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ABSTRACT 

A data assimilation system combines all available information on the atmospheric state in a given time-window to pro- 
duce an estimate of atmospheric conditions valid at a prescribed analysis time. Nowadays, increased computing power 
coupled with greater access to real-time asynoptic data is paving the way toward a new generation of high-resolution 
(i.e. on the order of 10 km) operational mesoscale analyses and forecasting systems. Moreover, better initial conditions 
are increasingly considered of the utmost importance for Numerical Weather Prediction (NWP) at the short range (0 - 
12 h). This paper presents a general-purpose data assimilation system, which is coupled with the Regional Atmospheric 
Modelling System (RAMS) to give the analyses for: zonal and meridional wind components, temperature, relative hu- 
midity, and geopotential height. In order to show its potential, the data assimilation systems applied to produce analy- 
ses over Central Europe. For this application the background field is given by a short-range forecast (12 h) of the 
RAMS and analyses are produced by 2D-Var with 0.25˚ horizontal resolution. Results show the validity of the analyses 
because they are closer to the observations, consistently with the settings of the data assimilation system. To quantify 
the impact of improved initial conditions on the forecast, the analyses are then used as initial conditions of a short-range 
(6 h) forecast of the RAMS model. The results show that the RMSE is effectively reduced for the one- and two hours 
forecast, with some improvement for the three-hours forecast. 
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1. Introduction 

Modern NWP data assimilation systems use information 
from a range of sources to provide the best estimate, i.e. 
the analysis, at a given time. These systems combine 
information coming from the observations, an a-priori 
estimate of the atmospheric state (the background or 
first-guess field), detailed error statistics, and the law of 
physics. 

Nowadays, increased computing power coupled with 
greater access to real-time asynoptic data is paving the 
way toward a new generation of high-resolution (i.e., on 
the order of 10 km or less) operational mesoscale analy- 
ses and forecasting systems [1-5]. Moreover, better initial 
conditions are increasingly considered vital for a range of 
NWP applications, in particular at the short range (0 - 12 
h [6-7]). 

This paper shows preliminary results of a data assimi- 
lation system, which is under development with the fol- 
lowing two purposes: 1) to produce analyses of meteoro- 
logical parameter; 2) to improve the short-term forecast 
of atmospheric fields. 

The analyses are given for the following parameters: 
zonal and meridional wind components, temperature, rela- 
tive humidity, and geopotential height. 

The data assimilation system is a stand-alone package 
that can be used with different backgrounds. However, in 
this paper it is used in conjunction with the RAMS model 
[8,9]. So, the data assimilation system uses the RAMS 
fields as background and the analyses are used to initial- 
ize the RAMS model. 

The observations used in the data assimilation system 
are the profiles of the variables of interest, and in par- 
ticular those distributed through the Global Telecommu- 
nication System (GTS). 

The main features of the analysis system (2D-Var) 
used in this work are: 

1) Incremental formulation of the cost-function [10], 
i.e. observations are assimilated to provide analysis in- 
crements. In this way, the analysis imbalance is kept at 
minimum as the first guess forecast, to which the incre- 
ments are added, is already balanced because it usually 
comes from the output of a numerical model. 

2) Preconditioning of the background cost function 
through a “control variable transformation” U defined as 
B = UUT, where B is the background error covariance 
matrix, which is formulated in a simple way. 

3) Background error covariances are estimated via the 
National Meteorological Center (NMC, [11]) method, 
which gives the length-scale used in the background error  

Copyright © 2013 SciRes.                                                                                  ACS 



S. FEDERICO 62 

covariance matrix. The background and observational er- 
rors, as well as the length-scale of the background error, 
are a function of the vertical level. 

The goals of this paper are the following two: 1) to 
quantify the performance of the analyses at improving 
the initial state of the RAMS model; 2) to show the im- 
pact of the data assimilation system on the short-range 
forecast of the RAMS model. 

It is important to highlight that a two-dimensional so- 
lution (2D-Var) is used to solve a three-dimensional pro- 
blem, which is a limitation of this work because the ver- 
tical correlation of the error is neglected. This causes a 
loss of information in the analyses, which are less ac- 
curate compared to those computed with three- and four- 
dimensional methods [2,4,5]. Moreover the RAMDAS 
4D-Var analysis system is also available for the RAMS 
model [5,12]. 

