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ABSTRACT 

In this study, recurrent networks to downscale meteorological fields of the ERA-40 re-analysis dataset with focus on the 
meso-scale water balance were investigated. Therefore two types of recurrent neural networks were used. The first ap- 
proach is a coupling between a recurrent neural network and a distributed watershed model and the second a nonlinear 
autoregressive with exogenous inputs (NARX) network, which directly predicted the component of the water balance. 
The approaches were deployed for a meso-scale catchment area in the Free State of Saxony, Germany. The results show 
that the coupled approach did not perform as well as the NARX network. But the meteorological output of the coupled 
approach already reaches an adequate quality. However the coupled model generates as input for the watershed model 
insufficient daily precipitation sums and not enough wet days were predicted. Hence the long-term annual cycle of the 
water balance could not be preserved with acceptable quality in contrary to the NARX approach. The residual storage 
change term indicates physical restrictions of the plausibility of the neural networks, whereas the physically based cor- 
relations among the components of the water balance were preserved more accurately by the coupled approach. 
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1. Introduction 

Information density and calculation speed of global cir- 
culation models (GCM) are highly dependent on the con- 
sidered spatial and temporal resolution. The resulting 
contradiction could be solved by different downscaling 
approaches. Here two major approaches can be distin- 
guished, complex (dynamic) and conceptual (statistic) 
methods [1]. Dynamic approaches solve the primitive 
equations with higher temporal and at higher spatial re- 
solution with higher resolved and better parameterized 
processes and use the GCM output as initial and bound- 
ary conditions. Often more than one nesting step is used, 
like in REMO [2,3], CLM [4] or WRF [5], where the pre- 
vious nesting step delivered the initial and boundary condi- 
tions for the current nesting step of the considered domain. 

Instead stastistic approaches are less computational 
demanding. Reference [6] compared in one of the first 
summaries of stastistic downscaling approaches differ- 

ent methods for single sites. They divided the approaches 
into three categories: 1) Regression methods; 2) Weather 
pattern based methods; 3) Stochastic generators. Gener- 
ally they concluded that pattern based approaches per- 
form best on daily basis but were restricted to the quality 
of GCM data. This restriction refers to a strict depend- 
ency of GCM derived weather patterns and downscaled 
climate variables. Reference [7] noted different categori- 
zation of stastistic methods. They divided empirical 
downscaling into linear and non-linear regression, artifi- 
cial neural networks (ANN), canonical correlation and 
principle component analysis. In their study they com- 
pared a recurrent neural network (i.e. temporal neural 
network) with a regression approach for the downscaling 
of minimum, maximum temperature and precipitation 
and found that the ANN results reproduced the observed 
extremes in adequate quality, which is not necessarily the 
case for the unobserved future values. Reference [8] used 
an artificial neural network to downscale hourly 27 km 
spaced precipitation fields of mesoscale model 5 (MM5) *Corresponding author. 
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output to hourly 3 km spaced fields. They obtained their 
best results under consideration of elevation, the relations 
to neighbouring grid cells and time components as pre- 
dictors. Predictors derived from GCM output and the 
considered domain play an important role, which [9] 
deeply investigated. They developed a scheme to opti- 
mize, by simulated annealing, the necessary number of 
predictors and their 3-dimensional domain for single sites 
to downscale precipitation by means of an ANN ap- 
proach. Their results showed a strong dependency of 
climate variable and predictor domain, which can differ 
from climate variable to climate variable. But until now 
ANNs have not been applied in the modelling of climate 
datasets for the study region of Saxony. The major ques- 
tion was how do ANNs perform in the context of a water 
balance model (i.e. the driving input of the water balance 
model is the ANN output) or to downscale the water 
balance of a meso-scale catchment area directly. This 
question arises, precisely because the generated local 
meteorological information is often used as further input 
for another model. This study aims to answer the follow- 
ing questions: 
 How large are the quantitative differences between 

modelled and observed water balance in a meso-scale 
catchment area? 

