
Atmospheric and Climate Sciences, 2017, 7, 367-373
http://www.scirp.org/journal/acs

ISSN Online: 2160-0422
ISSN Print: 2160-0414

DOI: 10.4236/acs.2017.73027 July 27, 2017

Research on Exception of Meteorological
Satellite Ground System Application Based
on Resource Bottleneck

Xiangang Zhao, Manyun Lin, Weixia Lin*, Lizi Xie, Cunqun Fan

National Satellite Meteorological Center, BeiJing, China

Abstract
Meteorological satellite ground application system resources are limited. Ab-
normal satellite missions often lead to hopple of system resources. In order to
analyze the problem, this paper presents an anomaly analysis method for me-
teorological satellite ground system based on resource bottleneck. Through
the CPU, memory and I/O, several types of resources in-depth were analyzed
to find the bottleneck caused by the problem, thus providing recommenda-
tions for application optimization. Experimental analysis shows that the pro-
posed method can reasonably analyze the resource bottleneck of CPU, mem-
ory and I/ O, and draw a good conclusion. To solve the meteorological satel-
lite application system application anomaly caused by the bottleneck of the
problem, the application of optimization to a certain extent plays a positive
role.

Keywords
Satellite, Ground Application System, Resource Bottlenecks, Application
Exception

1. Introduction

Meteorological satellite application system is large and complex. Some applica-
tions need a lot of data, which often makes the ground system resources occur
bottlenecks. And the emergence of these bottlenecks is often due to the applica-
tion of the operation caused by abnormal. How to study the anomalies of me-
teorological satellite ground system through the bottleneck of resources has be-
come an urgent problem to be solved in satellite application system.

Some of the results have been achieved in related research on application
anomalies. Biswas S. [1] described Valor, a sound, precise, software-only region
conflict detection analysis that achieves high performance by eliminating the

How to cite this paper: Zhao, X.G., Lin,
M.Y., Lin, W.X., Xie, L.Z. and Fan, C.Q.
(2017) Research on Exception of Meteoro-
logical Satellite Ground System Application
Based on Resource Bottleneck. Atmospher-
ic and Climate Sciences, 7, 367-373.
http://dx.doi.org/10.4236/acs.2017.73027

Received: June 26, 2017
Accepted: July 24, 2017
Published: July 27, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/acs
http://dx.doi.org/10.4236/acs.2017.73027
http://www.scirp.org
http://dx.doi.org/10.4236/acs.2017.73027
http://creativecommons.org/licenses/by/4.0/

X. G. Zhao et al.

368

costly analysis on each read operation that prior approaches require. Valor in-
stead logs a region’s reads and lazily detects conflicts for logged reads when the
region ends. Velmourougan S. [2] proposed a set of generic good practices to be
observed during each phase of the software development life cycle (SDLC) for
establishing the application system with sound exception handling mechanism.

Hassan M. M. [3] proposed a state-of-the-art with respect to issues of impor-
tance concerning software testability and an important quality attribute: soft-
ware robustness.

Sawadpong P. [4] proposed exception-based software metrics that are based
on the structural attributes of exception handling call graphs. They empirically
validate the proposed metrics through a case study of Hadoop Core using data
mined from software repositories and defect reports.

Barbosa E. [5] proposed Exception Handling Policies Language (EPL), a do-
main-specific language to specify and verify exception handling policies.

Si Y. W. [6] proposed a run-based exception prediction algorithm to predict
temporal exceptions in workflows. The proposed algorithm is divided into two
phases, design-time and run time. At design-time, all possible runs are generated
from a workflow and their estimated execution time and mapping probability
are calculated. At run time, temporal exceptions are predicted by analyzing the
runs. Abrantes J. [7] proposed a practical approach to preserve the exception
policy of a system or a family of systems along with its evolution, based on the
definition and automatic checking of exception handling design rules.