Nevertheless, the adoption of the 2D-Var system of 
this paper is motivated by the following three reasons: 1) 
the method is computationally faster, which is important 
from the operational point of view, and simpler to im- 
plement compared to three- and four-dimensional meth- 
ods; 2) the 2D-Var solution may still produce analyses 
with a valuable impact on the short-term forecast; 3) a 
well designed 2D-Var method provides the base for the 
implementation of more advanced variational systems 
because many of the algorithms required by 3D-Var and 
4D-Var methods (observation operators, minimization 
packages, background error covariances, etc.) are con- 
tained in 2D-Var. 

The paper is divided as follows: Section 2 provides 
details about the method of solution used in this paper; 
Section 3 shows how the analysis system and the RAMS 
model are coupled and shows the strategy adopted to 
achieve the goals of this works; Section 4 gives the re- 
sults, and; Section 5 gives conclusions. 

2. The 2D-Var Method 

The basic goal of the 2D-Var algorithm is to produce an 
optimal estimate of the true atmospheric state at analysis 
time through iterative solution of a prescribed cost-func- 
tion [13,14]: 

     

     

 1

1

1

2
1

2

T

b b

To o

J x x x B x x

y H x R y H x





  

  
  (1) 

where J(x) is the costfunction, xb is the background state, 
H is the forward observational operator, yo is the vector 
of the observations, B, and R are the background, and 
observational error covariance matrices, respectively. 

The problem can be summarized as the iterative solu- 
tion of Equation (1) to find the analysis state x that 

minimizes J(x). This solution represents the a posteriori 
maximum likelihood estimate of the true state of the at- 
mosphere given the two sources of a priori data: the 
background xb and observations yo [13]. 

A preconditioning via a control variable v transform 
defined by x' = Uv is performed before the minimization 
of (1) where x' = x − xb. The transform U is chosen to 
satisfy the relationship B = UUT. Using the incremental 
formulation [10] and the control variable transform, the 
two terms of the r.h.s. of Equation (1) may be managed 
as follows: 
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For the second term we assume that the background xb 
gives a good estimate of the final state x and we notice 
that: 
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where yo' = yo – H(xb) is the innovation vector and H is 
the jacobian of the potentially nonlinear observation op- 
erator H used in the calculation of yo'. 

Considering the above results, the Equation (1) may be 
rewritten as: 

  11 1
H H

2 2
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In this form, the background term is diagonalized, re- 
ducing the number of calculations required from O(n2) to 
O(n), where n is the dimension of x. 

Another goal of the control variable transform is to 
represent spatial correlations in an accurate and simple 
form. In the implementation of the 2D-Var scheme of 
this paper, the transformation U is given by: 

1 2U EL                     (3) 

where E and L are defined by:  1B ELE
The background error matrix has a Gaussian shape 

whose length scale is derived by the NMC method, as 
shown in Appendix A. The background error matrix de- 
pends on the background error 2

b . In particular, B is an 
n × n matrix whose element ij is the value of the Gaus- 
sian for the distance between the grid points i and j mul- 
tiplied by 2

b . The background 2
b  and observational 

2
o  errors are introduced in the Appendix A and are de- 

rived from the bibliography. 
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The observational error covariance matrix R is a p × p 
diagonal matrix whose elements are all equal to the ob- 
servational error 2

o  and p is the number of observa- 
tions available at the analysis time for a level. 

tated near the centre of the domain to minimize the dis- 
tortion of the projection in the main area of interest. 

In the vertical direction, RAMS uses sigma-z terrain 
following coordinates [9], while the analysis algorithm 
uses pressure. The values of the observational and background errors, 

as well as the length-scale for each parameter depend on 
the vertical level and the cost-function (1) is minimized 
for each vertical level. 

To cope with the differences between the analysis and 
forecast coordinate systems, two different RAMS set- 
tings are used: a “background run” and a “forecast run”. 
The background run has one domain with 10 km hori- 
zontal grid resolution (Table 2, Figure 1) and covers 
almost all Europe. The background run gives the first- 
guess fields for the analyses. 