 How consistent are the resulting dataset in terms of 
physically based correlations among the elements of 
the water balance? 

 Do ANNs prevent the long-term annual cycle of the 
water balance? 

To answer these questions two approaches using dif- 
ferent kinds of recurrent neural networks are presented. 

2. Data 

2.1. Catchment Area and Hydrological Data 

The study region is the catchment area of the Zschopau 
River, which wells in the Ore Mountains and flows into 
the Freiberger Mulde River. The study region is depicted 
in Figure 1. The catchment is characterized by a large 
percentage of mountains that is the reason why here the 
coldest average temperature (1961-1990) of Saxony can 
be found. The average temperature ranges from <4˚C in 
the ridges of the mountains to 8˚C in the valleys of the 
catchment area. Furthermore in the catchment can be 
observed a comparable large variability in the annual 
precipitation amount from 750 mm in the valleys to 
>1200 mm in the mountain ranges (i.e. mean annual pre- 
cipitation sums from 1961 to 1990) [10]. The whole catch- 
ment reaches from the middle Ore Mountains and the 
eastern Ore Mountains to the Mulde River and Ore 
Mountain valleys [11]. The gauging station for the 
catchment area is Kriebstein, which is located 14.4 km 
downstream of the Zschopau River and measures the  

 

Figure 1. Catchment area of the Zschopau River with rain 
gauges and climate stations; the catchment lies in the east- 
ern part of Germany, in the south of the federal state of 
Saxony and covers a large part of the Ore mountains. 
 
discharge for a 1757 km2 large area. The gauging station 
Kriebstein is located downstream behind the dam Krieb- 
stein and is operated by the State Reservoir Administra- 
tion of Saxony. Thus more or less meaningful influence 
can be observed at the gauging station through manipu- 
lated discharge and flood behaviour of the river. 

2.2. Meteorological Data 

The daily observed meteorological variables for the study 
region were measured by the monitoring network of the 
German weather service (DWD) and the Czech hydro- 
logical-meteorological service (CHMI). The data were 
processed by the Saxonian climate database CLISAX 
[12-15], where also the quality assessment of the series 
was done. The deployed elements are summarized in 
Table 1, which are the minimum input variables for the 
distributed water balance model WaSim-ETH [16]. 
Hence, the choice of stations which were appropriate for 
the water balance simulations are limited by the catch-
ment area of the Zschopau River.  

Besides all stations within the catchment also time se- 
ries of neighbouring stations were used (cp. Figure 1) 
aiming as much dens information as possible for the spa-
tial interpolation of the meteorological fields. Overall 68 
daily precipitation gauges and 19 climate stations of the 
DWD and CHMI were available for the downscaling and 
water balance modelling within the period from 1975 to 
2000. The meteorological fields are summarized in Ta- 
ble 1, which were deployed as predictor variables. The  
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Table 1. Used daily predictor variables derived from the ERA-40 re-analysis data set. 

Predictor Abbreviation Time Altitude 

Mean air temperature air 1.1.1980 - 31.12.2000 0.995 sigma level

Relative humidity rhum 1.1.1980 - 31.12.2000 0.995 sigma level

Specific humidity shum 1.1.1980 - 31.12.2000 0.995 sigma level

V-component wind speed vwnd 1.1.1980 - 31.12.2000 0.995 sigma level

U-component wind speed uwnd 1.1.1980 - 31.12.2000 0.995 sigma level

Gopotential height hgt 1.1.1980 - 31.12.2000 0.995 sigma level

Vertical velocity omega 1.1.1980 - 31.12.2000 0.995 sigma level

 
ERA-40 re-analysis data set was described in [15]. Fields 
were extracted with the bounding box of the shown ter- 
ritory in Figure 1, which resulted into four grid cells 
with a spatial resolution of about 125 km (i.e. 2.5˚). 