This paper addresses the anomalies of meteorological satellite ground system
applications due to bottlenecks in resources, optimizing system applications.

2. Exception and Bottleneck Analysis

Exception is the concept of software system sense. It refers to a software system
that behaves abnormally or resource occupancy is due to the inherent flaws in
code design and implementation. Such as memory leaks, floating-point compu-
tational capability exceptions, IO read and write assignments, and so on [8] [9].
Usually an exception in the case of the interaction with the hardware, such as
memory allocation, file read and write.

The bottleneck is the concept of the hardware system. It refers to the process of
loading an application running in hardware resources affected by high uptime and
operational efficiency of operations, due to the high demand for hardware re-
sources beyond the existing hardware level [10]. Which leads to CPU scheduling
bottlenecks, parallel computing power, IO performance bottlenecks and so on.

By analyzing and identifying anomalies and bottlenecks, it is possible to vi-
sually analyze the risk of downtime in the course of the operation. Through the
specific analysis of specific bottlenecks to give the corresponding hardware op-
timization recommendations and software optimization recommendations.

2.1. CPU Resource Exception and Bottlenecks

1) CPU scheduling bottlenecks

X. G. Zhao et al.

369

It refers to the application of the thread for a long time in a queue state, or ap-
plication to start the process or thread too much. CPU scheduling capacity is li-
mited, CPU performance bottlenecks.

Check the strategy: CPU_SoftIRQ + CPU_IRQ (CPU context switch) showed
a significant monotonically increasing trend.

2) CPU computing power bottlenecks
Multi-core CPU is long time 100% occupied, and IO is less. This shows that

CPU computing power bottlenecks.
Check the strategy: Calculate the 25% time of the CPU_CPI (average CPU av-

erage number of clock cycles per instruction) Time concentration C25%. When
C25% < 1/3 that CPU has the computing power bottleneck.

3) CPU parallel computing power utilization
The application only takes one CPU and does not extend to other CPUs. The

application is only written in a single process mode, even if the other CPU load
is low cannot be used.

Check the strategy: for all the CPU core occupancy rate, extract the highest
average of the five CPU core for the calculation of variance. When the calculated
variance is that the CPU core in most of the time occupancy rate distribution of
discrete trends, CPU parallel computing power shows utilization.

2.2. Floating Point Computing Exception and Bottlenecks

1) Floating point operation bottlenecks
CPU floating point computing power is not sufficient to meet the application

requirements.
Check the strategy: CPU_All_Flops (CPU floating point calculation occupan-

cy rate) maximum M ≥ 70%. CPU floating point calculation occupancy rate is
too high. That is, floating-point computing capacity bottlenecks.

2) Floating point calculation is exploited exception
The target job is a floating point intensive computing application. CPU float-

ing point computing power is not fully utilized.
Check strategy: CPU_All_Flops (CPU floating point calculation occupancy

rate) Mean E ≤ 5%. That is considered to floating point computing power of an
exception.

2.3. Memory Resource Exception and Bottlenecks

1) Memory leak exception
Memory occupancy continues to grow, there is no stable line, and there is a

potential risk of memory leaks.
Check strategy: Mem_All_MemRatio occupancy rate showed a clear upward

trend and an increase of more than 10%. That is, the risk of leakage of memory.
2) Memory allocation bottlenecks
CPU idle time is longer. Memory occupancy rate is still in a high state. CPU

waits for memory toggle. And there are memory bottlenecks.
Check the strategy: When the following conditions are met at the same time,

X. G. Zhao et al.

370

that there is a bottleneck in memory allocation.
a) CPU_All_Idle (CPU idle occupancy) showed a clear upward trend and an

increase of more than 10%;
b) Mem_All_MemRatio (physical memory occupancy rate) has a longer time

(more than 15 seconds) remains above 90%.

2.4. IO Resource Exception and Bottlenecks

1) IO read and write assignments exception
CPU occupancy rate is negatively correlated with IO read and write rate.