The Numerical Experiment Set-Up 

The background and the forecast are issued by the RAMS 
model (non-hydrostatic), version 6.0. Its physical setting 
is summarized in Table 1 and is the same of that used for 
operational forecast in southern Italy [21]. 

Then analyses are performed on the analysis grid, 
whose domain spans most of Europe (Table 2, Figure 1), 
and whose horizontal resolution is 0.25˚. The analysis 
grid is contained in the background grid, both horizon- 
tally and vertically. 

An important issue in coupling the RAMS model with 
the data assimilation system is that they use different 
coordinate systems both in the horizontal and in the ver- 
tical. The data assimilation system uses a regularly spaced 
longitude-latitude grid, while the RAMS model uses a 
rotated polar stereographic projection, whose pole is ro-  

The analyses are used to initialize a new run of the 
RAMS model, i.e. the forecast run, whose domain is 
contained inside the analysis domain, both horizontally 
and vertically (Table 2, Figure 1). 

 
Table 1. RAMS model physical settings for the background and forecast run. 

Physical option Description 

Parametrized cumulus convection Modified Kuo scheme to account for updraft and downdraft [15]. 

Explicit precipitation parametrization Bulk microphysical model which prognoses cloud water, rain, ice crystals, aggregates, graupel and hail [16].

Subgrid mixing 

The turbulent mixing in the horizontal directions is parameterized following Smagorinsky [17], which  
relates the mixing coefficients to the fluid strain rate and includes corrections for the influence of the 
Brunt-Vaisala frequency and the Richardson number [9]. Vertical diffusion is parameterized according to the 
Mellor and Yamada scheme [18], which employs a prognostic turbulent kinetic energy. 

Exchange between the surface, the  
biosphere and the atmosphere. 

LEAF-3 sub-model [19]. LEAF includes prognostic equations for soil temperature and moisture for multiple 
layers, vegetation temperature and surface water including dew and intercepted rainfall, snow cover mass and 
thermal energy for multiple layers, and temperature and water vapour mixing ratio of canopy air. 

Radiation scheme 
A full-column, two-stream single-band radiation scheme is used to calculate short-wave and long-wave  
radiation [20]. The scheme accounts for condensate in the atmosphere, but not for specific optical properties 
of ice hydrometeors. 

 
Table 2. RAMS grid-setting for the background and forecast run. NNXP, NNYP and NNYZ are the number of grid points in 
the west-east, north-south, and vertical directions. Lx (km), Ly (km), Lz (m) are the domain extension in the west-east, 
north-south, and vertical directions. DX (km) and DY (km) are the horizontal grid resolutions in the west-east and north- 
south directions. CENTLON and CENTLAT are the geographical coordinates of the grid centres. 

 RAMS Background-grid RAMS Forecast-grid Analysis grid 

NNXP 450 230 176 

NNYP 450 230 132 

NNZP 35 32 32 

Lx 5400 km 2520 km 44˚ 

Ly 4200 km 2520 km 33˚ 

Lz 21,800 m 18,800 m 1000 - 50 hPa 

DX 10 km 10 km 0.25˚ 

DY 10 km 10 km 0.25˚ 

CENTLAT (˚) 50.0 50.0 ≈46.5 

CENTLON (˚) 8.0 8.0 ≈8.0 

The analysis grid (rightmost column) is regularly spaced in longitude and latitude and uses pressure as vertical coordinate. 
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Figure 1. The three domains: BCKG is the domain of the background run; ANL is the domain of the data assimilation system; 
FCST is the domain of the forecast run. 

 
In the vertical, the RAMS model uses thirty-five levels 

for the background run and thirty-two levels for the 
forecast run. Levels are not equally spaced: layers within 
the Planetary Boundary Layer (PBL) are between 50 and 
200 m thick, whereas layers in the middle and upper tro- 
posphere are 1000 m thick.  

The analysis grid uses thirty-one pressure levels from 
1000 hPa to 50 hPa. Pressure levels are spaced every 50 
hPa between 800 and 300 hPa, and every 25 hPa below 
800 hPa and between 300 hPa and 150 hPa. Above 150 
hPa the vertical levels used are: 130, 110, 100, 80, 65, 
and 50 hPa. This choice enhances the resolution near the 
surface, and is a compromise between the computing 
time and the resolution of the analyses. 