3. Methods 

3.1. Water Balance Modelling with WaSim-ETH  

For the modelling of the water balance the distributed 
model WaSim-ETH was applied. This modelled was 
developed by [16] at the ETH Zurich and modified by 
[14]. The model enables the user to calculate grid and 
physically based the components of the water balance 
with high spatial and temporal resolution. The model is 
module based, which allows the user to change specific 
modules and adapt them for certain questions or inves- 
tigations. A detailed description of the modules can be 
found in [14,16] and further adaptations of the model 
in [17,18]. 

For the simulation of the water balance the model 
needs information of the initial state of the ground stor- 
age. If no or just uncertain information is delivered it is 
recommended to considered the first 2 to 5 years as 
warming-up period in the model. The model was ap- 
plied in its WaSim-ETH 7.10.1 version with unsatu- 
rated homogeneous soil column and a Richards ap- 
proach. It has to be mentioned that the model underlies 
a steady development process. The model calibration 
with focus on the long term discharge was done by the 
automatic parameter estimation and calibration soft- 
ware PEST [19]. The optimization scheme was applied 
for a non linear identification of spatially distributed 
sets of parameters.  

3.2. Hydrological Performance Indices 

The Nash-Sutcliff efficiency (NSE) is a statistical per-
formance index to calculate the relative difference be-
tween a simulated (Ysim) and an observed series (Yobs). 
The index shows how close the data curve lies to the 
1:1 line. The NSE ranges from −∞ to 1, where 1 means 
the best relation between observed and simulated data. 

Reference [20] stated that the NSE is the best perform- 
ance index to evaluate hydrological models. It is defined 
in Equation (1). 
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The RMSE was deployed to calculate the mean daily 
deviations of the simulated to the observed discharge. 
The smaller the RMSE the better fit the model results the 
observed states. Following [21] also a normalized RMSE 
was used, standardized by the standard deviation (RSR). 
RSR ranges from 0 to +∞. The closer the RSR lies to 0 
the better the daily simulated values fit the observed dis- 
charges. The RMSE can be calculated following Equa- 
tion (2). 
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The percent BIAS describes the mean relative differ-
ence of the simulated series to the observed discharge 
series in percentages over the whole observation period. 
It is calculated as defined in Equation (3). A 1-to-1 rela- 
tion is characterized through a PBIAS of 0.0%. Positive 
values mean that the hydrological model overestimates 
the discharge and a negative PBIAS an underestimation. 
Reference [20] gave the following ranges and qualities 
for the performance indices on monthly basis to evaluate 
hydrological models. The ranges can be found in Table 2. 
The model calibration with focus on the discharge should 
therefore aim for a good to very good performance ac- 
cording to these indices. 
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Table 2. Hydrological performance indices and their quality related to monthly calculated discharge [20]. 

Quality NSE RSR PBIAS 

very good 0.75 < NSE ≤ 1 0.0 ≤ RSR ≤ 0.5 PBIAS < ±10 

good 0.65 < NSE ≤ 0.75 0.5 < RSR ≤ 0.6 ±10 ≤ PBIAS < ±15 

okay 0.5 < NSE ≤ 0.65 0.6 < RSR ≤ 0.7 ±15 ≤ PBIAS < ±25 

bad NSE ≤ 0.5 RSR > 0.7 PBIAS ≥ ±25 

 
3.3. Neural Networks for the Downscaling Task 

Applied in this study were neural networks which belong 
to the group of recurrent neural networks (RNN) [22]. 
The first network is a pseudo recurrent neural network 
(PRNN) as described in [7] (i.e. time lagged feed-for- 
ward neural network) and the second a nonlinear autore- 
gressive with exogenous inputs (NARX) network [23]. 

The studied PRNN was adapted and applied in the 
following manner. The differences to a simple multilayer 
feed forward network lays in the input layer which con- 
tains not just the actual but also time lagged values. This 
enables the network to learn a pseudo memory, since a 
part of the weights were adjusted for the past states of the 
system. In this case the pseudo memory could be the past 
state of the atmosphere of a defined period (between 1 to 
10 days). Potential predictors could be found in [6-9]. 
These are passed, through weights, to the hidden layers, 
which are hierarchically connected to each other. The 
output layer represents the cumulative theoretical prob-
abilities (CDF) of the in Table 3 mentioned climate 
variables for all considered stations. 