When the CPU is occupied, the system does not have the file to read and write.
While the application is reading and writing files without synchronizing CPU
execution. Both do not make full use of resources at the same time

Check the strategy: CPU_All_Sys + CPU_All_User (active CPU usage) and
Disk_All_Read + Disk_All_Write (IO read and write total) showed a significant
negative correlation.

2) IO resource bottlenecks
The waiting time for reading and writing data requests continues to increase.

Multiple processes compete for IO resources at the same time.
Check the strategy: Disk_All_SeqWait = Disk_All_Await − Disk_All_Svctm

(IO waiting queue total time - IO average service time) showed a significant in-
creasing trend.

3) IO performance bottlenecks
Disk read and write rates cannot keep up with task requests. Disk read and

write tasks queued too long.
Check the strategy: Disk_All_Avgqu (IO queuing length) shows a clear in-

creasing trend.

3. Analysis of Exception and Bottleneck
3.1. CPU Parallel Computing Power Utilization

As shown in Figure 1, the application’s five CPU cores (core 0, 4, 12, 20, 28)
during the application run, each core CPU active occupancy in three time pe-
riods are in a discrete distribution status. That is, the operation of these opera-
tions are not evenly shared in the CPU core. Such as in 20:52:10-20:53:02 time
period only a CPU core occupancy rate is higher, and other CPU core is idle
state. Ideally, several CPU cores with a high primary occupancy rate should
maintain a more consistent and averaged CPU activity during application run.
So while nearly half of all CPU cores are at 100% occupancy, there is still a risk
that the application may have insufficient CPU computing power.

As shown in Figure 2, at least one CPU core is occupied by almost zero at al-
most every time point before the application runs the entire run time, especially
before 20:54:37. And with the change of time, low CPU core is in the ev-
er-changing (such as 20:45:46 before the core of the low occupancy rate of 36,
and about 20:50:00 is the core of the core occupancy rate of 8). This indicates
that the target application is in the process of frequent CPU core switching.

X. G. Zhao et al.

371

Figure 1. Case 1 of CPU parallel exception.

Figure 2. Case 2 of CPU parallel exception.

3.2. IO Resource Bottlenecks

As shown in Figure 3, the blue line represents the IO average service time
(Disk_All_Svctm). The red line is the average IO wait time (Disk_All_Await). It
can be seen from the figure, in fact, the blue line is in a slow upward trend and a
large range of jitter. Although the red line as a whole did not change the magni-
tude, did not show a clear downward trend. Even in the late IO average service
time has a downward trend but the red line still maintained before the level. This
shows that IO requests more. Although the performance of the disk itself to en-
sure that the request queue is no significant growth trend, IO service speed is
still unable to effectively ease the IO wait time delay. So it can be considered
multiple processes at the same time in competing IO resources, and there is a IO
resource bottleneck.

X. G. Zhao et al.

372

Figure 3. Case of IO resource bottlenecks.

Figure 4. Case of IO read and write assignments exception.

3.3. IO Read and Write Assignments Exception

IO read and write assignments exception example shown in Figure 4. Obviously,
during this time the CPU active occupancy (CPU_Active) and IO read rate
showed a significant negative correlation. You can think of an IO read and write
assignment exception. Considering the short duration of the exception, it should
be necessary to refer to the distribution of CPU and IO related parameters before
and after the time period.

4. Conclusion

This paper analyzes the resource bottlenecks caused by the abnormal application
of meteorological satellite application system. This paper presents an anomaly
analysis method for meteorological satellite ground system based on resource
bottleneck, analysis of common abnormal state of several kinds of resources
from system. And through the CPU parallel computing power and I/O read and
write the distribution of experimental analysis, found that the distribution of re-
sources of the two resources, which plays a positive role in some extent on the
application of optimization.