Observations used in this work are TEMP (both land 
and ship) reports over Europe and the European wind 
profiler network. 

TEMP reports contain, among others, vertical sound- 
ings of relative humidity, temperature, wind speed and 
direction, and height. The European wind profilers net- 
work measures the wind speed and direction in the verti- 
cal above the instrument. 

Observations were downloaded from MARS (Mete- 
orological Archive and Retrieval System, see also http:// 
www.ecmwf.int/publications/manuals/mars/) of ECMWF 
(European Centre for Medium Weather range Forecast) 
and were available from 1 to 30 August 20081. 

To perform analyses, measurements are interpolated 
onto the vertical levels of the analysis grid. Temperature 

and relative humidity are interpolated assuming they are 
linear in log-pressure. The velocity components are as- 
sumed linear in pressure. The same behaviour of the 
variables with height is assumed to interpolate the fields 
between the RAMS sigma-z levels and the pressure lev- 
els of the analysis grid and vice versa. 

Finally, only measurements whose difference with the 
background is under a fixed threshold are used in the 
analyses. The thresholds considered in this paper are 
equal for all levels and are the following: 25 m for geo- 
potential height, 5 K for temperature, 10 m/s for zonal 
and meridional wind components and 30% for relative 
humidity. This is the only quality check adopted for the 
observations, and is used to discard measurements af-
fected by gross errors. 

To quantify the impact of the analysis both in the im- 
provement of the initial state and in the short-term fore- 
cast of the RAMS model, the following strategy is adop- 
ted (Figure 2). For each day of August 2008 one back- 
ground run lasting 24 h is made starting at 00 UTC. Its 
initial and boundary conditions are derived, every 6 h, 
from the operational analysis/240 h forecast cycle of the 
ECMWF. These fields are available at 0.5˚ horizontal 
resolution. 

After 12 h of background run, an analysis is made at 
12 UTC. This hour was chosen because there are several 
reporting TEMP and wind profiler reports, which can be 
used to analyse the parameters considered in this paper. 
Figure 3 shows the number of data available for the ana- 
lyses for the period. It is noticeable that there are more 
data for the wind components because of the data  

1The period of August 2008 was selected in this study for data avail-
ability. 
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coming from the European wind profiler network, no- 
ticeably below 500 hPa. It is also important to highlight 
that the results of this paper are shown up to 200 hPa 
because there are fewer data at higher levels and statistics 
become noisier. 

Starting at the analysis time (12 UTC), a short-term 
RAMS forecast, lasting 6 h, is made using the forecast 
grid. For this run, the initial conditions are given by the 
analyses produced at 12 UTC, while the boundary condi- 
tions after 6 h are taken form the ECMWF operational 
analysis/240 h forecast cycle and are the same as the 
background run. 

It is important to highlight that observations used at 
the analysis time are not used in the ECMWF 240 h 
forecast, which gives the boundary conditions for the 
background run and for the forecast run after the initiali- 
zation time. The ECMWF 240 h forecast uses observa- 
tions form a 6 h time window centered around the fore- 
cast initial time, (see http://www.ecmwf.int/products/ fore- 
casts/guide/The_ECMWF_early_delivery_system.html). So 
the 12 UTC observations are used only in the initial con- 
ditions of the forecast run. 

The root mean square error (RMSE) is computed be- 
tween the background fields and observations, and be- 
tween the forecast fields and observations for the whole 
period on the common forecast grid (Figure 1). The 
comparison of these statistics at the analysis time shows 
the performance of the data assimilation system (analysis 
stage); the same comparison for times following the 
analysis time quantify the impact of the analyses on the 
short-term forecast (forecast stage). 

Finally, because the data for 10 August were not avail-  

able, a total of thirty background run, analyses, and fore- 
cast run were collected for the whole period. 

3. Results 

3.1. The Analysis Stage 

Hereafter the RMSE computed between the background 
run and the observations at a fixed time and for the whole 
period is referred as the background error (RMSE_b). 
Similarly, the RMSE computed between the forecast run 
and the observations at a fixed time and for the whole 
period is referred as the forecast error (RMSE_f). For the 
computation of both RMSEs, the grid point nearest to the 
observation is considered and the statistics are computed 
on the common forecast-grid domain (Figure 1). 