Neural networks are often mentioned in the context of 
non linear systems [24,25]. NARX models are useful 
models to predict discrete dynamic time series. The ap- 
plied theory for the used NARX network can be found in 
[26]. The exogenous input was defined as the predictor 
variables derived from the ERA-40 re-analysis data (cp. 
Table 1). In contrast to the PRNN the NARX was par- 
ticularly applied for each component of the water balance 
(cp. Equation (4)). The network was deployed in an 
open-loop for the training and in closed-loop mode for 
the final predictions. 

In behalf of the approximation theorem [27] just net- 
works with one single hidden layer were used for down- 
scaling. Neural networks are considered as robust against 
noise, though potential uncertainties have to be men- 
tioned. The main disadvantage with in the networks 
might be the latent risk of finding just local minimums of 
the energy function used for the weights adaption and 
network training. Also the problem of over fitting may 
occur. Further uncertainties may arise through the data 
generalization by the description by parametric distribu-
tion functions (cp. Table 3).  

Table 3. Chosen CDFs for the parametric modeling of the 
distribution of meteorological variables in daily resolution 
for stations in and around the catchment area of Zschopau 
River [28-30]. 

Meteorological Variable Distribution Function 

Precipitation Gamma distribution 

Temperature Gaussian distribution 

Relative air moisture Gaussian distribution 

Wind speed Weibull distribution 

Relative sunshine duration Linear function with no offset 

Global radiation Weibull distribution 

 
The two approaches and their necessary input data for 

the modelling the water balance are summarized in the 
scheme in Figure 2. As can be seen for the NARX model 
no DWD data was used instead the network was trained 
directly to the WaSim-ETH output. 

4. Results and Discussion 

The main focus of this study lies in the downscaling of 
meteorological fields and their impact on the long term 
water balance. Hence the results have to be validated in 
terms of meteorological and hydrological qualities. Mete- 
orological properties are analyzed element wise by con- 
sidering their positive extremes (i.e. quantiles). Hydro- 
logically the interpretation focused on the in Equation (4) 
defined long-term water balance in its most common and 
most simple form. Precipitation (P) is the sum of the 
discharge (Q), the evapotranspiration (E) and the storage 
change (dS). More detailed investigations of governing 
sub processes are neglected. 

P Q E mmdS       (4) 

4.1. WaSim-ETH Calibration and Validation 

The calibration of WaSim-ETH for the Zschopau River 
was done for the complete data set (i.e. all available sta- 
tions). Therefore the time series were divided into a cali- 
bration (from 01.01.1994 to 31.12.1999) and a validation 
data set (from 01.01.1980 to 31.12.1990). The iterative 
calibration procedure by PEST optimized the parameters 
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according to the discharge. The results are shown in Ta- 
ble 4. Obviously the parameter optimization by PEST 
resulted in good performances in terms of hydrological 
quality measures for daily resolution. The NSE as well as 
RSR and PBIAS lie in the area of a very good perform- 
ance (cp. Table 2). For the validation a decrease of the 
performances measures was expected, as the validation is 
the assessment how the model performs for unobserved 
states. Except of PBAIS, the simulations in terms of NSE 
and RSR slightly lose their good performance, though 
still reach good results. WaSim-ETH was used in this 
configuration. No further adaption of the parameters was 
done. The hydrological qualities of the modelled dis- 
charge over the whole available time period are summa- 
rized in Table 4. The model was driven by the complete 
set of available meteorological stations (MODF) and by a 
reduced set (MODS). This reduction is meant in terms of 
expelling stations within the observed period, which in- 
clude daily defaults. Hence really complete series were 
used for the MODS runs. Explicitly this reduction meant 
a shrinking from 68 to 31 precipitation gauges and 19 to 
6 climate stations within and around the catchment area. 
The MODF run is quite close to a very good performance 
in the period from 01.01.1980 to 31.12.1999. Yet the 
MODS run just achieved an acceptable quality due to the  
 

 

Figure 2. Downscaling scheme: How to come from global 
model data to a local water balance, two approaches were 
distinguished: first a coupling of a PRNN and a distributed 
watershed model (WaSim-ETH) and second a NARX mo- 
del. 
 
