(source: http://www.abmservice.com/MeasuringATP.html).                                        

http://pfam.sanger.ac.uk/family/PF00245
http://www.abmservice.com/MeasuringATP.html
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Table 4. Various parameters for Example III compared with those reported in [17] using SigrafW as well as Prism 5. Note 
that the MATLAB program developed in this paper and Prism 5 yield identical results.                                  

Parameter Reported in [16] Using SigrafW Using MATLAB Using Prism 5 

K (M) 1.43e-3 8.41e-4 8.41e-4 

n 1.08 1.08 1.08 

Vmax (nmol/min/mg) 51.32 51.32 51.32 

RSS 260.17 12.18 12.18 

Correlation 0.99 1.00 1.00 

 
Table 5. Hydrolysis of ATP by alkaline phosphatase in 50 mM Tris-HCl buffer, pH 7.5, containing 2 mM MgCl2 [17].        

[ATP] (M) Reaction rate (Nmol/min/mg) [ATP] (M) Reaction rate (Nmol/min/mg) 

1.00e-8 3.00 3.00e-5 27.90 

2.50e-8 3.20 5.00e-5 32.20 

5.00e-8 4.00 6.00e-5 33.70 

7.50e-8 4.50 7.50e-4 36.40 

1.00e-7 6.00 1.00e-4 38.90 

2.50e-7 11.00 2.00e-4 50.70 

5.00e-7 14.00 3.00e-4 61.50 

7.50e-7 16.00 4.00e-4 64.70 

1.00e-6 21.70 5.00e-4 69.50 

2.00e-6 22.30 6.00e-4 77.50 

3.00e-6 24.00 7.50e-4 86.50 

5.00e-6 23.00 1.50e-3 91.30 

7.50e-6 23.50 2.00e-3 102.60 

1.00e-5 25.30 3.00e-3 102.90 

2.00e-5 25.80   

 
Table 6. Various Parameters in Example IV using SigrafW, MATLAB and Prism 5.                                   

Parameter Reported in [17] Using MATLAB Using Prism 5 

K1 (M) 4.25e-7 2.67e-7 2.67e-7 

n1 1.32 0.96 0.96 

Vmax1 (nmol/min/mg) 22.02 24.78 24.78 

K2 (M) 4.28e-4 1.69e-3 1.69e-3 

n2 1.17 1.14 1.13 

Vmax2 (nmol/min/mg) 88.72 87.71 87.71 

RSS 8165.9 93.71 89.81 

Correlation 0.96 1.00 1.00 
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Figure 6. Showing the reaction rate in case of PNPP hydrolysis through alka-
line phosphatase.                                                      

 

 
Figure 7. Reaction curve for the Example IV of allosteric response in ATP 
hydrolysis using alkaline phosphatase. Circles are measured values. Starred 
curve is obtained with the parameters estimated using MATLAB. In [17] the 
notion of baseline is used to obtain a good fit. Dotted curve shows the reaction 
rate without the use of baseline.                                          

5. Discussion and Conclusion 
Enzyme parameters can be found using graphical aids such as Lineweaver-Burk’s plot, or Dixon’s plot in the 
case of simple enzyme reactions. But for complex enzyme reactions, parameter estimation becomes computa-
tionally intensive. With the advent of software tools, this task is performed interactively on a computer. In the 
open literature, several software packages are reported. Almost all of them allow the user to feed the data and 
select the type of reaction for estimation of enzyme kinetic parameters; but they do not allow the user to write 
the source code for non-linear regression. This paper provides the mathematical expressions needed in non-li- 
near regression for four types of enzyme reactions and suggests the use of MATLAB. Nonlinear regression is 
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briefly discussed first in general terms, and then specialized to four different models. The elements of various 
vectors and matrices are explicitly given for the convenience of programming in MATLAB. The MATLAB 
script for one of the examples is given in Appendix I. MATLAB offers better visualization and the ability to 
write the source code. Also, this study helps us to use these algorithms in more complex cases. Although in this 
paper we have given analytical expressions for the G matrix, one could use numerical differentiation for per-
forming parameter estimation. Plotting the cost surface helps in visualizing where optimal values are located in 
the parameter space and helps to confirm the results obtained by non-linear regression. None of the available 
packages depict the surface of cost function and learning trajectory of estimation process wherever possible. But 
using MATLAB, this could be accomplished―thus, enabling the analysts to appreciate the analytical steps in-
volved in the non-linear regression technique. 
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Appendix I 

 
 

%% Matlab script for Example III. To reproduce Figure 5 
clear all;  close all 
%% data  
s=[5e-5;1e-4;2e-4;3e-4;5e-4;7e-4;1e-3;2e-3;3e-3; … 
     5e-3;7e-3; 1e-2;1.5e-2;2e-2]; 
v=[1.6;3.2;5.5;8.4;13.5;16.6;19;29;36;43;43.5;45.7;47;48]; 
m=length(s); 
%% semilog plot of the data 
semilogx(s,v,'o','MarkerSize',5,'MarkerFacecolor','g'); hold 
on 
% Initial values 
Km=1e-3; n=1; Vmax=20; 
for q=1:10 
g1 = -Vmax*s.^n./((Km+s.^n).^2); 
g2 = Vmax*s.^n.*log(s)./ … 
   (Km+s.^n)-Vmax*((s.^n).^2).*log(s)./(Km+s.^n).^2; 
g3 = s.^n./(Km+s.^n); 
r  = v - Vmax*s.^n./(Km+s.^n); Z=[g1 g2 g3]; G=Z\r; 
Km= (Km+G(1));  n = (n+G(2));    Vmax=(Vmax+G(3)); 
end 
si=logspace(-6, 0,69); 
vio = Vmax*si.^n./(Km+si.^n); 
semilogx(si,vio,'pk','MarkerSize',7) 
% the following are from ref[17] 
VMAX= 5.132e1; 
KM=1.427e-3; 
N=1.081; 
vi = VMAX*si.^N./(KM+si.^N); 
semilogx(si,vi,'k') 
xlabel('Log concentration  (M)','FontSize',14) 
ylabel('Reaction rate   (nmol/min/mg)','FontSize',14) 
grid; grid minor 
axis ([1e-6 1 0 55]) 
%% residual sum of squares and correlation   
RSS = (norm(v-VMAX*s.^N./(KM+s.^N)))^2 
c=corrcoef(v,VMAX*s.^N./(KM+s.^N)) 
RSSO = (norm(v-Vmax*s.^n./(Km+s.^n)))^2 
cO=corrcoef(v,Vmax*s.^n./(Km+s.^n)) 
% end of code  
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