It should also be emphasized that RMSE_f at the analy- 
sis time is computed after the analyses are used to ini- 
tialize the RAMS model. So, the difference between the 
RMSE_b and RMSE_f accounts for the errors introduced 
by the interpolation between the RAMS and analysis 
grids. 

 

 

Figure 2. Synopsis of the simulations. BCKG is the back- 
ground run, ANL is the analysis time, and FCST is the 
forecast run. One analysis is produced at 12 UTC. 

 

 

Figure 3. The number of data available at the analysis times for the whole period. The number of data for the wind compo- 
nents (u, v) is the same for all levels. 
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Figure 4(a) shows the RMSE_b and RMSE_f for the 

temperature. The RMSE_b varies between 0.7 K (500 
hPa) and 2.1 K (225 hPa). The background error is larger 
above 300 hPa. The forecast error at the analysis time 
(RMSE_f) is reduced compared to the background error, 
as expected. It varies between 0.3 K and 0.9 K below 300 
hPa and increases above this level. 

From Figure 4(a) it is apparent that the analysis is ef- 
fective at reducing the forecast error because RMSE_f is 
roughly halved compared to RMSE_b for several levels. 
This result is in agreement with the data assimilation 
system setting. In particular, considering that the model 
error 2

b  is two times the observational error 2
o  at all 

levels (Appendix A), the analysis near an observation is 
closer to its value than to the background, and the error is 
more than halved. In particular, for this ideal case it can 
be easily shown that the analysis error (RMSE_f) is 

 2 2
o o

2
b    of the background error (RMSE_b; [1]), 

i.e. 0.33 of the background error for the setting of this 
paper. 

The error reduction of this simple ideal case is never 
attained because: 1) the observations for each level are 
usually more than one and the innovations of these meas- 
urements, i.e. the differences between the background 
and observations, interact with each other in the analysis; 
2) the difference between RMSE_f and RMSE_b of Fig- 
ure 4 accounts for the errors introduced by the interpola- 
tion between the analysis and forecast grids. 

It is important to note the decrease of the performance 
of the analysis with increasing height, as shown by the 
decrease of the difference between RMSE_b and RMSE_f 
with height. This occurs because the vertical resolution 
of the analysis grid decreases at higher levels2, and the 
errors introduced by the vertical interpolation between 
the analysis and RAMS grids are larger. 

Figure 4(b) shows the RMSE_b and RMSE_f for the 
relative humidity. The RMSE_b varies between 10% and 
27% depending on the level and increases with height. 
The error is effectively reduced by the analysis because 
the RMSE_f is more than halved compared to RMSE_b 
at several levels.  

Figure 4(c) shows the RMSE for the zonal wind com- 
ponent. The RMSE_b is about 2.0 m/s from 925 hPa to 
450 hPa, while it increases above this level having a 
maximum of 3.4 m/s at 300 hPa. The error decreases by 
more than 1.0 m/s for several levels showing that the 
analysis if effective at reducing the initial error of the 
RAMS model. 

Similar considerations apply for the meridional wind 
component (Figure 4(d)), showing that: 1) the error re- 
duction at the analysis time is consistent with the data 

assimilation system setting, and; 2) the analysis is effect-  
tive at reducing the RAMS model error at the analysis 
time. 

Figure 4(e) shows the results for the geopotential 
height. The background error varies between 8 and 23 m 
for all levels and RMSE_b increases near the surface. 
The forecast error is halved up to 800 hPa and then the 
difference between RMSE_b and RMSE_f decreases, par- 
ticularly above 300 hPa, where the effect of the analyses 
on the initial conditions of the forecast run becomes neg- 
ligible. 

This behaviour of the errors again shows the effect of 
the vertical interpolation between the analysis and fore- 
cast grids. 

3.2. The Forecast Stage 

In this section the impact of the analysis is shown for the 
short range forecast (0 - 3 h). Statistics are presented for 
the zonal and meridional wind components only, because 
few data are available for other variables. 

Figure 5 shows the difference between RMSE_b and 
RMSE_f for the wind components. If this difference is 
positive, the short term forecast has a lower error than the 
background and it is effectively improved by the use of 
the analyses as initial conditions. If the difference be- 
tween RMSE_b and RMSE_f is negative, using the 
analysis worsen the short-term forecast. 