Table 4. Hydrological quality measures on daily modeled 
discharge for different runs and periods. 

Model run Time NSE RSR PBIAS

MOD  
CALIBRATION 

01.01.1994 - 31.12.1999 0.78 0.46 4.43 

MOD  
VALIDATION 

01.01.1980 - 31.12.1990 0.71 0.54 1.02 

MODF 01.01.1980 - 31.12.1999 0.73 0.52 1.58 

MODS 01.01.1980 - 31.12.1999 0.55 0.67 −8.9 

NARX (Q) 01.01.1980 - 31.12.1999 0.88 0.34 −0.98

reduced meteorological input. Attempts to calibrate the 
model for the reduced meteorological series did not suc- 
cessfully lead to good results of the modelled discharge. 
Thus WaSim-ETH was utilized for the calibrated version 
with full meteorological input driven by a reduced data-
set. 

4.2. Neural Network Training 

The training for the recurrent networks resulted for all 
configurations into good results in terms of the regres- 
sion coefficient R. In Table 5, the results can be seen. 
The naming of each realization is defined as follows; first 
the days of delay (i.e. time lagged days) and second the 
number of neurons in the hidden layer. As regression 
coefficient R indicates for the validation and test datasets 
the networks are not over-fitted, since any of these con- 
figurations are really close to the trained dataset. The vali- 
dation and test datasets were randomly generated each 
contained 15% of all available days. According to R each 
realization can be considered as satisfied approximation 
of the observed data. Best results show the PRNN_3_80 
and PRNN_5_80 realizations with 0.81 in the training 
mode, worst can be found in the PRNN_0_20 with 0.76.  
 
Table 5. Neural network performance (regression coeffi- 
cient R) after training over the period from 01.01.1980 until 
31.12.1999, the dataset was randomly splitted into 70% 
training, 15% validation and 15% test data. 

Name of 
realization

Number of 
neurons in 
the hidden 

layer 

Number 
of days 
of delay 

Training 
[−] 

Validation 
[−] 

Test 
[−]

Q (NARX) 6 6 0.96 0.91 0.91

PF (NARXF) 8 5 0.48 0.27 0.30

PS (NARXS) 8 5 0.56 0.24 0.32

EF (NARXF) 2 2 0.86 0.87 0.86

ES (NARXS) 2 2 0.86 0.86 0.83

PRNN_0_20 20 0 0.76 0.76 0.76

PRNN_0_40 40 0 0.78 0.76 0.78

PRNN_0_80 80 0 0.78 0.78 0.79

PRNN_3_20 20 3 0.80 0.79 0.78

PRNN_3_40 40 3 0.80 0.79 0.79

PRNN_3_80 80 3 0.81 0.79 0.78

PRNN_5_20 20 5 0.78 0.76 0.76

PRNN_5_40 40 5 0.78 0.78 0.78

PRNN_5_80 80 5 0.81 0.78 0.77

PRNN_7_20 20 7 0.80 0.79 0.78

PRNN_7_40 40 7 0.79 0.78 0.78

PRNN_7_80 80 7 0.80 0.79 0.79
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The training of the NARX network leads to more dis- 
tinguishable results in terms of R. It clearly can be seen 
in Table 5 that for precipitation (P) for the short con- 
figuration (PS) as well as the full configuration (PF, i.e. 
full = all stations) just satisfactory qualities of 0.56 and 
0.48 for the training data, less 0.35 for the validation and 
test datasets could be achieved. Using other combina- 
tions of predictors even lead to worse results so that us- 
ing this model (i.e. NARX) and the chosen predictor data 
no better results could be obtained. Surprisingly good 
instead performed the discharge (Q) and the evapotran- 
spiration (E), while there are no significant difference in 
the performance of the short (ES) or full (EF) dataset of 
the evapotranspiration of 0.86 in the training phase. 