X. G. Zhao et al.

373

Acknowledgments

The work presented in this study is supported by National High-tech R&D Pro-
gram (2011AA12A104).

References
[1] Biswas, S., Zhang, M., Bond, M.D., et al. (2015) Valor: Efficient, Software-Only Re-

gion Conflict Exceptions. ACM SIGPLAN Notices, 50, 241-259.
https://doi.org/10.1145/2858965.2814292

[2] Velmourougan, S., Ponnurangam, D. and Ramachandran, B. (2015) Software De-
velopment Life Cycle Model to Inculcate Exception Handling. International Journal
of Computer Aided Engineering & Technology, 7, 401-420.
https://doi.org/10.1504/IJCAET.2015.071300

[3] Hassan, M.M., Afzal, W., Blom, M., et al. (2015) Testability and Software Robust-
ness: A Systematic Literature Review. 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications, Funchal, 26-28 August 2015, 341-348.
https://doi.org/10.1109/SEAA.2015.47

[4] Sawadpong, P. and Allen, E.B. (2016) Software Defect Prediction Using Exception
Handling Call Graphs: A Case Study. IEEE, International Symposium on High As-
surance Systems Engineering, IEEE, Orlando, FL, 7-9 January 2016, 55-62.
https://doi.org/10.1109/HASE.2016.13

[5] Barbosa, E., Garcia, A., Robillard, M., et al. (2016) Enforcing Exception Handling
Policies with a Domain-Specific Language. IEEE Transactions on Software Engi-
neering, 42, 559-584. https://doi.org/10.1109/TSE.2015.2506164

[6] Si, Y.W., Hoi, K.K., Biuk-Aghai, R.P., et al. (2016) Run-Based Exception Prediction
for Workflows. Journal of Systems & Software, 113, 59-75.
https://doi.org/10.1016/j.jss.2015.11.024

[7] Abrantes, J. and Coelho, R. (2015) Specifying and Dynamically Monitoring the Ex-
ception Handling Policy. The International Conference on Software Engineering
and Knowledge Engineering, Taipei, 24 November 2015, 370-374.
https://doi.org/10.18293/SEKE2015-133

[8] Sundaresan, V. and Voldman, A.H. (2016) Prevention of Classloader Memory Leaks
in Multitier Enterprise Applications. U.S. Patent 9,229,744.

[9] Hyojin, C., Chulwoo, P., Kang, U., et al. (2016) Semiconductor Memory Device
with Operation Functions to Be Used during a Modified Read or Write Mode. U.S.
Patent 9,292,425.

[10] Chan, T.S.C., Zhu, W., Cho, J., et al. (2017) Data Storage Device Increasing Se-
quence Detector Clock Frequency When Bottleneck Condition Is Detected. U.S.
Patent 9,619,379.

https://doi.org/10.1145/2858965.2814292
https://doi.org/10.1504/IJCAET.2015.071300
https://doi.org/10.1109/SEAA.2015.47
https://doi.org/10.1109/HASE.2016.13
https://doi.org/10.1109/TSE.2015.2506164
https://doi.org/10.1016/j.jss.2015.11.024
https://doi.org/10.18293/SEKE2015-133

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact acs@scirp.org

http://papersubmission.scirp.org/
mailto:acs@scirp.org

	Research on Exception of Meteorological Satellite Ground System Application Based on Resource Bottleneck
	Abstract
	Keywords
	1. Introduction
	2. Exception and Bottleneck Analysis
	2.1. CPU Resource Exception and Bottlenecks
	2.2. Floating Point Computing Exception and Bottlenecks
	2.3. Memory Resource Exception and Bottlenecks
	2.4. IO Resource Exception and Bottlenecks

	3. Analysis of Exception and Bottleneck
	3.1. CPU Parallel Computing Power Utilization
	3.2. IO Resource Bottlenecks
	3.3. IO Read and Write Assignments Exception

	4. Conclusion
	Acknowledgments
	References