After one hour forecast, the improvement of the per- 
formance for the zonal velocity is evident. In particular, 
the difference of the RMSE_b and RMSE_f is positive 
with values ranging from 0.3 and 0.7 m/s, depending on 
the level, and for most levels it is about 0.5 m/s. The im- 
pact of the analysis is particularly positive at 975 hPa 
with an improvement of 1.0 m/s. The improvement of the 
wind forecast for lower levels, namely below 900 hPa, is 
important because it is useful to improve the wind fore- 
cast for wind power farms. 

It is noticed that, even if there is an evident reduction 
of the improvement compared to the analysis time, analy- 
ses have a sizeable positive impact on the one-hour fore- 
cast (>0.2 m/s, see the discussion at the end of this sec- 
tion). 

After two-hours forecast the improvement reduces. 
This is expected because the innovations introduced by 
the analyses to the background field have a radius of in- 
fluence that depends on the height, but which is of the 
order of 150 km (Figure 6). So, as the forecast time pro- 
gresses, these innovations are advected downwind and 
overpass the measurement position and its nearest grid- 
point of the analysis grid, where the statistics RMSE_b 
and RMSE_f are computed. 

Nevertheless, it is here noticed that the improvement it 
is well evident (>0.2 m/s) for most levels. 

2Even if its vertical resolution of the analysis grid is increased from 50 
hPa to 25 hPa, the spacing of the analysis levels is about 1000 m above 
350 hPa. For the three-hours forecast, there is a further decrease  
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(a)                                                           (b) 

   
(c)                                                           (d) 

 
(e) 

Figure 4. RMSE of the background field (BCKG) of the analyses (ANL), and their difference (BCKG-ANL) for: (a) Tem- 
perature; (b) Relative humidity; (c) Zonal wind component; (d) Meridional wind component; (e) Geopotential height. The 
RMSEs are computed for the whole period considering the grid-points nearest to the observations. The ANL statistics are 
computed after the RAMS model has been initialized from the analyses. 

 
of the performance, as expected. There is still a sizeable 
improvement (>0.2 m/s) of the short-term forecast for 
some levels, noticeably below 900 hPa, but the improve- 
ment is negligible for most levels. 

Using the analysis does not improve the two- and 
three-hours forecast above 300 hPa. This is a cones- 

quence of the errors introduced by the interpolation be- 
tween the RAMS and the analysis grids. 

The differences between the background and forecast 
runs are small for forecasts longer than three-hours (ab- 
solute value less than 0.2 m/s, not shown), and, in prac- 
tice, there isn’t an impact of the analyses on the short-term  
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(a)                                                            (b) 

Figure 5. Differences between RMSE_b and RMSE_f for the analysis time (ANL), one—(01 h), two—(02 h), and three-hours 
(03 h) forecast for the: (a) Zonal wind component; (b) Meridional wind component. The RMSEs are computed for the whole 
period considering the grid-points nearest to the observations. The analysis time is shown to better understand the behaviour 
of the performance with time. 

 
wind forecast after three-hours. 

The results of Figure 5(a), applies similarly to those 
of Figure 5(b). In particular, after one-hour forecast the 
impact of the analysis on the short-term forecast reduces 
the error of about 0.2 - 0.8 m/s, for most levels. For these 
levels, the analysis is effective at reducing the forecast 
error. It is noticed that there is a decrease of the per- 
formance above 400 hPa because of the lower vertical 
resolution of the analysis. 

After two-hours of forecast the improvement intro- 
duced by the analyses reduces for almost all levels, as 
expected. However, it is still sizeable below 550 hPa, and 
particularly below 900 hPa. After three-hours forecast 
the improvement is further reduced, but it is still present 
for few levels below 400 hPa. It is also noticed that the 
detrimental effect of using the analyses for the upper 
levels tends to affect a larger portion of the upper tropo- 
sphere as the time progresses. However, the absolute 
value of this effect is small (less than 0.05 m/s), and does 
not increase with the forecasting time. For times larger 
than three-hours forecast, the differences between the 
background and forecast runs are small (absolute value 
less than 0.2 m/s, not shown) and will not be discussed 
further. 