4.3. Meteorological Results of the Recurrent 
Neural Network 

The 0.99 quantiles of the meteorological output from the 
recurrent networks are shown in Figures 3 and 4. Each 
sample point represents the 0.99 quantile of a specific 
element at a certain station in the catchment area.  
 

 

Figure 3. 0.99 quantiles of all realizations and all stations 
after downscaling with PRNN for precipitation (RR [mm/d]), 
wind speed at 2 m (FF [m/s]), mean temperature (TM [˚C]), 
relative sunshine duration (RS [−]), moisture (RF [%]) and 
global radiation (GS [Wh/m²]). 
 

 

Figure 4. 0.99 quantiles of all realizations and all stations 
after downscaling with PRNN for precipitation. 

Every element is drawn at the graph. Obviously each 
element forms a more or less scattered cloud. Despite the 
wind (FF), as can be seen, the 0.99 quantile is constant 
over all realizations due to the linear function used for 
the CDF. The relative humidity (RF) is for all realiza- 
tions close to 100 %, the mean daily temperature (TM) 
lies between 17.1˚C and 26.2˚C and the global radiation 
(GS) around 7500 Wh/m². These four elements compared 
to the observed quantiles are really close to the 1:1 line. 
Only the relative sunshine duration (RS) and the precipi- 
tation (RR) show significant deviations from the observ- 
ed values. While RS is consequently over estimated (i.e. 
0.99 Quantile) by the neural network for RR an under- 
estimation becomes obvious. However, on the one hand 
the overestimation of RS seems systematic, since the 
scattering is limited. For this and physical reasons RS 
was corrected, in case a value exceed 1 it was reset to 1. 
On the other hand, the wide scattering of RR does not 
support the thesis of a systematic underestimation. Hence 
its deviations seem to be randomly. One reason for the 
underestimation may be the choice of a rather simple 
parametric CDF (cp. Table 3), which dos not accurately 
describes the extremes of precipitation. 

4.4. Monthly Mean Water Balance 

The hydrological quality measures for the different 
model runs (i.e. PRNN with WaSim-ETH and NARX) 
are summarized in Table 6 for monthly values. The best 
performance could be achieved by the NARX model 
with an NSE of 0.99. The model performs surprisingly 
well for the modelled period. Also MODF and MODS 
(WaSim-ETH driven by observed meteorological input) 
reached according to [20] a very good quality for NSE, 
RSR as well as PBIAS in contrast to the recurrent net- 
work realizations.  

WaSim-ETH driven by the downscaled input could 
rarely reach satisfactory results on a monthly basis. For 
example just three realizations have a NSE of larger than 
0.30. Also RSR and PBIAS yield poor results for the 
modelled discharge in the catchment. To find feasible 
reasons for the modest results also the other components 
of the water balance have to be taken into account for 
interpretation. 

In Figure 5, the average monthly sums of the water 
balance components are depicted for all model runs. Area 
means generated by interpolations were used for the in- 
terpretation of the components. Precipitation (cp. Figure 
5(a)) with its variability in space and time is a difficult 
variable for this kind of prediction. The precipitation 
results from the MODF are defined as standard or in 
other words as observed. Each other realization of pre- 
cipitation has to be evaluated by this measure. The 
MODS results lie closely to the MODF curve, which  
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R. KRONENBERG  ET  AL. 

Copyright © 2013 SciRes.                                                                                  ACS 

558 

 

 

Figure 5. Monthly mean water balance components: (a) Precipitation, (b) Evapotranspiration, (c) Groundwater storage 
change, (d) Discharge. 
 
Table 6. Hydrological quality measures for monthly mod- 
eled discharge for different runs of PRNN with WaSim- 
ETH and the NARX model for the period 01.01.1980 to 
31.12.1999. 

Model run NSE RSR PBIAS 

PRNN_0_20 0.27 0.85 30.65 

PRNN_0_40 −0.48 1.22 67.22 

PRNN_0_80 0.33 0.82 14.45 

PRNN_3_20 0.20 0.90 43.84 

PRNN_3_40 0.07 0.96 49.73 

PRNN_3_80 0.45 0.74 19.77 

PRNN_5_20 0.12 0.94 16.79 

PRNN_5_40 −0.30 1.14 −30.27 

PRNN_5_80 0.07 0.97 −19.93 

PRNN_7_20 −0.17 1.08 −9.99 

PRNN_7_40 0.16 0.92 −2.15 

PRNN_7_80 0.33 0.82 3.38 

NARXF 0.99 0.11 −0.93 

MODS 0.76 0.49 −8.84 

MODF 0.85 0.39 1.63 

indicates that for precipitation over area the impact of the 
reduction of gauging stations is rather small. The most 
similarities in the annual cycle of precipitation could be 
achieved by the NARXF and NARXS results. 

Interesting are the significant underestimation which 
occurred by reducing the gauge density in the catchment 
area. This indicates that there might by significant dif- 
ferences in the daily precipitation which are smoothed by 
monthly means. These differences of the precipitation 
over area have a stronger impact on the downscaling by 
NARX than on the spatial averaging. Going back to the 
similarities of the annual curve the bimodal character of 
the observed state almost could be achieved with two 
peaks. One peak in December and one even stronger one 
in the summer around the month July and August are 
apparent, which cover with observations in the catchment 
[31]. 

The MODF run shows a deviant behaviour compared 
with the different configurations of the recurrent network. 
They all have a similar annual cycle of precipitation of- 
ten with two peaks. But the stronger peak always occurs 
in winter. While winter and spring closely behave like 
the MODF run the summer shows significant differences 
in terms of underestimation. In general an underestima- 
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tion of precipitation can be observed. Taking into ac- 
count the underestimation of single days (cp. Figures 3 
and 4) it must be stated that for single days insufficient 
precipitation sums are computed and an insufficient 
number of wet days are generated by PRNN compared to 
observations. 

The curves of evapotranspiration over area show in- 
dependent of the model run similarities. The differences 
just lie in the amount of water. The annual cycle was 
conserved by each model run. The systematic underesti- 
mation for especially the PRNN runs could easily be ex- 
plained by the shortage of available water particularly in 
the summer months. Underestimations of precipitation by 
the recurrent network compulsorily lead to a systematic 
underestimation of transpirated water, which clearly can 
be seen in Figure 5(b). The peak can be found in the 
summer, since the energy input over the catchment is at 
its maximum. The discharge as output of the hydrologi- 
cal system concludes the main component of the budget. 
The annual cycle is similar in all runs. The highest dis- 
charge can be found in spring after the melting of snow. 
In summer it is small because of the large evapotranspi- 
ration. Regarding the rather large precipitation values of 
the PRNN runs in winter and the underestimated evapo- 
ration results in the winter lead to significant peaks in 
April, which obviously are largely overestimated. In 
summer, the discharge is underestimated by the PRNN 
due to the underestimated precipitation in this period. 
The storage change as residual of the water balance 
shows for all runs a less variable annual cycle with in- 
creasing amount of water stored in the winter in the form 
of ice and snow and a negative term in summer caused 
by the large amount of available water which evaporates. 

4.5. Yearly Mean Water Balance 

The yearly means of the water balance components are 
summarized in Table 7. For the recurrent network runs a 
general trend of underestimation is obvious. The large 
percentage deviation of the storage change seems to be 
dramatic. But it is not, since the absolute value of dS is 
comparatively small to the other components.  