The model performance, both at the analysis time and 
for the short-term forecast, varies sizeably as a function 
of the pressure, as shown in Figure 5, and different per- 
formance may be obtained changing the vertical levels 
were measurements are recorded [22]. Nevertheless, it is 
expected that the results of Figures 4 and 5 are well re- 
presentative of the model behaviour in the whole tropo- 
sphere, because the statistics are reported for several lev- 
els in the low (including the planetary boundary layer), 
middle, and upper troposphere, then accounting for the 

different phenomena occurring in those layers. 
It is interesting to quantify the impact that those results 

may have in practical applications. A useful measure of 
this quantity is the comparison of the difference between 
RMSE_b and RMSE_f (Figure 5) with the background 
error at the analysis time (Figures 4(c) and (d)). A useful 
threshold for this comparison is 10% of the background 
error, which corresponds to 0.2 m/s for most layers for 
both zonal and meridional wind components. 

For the one-hour forecast, the difference between 
RMSE_b and RMSE_f is between 15% and 25% of the 
RMSE_b for most layers, both for the zonal and meridio- 
nal wind components. So, the error reduction is a size- 
able amount (>10%) of the initial background error, which 
is effectively reduced by the use of the analyses. 

For the two-hours forecast, the improvement is re- 
duced, but still larger than 10% of the initial background 
error for most levels. For the three-hours forecast the 
error reduction is larger than 10% of the initial error for 
several levels (9) of the zonal wind components and for 
few levels (3) of the meridional wind component. 

So, from these results, it can be concluded that using 
the analysis may have a sizeable impact for the one- and 
two-hours forecast, with some improvement for the three- 
hours forecast. Nevertheless, the results are encouraging 
and pave the way for improving the short-term forecast 
(0 - 3 h) of the RAMS model for wind. 

4. Conclusions 

This paper presents preliminary results of a general-pur- 
pose data assimilation system, which is under develop- 
ment with two main purposes: 1) to produce analyses of 
atmospheric parameters; 2) improve the short-term fore- 
cast of the RAMS model. 
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Analyses can be made for the following parameters: 
zonal and meridional wind components, relative humid- 
ity, geopotential height, and temperature. The data assi- 
milation system in used together with the RAMS model, 
which gives the background fields for the analyses and 
can use the analyses as initial and boundary conditions. 

The paper has two main goals: 1) to quantify the per- 
formance of the analyses at improving the initial state of 
the RAMS model; 2) to show the impact of the analyses 
on the short-term forecast. To get these two goals, the 
data assimilation system and the RAMS model have been 
used to make analyses/short-term forecasts for the month 
of August 2008. A total of thirty cases were collected. 

The results for the analysis stage can be summarized 
as follows: 

1) The analysis is effective at reducing the initial state 
RMSE. Because in the data assimilation system the 
measurements are considered more reliable than the back- 
ground, it is expected a more than halved RMSE after 
analyses have been used to initialize the forecast run. 
This values, even if not attained for most levels, gives a 
good estimate of the error reduction showing the agree- 
ment between the results and the data assimilation sys- 
tem setting. 

2) There is a decrease of the performance of the analy- 
sis at upper tropospheric levels because the level spacing 
increases and the errors introduced by the spatial inter- 
polation between the RAMS and analysis levels are lar- 
ger. Moreover, the background and analysis fields are 
more similar because there are comparatively fewer meas- 
urements at those levels. The decrease of the perfor- 
mance is unavoidable because a larger number of vertical 
levels would compromise the use of the system opera- 
tionally. 

The impact of the analyses on the short-term forecast 
was evaluated for the wind components only, because 
there are few measurements for other variables. The main 
conclusions are as follows: 

1) Using the analyses improve the one-hour forecast 
for both wind components. In particular the use of the 
analyses reduces the RMSE between 15% and 25% of 
the background error for most levels. 

2) The impact of the analyses on the two-hours fore- 
cast is reduced compared to the one-hour forecast. This 
result is expected because the radius of influence of the 
innovations is about 150 km for both wind components, 
so these innovations are advected downwind of the ob- 
servational point, where statistics are computed, in few 
hours. Nevertheless, compared to the background error, 
the forecast error is reduced by more than 10% for most 
levels.  

3) The impact of the analysis is negligible for most 
levels after three-hours forecast. 