But 10% and more have to be mentioned, which 
mainly occur because of the poor precipitation estimation. 
For the recurrent network runs PRNN_5_40 and 
PRNN_5_80 seems the most suitable yet not satisfac- 
tory, comparing them to the really good bias of less 
than 1% of the NARX model especially for Q. But also 
the bias of P and E for NARXF and NARXS are satis- 
factory in contradiction to dS which exceed a multiple 
of the observed value. Yet this exceedance may be ex- 
pected since the absolute average value of dS plays a 
marginal role in the catchment area. The absolute year- 
ly mean values for the water balance are drawn in Fig-  

 

Figure 6. Yearly mean water balance components: P = Pre- 
cipitation, E = Evapotranspiration, Q = Discharge; PRNN is 
depicted with all realizations, the different runs of PRNN 
are summarized. 
 
Table 7. Annual bias of water balance components from the 
absolute observed values for the model runs. 

 dS Q P E 

MODF [mm] −18.88 406.19 (observed) 977.50 596.71

BIAS [%] 

PRNN_0_20 −87.4 −36.39 −35.28 −30.94

PRNN_0_40 −118.74 −69.93 −54.17 −36.80

PRNN_0_80 −48.45 −21.53 −24.09 −24.07

PRNN_3_20 −77.01 −48.48 −36.88 −24.47

PRNN_3_40 −90.53 −53.89 −40.91 −26.90

PRNN_3_80 −45.78 −26.41 −22.76 −17.94

PRNN_5_20 −75.22 −23.67 −29.25 −30.74

PRNN_5_40 −4.28 19.48 0.67 −14.17

PRNN_5_80 −13.61 10.01 −2.97 −12.81

PRNN_7_20 −48.41 0.89 −13.84 −23.78

PRNN_7_40 −32.68 −6.31 −13.27 −17.51

PRNN_7_80 −52.85 −11.38 −18.54 −22.23

MODF - −1.6 - - 

MODS 6.48 8.92 0.74 −6.16

NARXF 338.43 6.33 −1.43

NARXS −712.49
0.96 

−16.62 −5.77

 
ure 6. As can be seen the biggest differences between 
the model runs can be found in the precipitation. The 
realizations of the recurrent network are summarized and 
reach from 500 mm to not much more than 1000 mm, 
while NARXF lays close to the observed sum the 
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NARXS underestimates it significantly. The best yearly 
result achieved NARXF followed by NARXS for E and 
Q as already shown in Table 7, the deviations are mar-
ginal. 

5. Conclusions and Outlook 

By now downscaled meteorological data are already used 
in practical applications. There often the question arises 
about the quality of the downscaled data, precisely be- 
cause the input data governs the quality of the specific 
application output. In this study this application was the 
modelling of a meso-scale water balance. Two approach- 
es were deployed for a representative catchment area of 
the Free State of Saxony, Germany. The approaches be- 
long to a group of recurrent neural networks. First a cou- 
pled approach was implemented and investigated with a 
recurrent neural network and a watershed model and 
second a NARX network to downscale meteorological 
fields of the ERA-40 re-analysis dataset. The findings 
show that recurrent networks should be used carefully for 
downscaling climate elements, especially precipitation. 
Explicitly the underestimation of daily sums and the un- 
derestimation of the number of wet days by the coupled 
approach are main problems, significantly influencing 
the results of the water balance model. The findings con-
firm the known weaknesses of stochastic downscaling 
approaches by producing rather fuzzy information of 
discrete variables like precipitation. A coupling of ANN 
with Markov chain models [32] and a better functional 
description of precipitation CDFs through mixture dis- 
tributions [33] or non-parametric distributions [34] may 
lead to better results. 

Apart from that, the downscaling process lead to more 
consistent data, which can be seen in the residual storage 
change term in contrast to the NARX runs. The bias is 
significantly smaller than for NARX which exceed the 
observed storage change multiple times and indicates a 
smaller consistency for the climate variables of a daily 
resolution. But the hydrological quality measures as well 
as the monthly and yearly outputs speak for the use of 
NARX models to simulate the water balance for a meso- 
scale catchment area. Likewise the application is less 
time and knowledge demanding. 
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