4) The detrimental effect of the analysis on the short- 

term forecast, evident for few levels after two- and three- 
hours forecast, is always small and does not increase 
with forecasting time. 

It is finally noticed that the results of this paper are 
preliminary because they are limited to a short period of 
time. A definitive assessment of the impact of the data 
assimilation system on the improvement of the RAMS 
forecast would require much more simulations and is out 
of the scope of this paper. 
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Appendix A 

This Appendix shows the details of the data assimilation 
system setting. In particular the observational and back- 
ground errors are introduced, as well as the length-scale 
used for each parameter. All these quantities depend on 
the vertical level. 

The Figure 7 shows the observational errors as a 
function of the pressure levels for the geopotential height 
and relative humidity (Figure 7(a)) and for the wind 
components and temperature (Figure 7(b)). All these 
errors were taken from the bibliography. In particular the 
errors for the wind components, relative humidity, and 
temperature were taken from Lazarus [3], while the error 
for the geopotential height is taken from Sashegyi [23]. 

The model error is assumed to be twice the observa- 
tional error ( 2

b  = 2.0 2
o ) at all levels and for all pa- 

rameters, i.e. measurements are assumed more reliable 
than the background. A planned improvement of the data 
assimilation system, which require the analysis of a 
longer period, is to compute the observational and model 
errors by the Lönnberg and Hollingsworth method [21, 
24], which is based on the statistical properties of the 
model output and observations. 

The length-scale d is determined by the NMC method 
and depends on the parameter and on the level. First the 
differences between two forecast states, verifying and the 
same time t, were computed: 

  2 1, , , , , ,T T x x i j k t x i j k t         (A.1) 

where T2 = 24 h and T1 = 12 h. The difference in (A.1) 
was computed considering all the days of August 2008. 
In particular all the background runs of 00 UTC lasted 24 
h and the fields at the end of each simulation was used in 
(A.1) as xT2. Similarly, the fields at the end of each 12 
UTC background simulation were used in (A.1) as xT1. 

In Equation (A.1) i, j, k, and t show the dependence on 
the x, y, z, and time dimensions. For a fixed level and 
time, the average of x' is computed and subtracted to x', 
obtaining the variable n(i, j, t). Then the covariance of 
the n(i, j, t) variable is computed over all the simulations 
as a function of the distance obtaining the new variable 
cov(i, j, i', j'). This covariance is binned as a function of 
the distance between the points i, j and i', j' obtaining the 
variable B(r), where r is the distance between the grid- 
points i, j and i', j'. Finally, assuming a Gaussian form for 
the correlation, an estimate of the length-scale d is made 
taking the natural logarithm of the Gaussian and fitting 
the data to a straight-line y = mr + c: 

   
 

1 2
0

ln
B

y r mr c
B r

  
   

 


  
      (A.2) 

and finally d=1/m. 
Figure 6 shows that the length-scales for all the pa- 

rameters. The length-scales for the geopotential height 
are the largest, i.e. the error correlation decreases more 
slowly with the horizontal distance, and varies between 
250 and 350 km, depending on the level. As expected, 
the length-scales for the zonal and meridional wind com- 
ponents are similar and vary between 120 and 160 km. 
The length-scale for the relative humidity is the smallest 
with values ranging from 50 km (below 900 hPa) to 140 
km (between 450 and 300 hPa). The length-scale for the 
temperature increases with height from 100 km, below 
950 hPa, to 260 km, at 400 - 350 hPa. 

With the exception of the geopotential height, all the 
length-scales increase with height. This result is expected 
because the interaction between the atmosphere and the 
orography generates features at the mesoscale, which are 
smaller than the synoptic-scale features of the middle 
and upper troposphere. 

 

 

Figure 6. Length-scales of the different parameters as a function of the pressure level. Z is for the geopotential height, T is for 
the temperature, u is for the zonal velocity, v is for the meridional velocity, and RH is for the relative humidity. 
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(a)                                                             (b) 

Figure 7. (a) Observational errors for the geopotential height and relative humidity. Both parameters share the same x-axis 
scale (m for geopotential height and % for relative humidity); (b) as in (a) for the zonal and meridional wind components and 
for temperature. The error for the two wind components is the same. The wind components and temperature share the same 
x-axis scale (m/s for wind and K for temperature). 
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